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A BICATEGORICAL INTERPRETATION FOR RELATIVE
CUNTZ-PIMSNER ALGEBRAS

RALF MEYER and CAMILA F. SEHNEM

Abstract
We interpret the construction of relative Cuntz-Pimsner algebras of correspondences in terms of the
correspondence bicategory, as a reflector into a certain sub-bicategory. This generalises a previous
characterisation of absolute Cuntz-Pimsner algebras of proper correspondences as colimits in the
correspondence bicategory.

1. Introduction

A relative Cuntz-Pimsner algebra is defined by a triple (A, E , J ), where A

is a C∗-algebra, E is a C∗-correspondence from A to itself, that is, a Hilbert
A-module with a nondegenerate left action of A by adjointable operators,
ϕ: A → B(E ), andJ � A is an ideal that acts on E by compact operators, that is,
ϕ(J ) ⊆ K(E ). The Cuntz-Pimsner covariance condition is only required on J .
This variation on a definition by Pimsner [19] was introduced in [17]. Many
important C∗-algebras may be described as relative Cuntz-Pimsner algebras
(see, for instance, [13]).

We view the correspondence E as a generalised endomorphism of A. If E

comes from an automorphism α of A, then the relative Cuntz-Pimsner al-
gebra for J = A is naturally isomorphic to the crossed product A �α Z. So
we may view Cuntz-Pimsner algebras as analogues of crossed products for
automorphisms. This is made precise in [2] by viewing both crossed products
and Cuntz-Pimsner algebras as colimits of diagrams in the bicategory of C∗-
correspondences. The interpretation of Cuntz-Pimsner algebras in [2] is lim-
ited, however, to proper correspondences, that is, ϕ(A) ⊆ K(E ), and the
“absolute” case J = A. This article is concerned with another bicategorical
interpretation of the Cuntz-Pimsner algebra construction, which needs no pro-
perness and extends to the relative case.

Our results use the equivalence between C∗-algebras with a T-action and
Fell bundles over Z (see [1]). The spectral decomposition of a T-action β on
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a C∗-algebra B gives a Fell bundle (Bn)n∈N over the group Z whose section
C∗-algebra C∗((Bn)n∈N) is canonically isomorphic to B; namely,

Bn := { b ∈ B : βz(b) = zn · b }
for n ∈ Zwith the multiplication, involution and norm from B. Conversely, the
section C∗-algebra of any Fell bundle over Z carries a canonical gauge action
of T. The Fell bundle underlying a Cuntz-Pimsner algebra is semi-saturated,
that is, Bn · Bm = Bn+m if n, m ≥ 0 (or if n, m ≤ 0). Here and below, X · Y

means the closed linear span of { x · y : x ∈ X, y ∈ Y }. By the results
of [1], a semi-saturated Fell bundle is determined by its fibres B0 and B1: B0

is a C∗-algebra, B1 is a Hilbert B0-bimodule, and the crossed product for the
Hilbert B0-bimodule B1 is isomorphic to the section C∗-algebra of the Fell
bundle generated by B0 and B1.

Thus we split the construction of Cuntz-Pimsner algebras with their ca-
nonical T-action into two steps. The first builds the Hilbert bimodule O 1

J,E

over O 0
J,E , the second takes the crossed product for this Hilbert bimodule.

When we include the gauge action, then the second step is reversible using the
spectral decomposition. This article interprets the first step in the construction
as a reflector to a sub-bicategory. A Hilbert bimodule is a C∗-correspondence
with an additional left inner product, which is unique if it exists. Thus Hil-
bert bimodules form a full sub-bicategory in the correspondence bicategory.
We describe a bicategory whose objects are the triples (A, E , J ) needed to
define a relative Cuntz-Pimsner algebra. Those triples where E is a Hilbert
bimodule and J is Katsura’s ideal for E form a full sub-bicategory. We show
that the construction of (O 0

J,E , O 1
J,E ) is a reflector onto this sub-bicategory.

Roughly speaking, a reflector approximates a given object by an object in the
sub-bicategory in the optimal way. More precisely, it is a left (bi)adjoint to the
inclusion of the sub-bicategory.

We gradually work up to such bicategorical considerations. Section 2 deals
with known properties of relative Cuntz-Pimsner algebras. We also discuss
their Fell bundle structure coming from the gauge action, and we show that
the Cuntz-Pimsner algebra OJ,E is the crossed product of its gauge-fixed point
algebra O 0

J,E by the Hilbert O 0
J,E -bimodule O 1

J,E . Section 2 culminates in a
result about the functoriality of relative Cuntz-Pimsner algebras, which goes
back to an idea of Schweizer [20]. We correct his idea and extend it to the
relative case by defining proper covariant correspondences between triples
(A, E , J ) so that they induce correspondences between the associated relative
Cuntz-Pimsner algebras.

This construction is upgraded in Section 3 to a homomorphism of bicat-
egories (or “functor”) from a certain bicategory �Npr to the T-equivariant cor-
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respondence bicategory �T. The objects of �Npr are the triples (A, E , J ) needed
to define a relative Cuntz-Pimsner algebra, the arrows are the proper covariant
correspondences introduced in Section 2, and the 2-arrows are isomorphisms
of covariant correspondences. Whereas Schweizer reduces to ordinary cate-
gories by identifying isomorphic correspondences, bicategories are crucial for
our purposes, as in [2].

Then we define a sub-bicategory �Npr,∗ by restricting to Hilbert bimodules
instead of correspondences. We prove a crucial statement about covariant cor-
respondences, namely, that proper covariant correspondences (A, E , J ) →
(B, G, IG ) are “equivalent” to proper covariant correspondences (O 0

J,E , O 1
J,E ,

IE ) → (B, G, IG ) for all (B, G, IG ) in �Npr,∗, that is, for a Hilbert B-bimodule G

and Katsura’s ideal IG .
Section 4 introduces the bicategorical language to understand this fact: it

says that a certain arrow

υ(A,E ,J ): (A, E , J ) −→ (O 0
J,E , O 1

J,E , IE )

is a universal arrow from (A, E , J ) to �Npr,∗. The existence of universal ar-
rows implies an adjunction (see [9]). So general bicategory theory upgrades
the “equivalence” observed above to our main statement, namely, that the
sub-bicategory �Npr,∗ ⊆ �Npr is reflective and that the reflector homomorphism
�Npr → �Npr,∗ acts on objects by mapping (A, E , J ) to (O 0

J,E , O 1
J,E , IO 1

J,E
). We

describe this reflector in detail and show that its composite with the crossed
product homomorphism �Npr,∗ → �T is the relative Cuntz-Pimsner algebra
homomorphism �Npr → �T described in Section 3. The definitions of bicat-
egories, homomorphisms, transformations, and modifications are recalled in
the appendix, together with some examples related to the correspondence bi-
category.

We thank the referee for several suggestions that helped to improve the
presentation of our results. Several results in this article are extended to product
systems over quasi-lattice ordered monoids in [21].

2. Preliminaries

In this section, we recall basic results on Cuntz-Pimsner algebras, their gauge
action and Fell bundle structure. We correct and generalise an idea by Schwei-
zer on the functoriality of Cuntz-Pimsner algebras for covariant correspon-
dences.

2.1. Correspondences

Let F1, F2 be Hilbert B-modules. Let B(F1, F2) be the space of adjointable
operators from F1 to F2. Let |ξ〉 〈η| ∈ B(F1, F2) for ξ ∈ F2 and η ∈ F1
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be the generalised rank-1 operator defined by |ξ〉 〈η| (ζ ) := ξ 〈η|ζ 〉B . Let
K(F1, F2) be the closed linear span of |ξ〉 〈η| for ξ ∈ F1 and η ∈ F2.
Elements ofK(F1, F2) are called compact operators. We abbreviateB(F ) :=
B(F , F ) and K(F ) := K(F , F ) if F = F1 = F2.

Lemma 2.1. Let E1 ⊆ F1 and E2 ⊆ F2 be Hilbert B-submodules. There
is a unique map K(E1, E2) → K(F1, F2) that maps |ξ〉 〈η| ∈ K(E1, E2) to
|ξ〉 〈η| ∈ K(F1, F2) for all ξ ∈ E2, η ∈ E1. This map is injective.

Proof. Composing with the inclusion E2 ⊆ F2 maps compact operators
E1 → E2 to bounded linear maps E1 → F2. Since a rank-1 operator |ξ〉 〈η| ∈
K(E1, E2) is mapped to a rank-1 operator, we get a well defined, injective
map K(E1, E2) → K(E1, F2). Taking adjoints maps K(E1, F2) bijectively
ontoK(F2, E1). As above, this embeds intoK(F2, F1). Taking adjoints again
gives a map K(E1, F2) → K(F1, F2). The composite map K(E1, E2) →
K(F1, F2) maps |ξ〉 〈η| ∈ K(E1, E2) to |ξ〉 〈η| ∈ K(F1, F2) as desired. This
determines the map uniquely.

Definition 2.2. Let A and B be C∗-algebras. A correspondence from A

to B is a Hilbert B-module E with a nondegenerate left action of A through a
∗-homomorphism ϕ: A → B(E ). A correspondence is proper if ϕ(A) ⊆ K(E ).
It is faithful if ϕ is injective. We write E : A� B to say that E is a correspon-
dence from A to B.

In order for C∗-correspondences to form a bicategory, we need to assume
the left action to be nondegenerate. Otherwise, the isomorphism A ⊗A E ∼= E

fails and we no longer have unit arrows.

Definition 2.3. Let A and B be C∗-algebras. A Hilbert A, B-bimodule is
a (right) Hilbert B-module E with a left Hilbert A-module structure 〈· | ·〉A
such that 〈ξ | η〉A ζ = ξ 〈η|ζ 〉B for all ξ, η, ζ ∈ E .

If E is a Hilbert A, B-bimodule, then A acts by adjointable operators on E

and B acts by adjointable operators for the left Hilbert A-module structure,
that is, 〈ξb | η〉A = 〈ξ | ηb∗〉A for all ξ, η ∈ E and all b ∈ B. In particular,
E is an A, B-bimodule. The next lemma characterises which correspondences
may be enriched to Hilbert bimodules:

Lemma 2.4 (see [8, Example 1.6]). A correspondence E : A � B carries
a Hilbert A, B-bimodule structure if and only if there is an ideal I � A such
that the left action on E restricts to a ∗-isomorphism I ∼= K(E ). In this case,
the ideal I and the left inner product are unique, and I = 〈E | E 〉A.

Definition 2.5. Let E1, E2: A� B be C∗-correspondences. A correspon-
dence isomorphism E1 ⇒ E2 is a unitary A, B-bimodule isomorphism from E1
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to E2. We write “⇒” because these isomorphisms are the 2-arrows in bicat-
egories that we are going to construct.

Let D be another C∗-algebra, F a Hilbert D-module, and ϕ: B → B(F ) a
∗-homomorphism. The tensor product E ⊗ϕF is a HilbertD-module described,
for instance, in [16]. For ξ ∈ E , we define an operator

Tξ : F −→ E ⊗ϕ F , η �→ ξ ⊗ η.

It is adjointable with T ∗
ξ (ζ ⊗η) = ϕ(〈ξ |ζ 〉)η on elementary tensors (see [19]).

Hence
TξT

∗
ζ = |ξ〉 〈ζ | ⊗ 1, T ∗

ζ Tξ = ϕ(〈ζ |ξ〉),
where |ξ〉 〈ζ | ⊗ 1 is the image of |ξ〉 〈ζ | under the canonical map B(E ) →
B(E ⊗ϕ F ), T �→ T ⊗ 1. Hence the operator Tξ for ξ ∈ E is compact if and
only if ϕ(〈ξ |ξ〉) = T ∗

ξ Tξ is compact.

Lemma 2.6 ([19, Corollary 3.7]). Let J := ϕ−1(K(F )) � A and let T ∈
K(E ). The operator T ⊗ 1 on E ⊗A F is compact if and only if T ∈ K(E · J )

(see Lemma 2.1 for the inclusion K(E · J ) ⊆ K(E )).

In particular, if ϕ(A) ⊆ K(F ), then T ⊗1 ∈ K(E ⊗ϕ F ) for all T ∈ K(E ).

2.2. C∗-algebras of correspondences

Let E : A � A be a correspondence over A. Let ϕ: A → B(E ) be the left
action. Let E ⊗n be the n-fold tensor product of E over A. By convention,
E ⊗0 := A. Let E + := ⊕∞

n=0 E ⊗n be the Fock space of E (see [19]). Define

tnξ : E ⊗n −→ E ⊗n+1, η �→ ξ ⊗ η,

for n ≥ 0 and ξ ∈ E ; this is the operator Tξ above for F = E ⊗n. The
operators tnξ combine to an operator tξ ∈ B(E +), that is, tξ |E ⊗n = tnξ . Let
ϕ∞: A → B(E +) be the obvious representation by block diagonal operators
and let t∞: E → B(E +) be the linear map ξ �→ tξ .

Definition 2.7. The Toeplitz C∗-algebra TE of E is the C∗-subalgebra of
B(E +) generated by ϕ∞(A) + t∞(E ).

Let J be an ideal of A with ϕ(J ) ⊆ K(E ). Let P0 be the projection in
B(E +) that is the identity on A ⊆ E + and that vanishes on E ⊗n for n ≥ 1.
Then J0 := ϕ∞(J )P0 is contained in TE . The ideal in TE generated by J0 is
equal to K(E +J ) ⊆ K(E +).

Definition 2.8 ([17, Definition 2.18]). The relative Cuntz-Pimsner alge-
bra OJ,E of E with respect to J is TE /K(E +J ).
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The following three cases are particularly important. First, if J = {0}, then
OJ,E is the Toeplitz C∗-algebra TE . Secondly, if J = ϕ−1(K(E )) and ϕ is
injective, then OJ,E is the algebra ÕE defined by Pimsner [19]. Third, if J is
Katsura’s ideal

IE := ϕ−1(K(E )) ∩ (ker ϕ)⊥, (2.9)

then OIE ,E is Katsura’s Cuntz-Pimsner algebra as defined in [13].

Proposition 2.10. Katsura’s ideal IE in (2.9) is the largest ideal J in A

with ϕ(J ) ⊆ K(E ) for which the canonical map A → OJ,E is injective.

Proof. That πIE
is injective is shown in [13, Proposition 4.9] or [17, Pro-

position 2.21]. The ideal IE is maximal with this property because any ideal
J � A with ϕ(J ) ⊆ K(E ) and J �⊆ (ker ϕ)⊥ must contain a ∈ J with
ϕ(a) = 0. Then ϕ∞(a) ∈ ϕ∞(J ) · P0 becomes 0 in OJ,E .

Definition 2.11. Let E : A� A be a correspondence and B a C∗-algebra.
A representation of E in B is a pair (π, t), where π : A → B is a ∗-homo-
morphism, t : E → B is a linear map, and

(1) π(a)t (ξ) = t (ϕ(a)ξ) for all a ∈ A and ξ ∈ E ;

(2) t (ξ)∗t (η) = ϕ(〈ξ |η〉A) for all ξ, η ∈ E .

These conditions imply t (ξ)π(a) = t (ξa) for all ξ ∈ E and a ∈ A.

In particular, (ϕ∞, t∞) is a representation of E in theToeplitz C∗-algebra TE .
This representation is universal in the following sense:

Proposition 2.12 ([19, Theorem 3.4], [17, Theorem 2.12]). Any represen-
tation (π, t) of E in a C∗-algebra B is of the form (π̃ ◦ϕ∞, π̃ ◦ t∞) for a unique
∗-homomorphism π̃ : TE → B. Conversely, (π̃◦ϕ∞, π̃◦t∞) is a representation
of E for any ∗-homomorphism π̃ : TE → B.

Lemma 2.13 ([19], [4, Proposition 4.6.3]). For any representation (π, t)

of E , there is a unique ∗-homomorphism π1:K(E ) → B with π1(|ξ〉 〈η|) =
tξ t

∗
η for all ξ, η ∈ E .

Proposition 2.14 ([17, Theorem 2.19]). The representation π̃ of TE asso-
ciated to a representation (π, t) of E factors through the quotient OJ,E of TE

if and only if
π(a) = π1(ϕ(a)) for all a ∈ J.

In this case, we call the representation covariant on J .

Let (πJ , tJ ) be the canonical representation of E in OJ,E . Proposition 2.14
says that (πJ , tJ ) is the universal representation of E that is covariant on J .
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Proposition 2.15. A representation (π, t) in B is covariant on J if and
only if π(J ) ⊆ t (E ) · B.

Proof. Let a ∈ J . Then π1(ϕ(a)) is contained in the closed linear span
of t (E )t (E )∗ and hence in t (E ) · B. So π(a) ∈ t (E ) · B is necessary for
π(a) = π1(ϕ(a)). Conversely, assume π(a) ∈ t (E ) ·B for all a ∈ J . We have
π(a) · t (ξ) = t (ϕ(a)ξ) = π1(ϕ(a))t (ξ) for all ξ ∈ E (see [13, Lemma 2.4]).
Hence (π(a) − π1(ϕ(a))) · t (E ) · B = 0. Since π(a∗), π1(ϕ(a∗)) ∈ t (E ) · B,
we get (π(a) − π1(ϕ(a))) · (π(a) − π1(ϕ(a)))∗ = 0. This is equivalent to
π(a) = π1(ϕ(a)).

2.3. Gauge action and Fell bundle structure

Let E : A � A be a correspondence and let J � A be an ideal with ϕ(J ) ⊆
K(E ). If (π, t) is a representation of E that is covariant on J , then so is (π, z · t)
for z ∈ T. This operation on representations comes from an automorphism
of the relative Cuntz-Pimsner algebra OJ,E by its universal property. These
automorphisms define a continuous action γ of T on OJ,E , called the gauge
action. Let

O n
J,E := { b ∈ OJ,E : γz(b) = znb for all z ∈ T }

for n ∈ Z be the nth spectral subspace. These spectral subspaces form a Fell
bundle overZ, that is, O n

J,E ·Om
J,E ⊆ O n+m

J,E and (O n
J,E )∗ = O−n

J,E for all n, m ∈ Z.
In particular, for J = {0} we get a gauge action on TE and corresponding
spectral subspaces T n

E ⊆ TE . Explicitly, the gauge action on TE comes from
the obviousN-grading on E +: if x ∈ TE , then x ∈ T n

E if and only if x(E ⊗k) ⊆
E ⊗n+k for all k ∈ N; this means x|E ⊗k = 0 if k +n < 0. And O n

J,E is the image
of T n

E in OJ,E .

Lemma 2.16. Let n ∈ Z. The subspace O n
J,E in OJ,E is the closed linear span

of tJ (ξ1)tJ (ξ2) · · · tJ (ξk) · t∗J (η�) · · · t∗J (η2)t
∗
J (η1) for ξi, ηj ∈ E , k − � = n. If

n ∈ N, then
O n

J,E
∼= E ⊗n ⊗A O 0

J,E

as a correspondence A� O 0
J,E . The Fell bundle (O k

J,E )k∈Z is semi-saturated,

that is, O k
J,E · O �

J,E = O k+�
J,E if k, � ≥ 0.

Proof. Let b ∈ O n
J,E and let ε > 0. Then b is ε-close to a finite linear

combination bε of monomials tJ (ξ1)tJ (ξ2) · · · tJ (ξk) · t∗J (η�) · · · t∗J (η2)t
∗
J (η1)

with k, � ∈ N. Define

pn(x) :=
∫
T
z−nγz(x) dz, x ∈ OJ,E .
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This is a contractive projection from OJ,E onto O n
J,E . Since pn(b) = b and

‖pn‖ ≤ 1, we have ‖b − pn(bε)‖ ≤ ε as well. Inspection shows that pn maps
a monomial tJ (ξ1)tJ (ξ2) · · · tJ (ξk) · t∗J (η�) · · · t∗J (η2)t

∗
J (η1) to itself if k−� = n

and kills it otherwise. Hence O n
J,E is the closed linear span of such monomials

with k − � = n.
The monomials generating O k+�

J,E for k, � ≥ 0 are obviously in O k
J,E · O �

J,E .
Hence the first statement immediately implies the last one. There is an isometric
A, O 0

J,E -bimodule map

E ⊗n ⊗A O 0
J,E −→ O n

J,E , ξ1 ⊗ · · · ⊗ ξn ⊗ y �→ tJ (ξ1) · · · tJ (ξn) · y.

The first statement implies that its image is dense, so it is unitary.

The Fell bundle (O n
J,E )n∈Z need not be saturated, that is, O n

J,E · O−n
J,E may

differ from O 0
J,E .

The next theorem will split the construction of relative Cuntz-Pimsner al-
gebras into two steps. The first builds the Hilbert O 0

J,E -bimodule O 1
J,E , the

second takes the crossed product O 0
J,E � O 1

J,E for this Hilbert bimodule, as
defined in [1]:

Theorem 2.17. The relative Cuntz-Pimsner algebra is T-equivariantly iso-
morphic to the crossed product of O 0

J,E by the Hilbert O 0
J,E -bimodule O 1

J,E and
to the full or reduced section C∗-algebra of the Fell bundle (O n

J,E )n∈Z.

Proof. The Fell bundle (O n
J,E )n∈Z is semi-saturated by Lemma 2.16. Now

the results of Abadie-Eilers-Exel [1] imply our claims.

A Hilbert bimodule G on a C∗-algebra B is the same as a Morita-Rieffel
equivalence between two ideals in B or, briefly, a partial Morita-Rieffel equi-
valence on B (this point of view is explained in [5]). The crossed product B�G

generalises the partial crossed product for a partial automorphism. Many res-
ults about crossed products for automorphisms extend to Hilbert bimodule
crossed products. In particular, the standard criteria for simplicity and detec-
tion and separation of ideals are extended in [15].

Proposition 2.18. The following conditions are equivalent:

(1) the map πJ : A → O 0
J,E is an isomorphism;

(2) the map ϕ: J → K(E ) is an isomorphism;

(3) the correspondence E comes from a Hilbert bimodule and J = IE .

Proof. If J = IE is Katsura’s ideal, then everything follows from [13,
Proposition 5.18]. So it remains to observe that (1) and (2) fail if J �= IE .
Lemma 2.4 shows that E comes from a Hilbert bimodule if and only if there is
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an ideal I in A so that ϕ|I : I → K(E ) is an isomorphism. In this case, I is the
largest ideal on which ϕ restricts to an injective map into K(E ). So I = IE .
Thus (2) ⇐⇒ (3).

If J �⊆ IE , then A → OJ,E is not injective by Proposition 2.10. So (1)
implies J ⊆ IE . If J ⊆ IE and (1) holds, then the map A → OIE ,E is
still surjective because OIE ,E is a quotient of OJ,E , and it is also injective by
Proposition 2.10. Hence OIE ,E = OJ,E . This impliesK(E +IE ) = K(E +J ) and
hence IE = J because of the direct summand A in E +.

Proposition 2.19. Let G be a Hilbert B-bimodule and let IG be Katsura’s
ideal for G . Then OIG ,G

∼= B � G T-equivariantly.

Proof. Theorem 2.17 identifies OIG ,G
∼= O 0

IG ,G � O 1
IG ,G . Proposition 2.18

gives B ∼= O 0
IG ,G , and the isomorphism O 1

IG ,G
∼= G ⊗B O 0

IG ,G from Lemma 2.16
implies that G ∼= O 1

IG ,G as a Hilbert B-bimodule.

2.4. Functoriality of relative Cuntz-Pimsner algebras

Schweizer [20] has defined “covariant homomorphisms” and “covariant cor-
respondences” between self-correspondences and has asserted that they induce
∗-homomorphisms and correspondences between the associated Toeplitz and
absolute Cuntz-Pimsner algebras. For the proof of functoriality for covari-
ant correspondences he refers to a preprint that never got published. In fact,
there are some technical pitfalls. We correct his statement here, and also add a
condition to treat relative Cuntz-Pimsner algebras.

Throughout this subsection, let E : A � A and G : B � B be correspon-
dences and let JA ⊆ ϕ−1(K(E )) and JB ⊆ ϕ−1(K(G)) be ideals.

Definition 2.20. A covariant correspondence from (A, E , JA) to
(B, G, JB) is a pair (F , V ), where F is a correspondence A � B with
JA ·F ⊆ F ·JB and V is a correspondence isomorphism E ⊗A F ⇒ F ⊗B G .
A covariant correspondence is proper if F is proper.

Proposition 2.21. A proper covariant correspondence (F , V ) from
(A, E , JA) to (B, G, JB) induces a proper T-equivariant correspondence
OF ,V : OJA,E � OJB,G .

Here a T-equivariant correspondence between two T-C∗-algebras A and B

is an A, B-correspondence E with a T-action such that z · (a · ξ · b) = (z · a) ·
(z · ξ) · (z · b) and 〈z · ξ |z · ξ2〉 = z · 〈ξ |ξ2〉 for all z ∈ T, a ∈ A, ξ, ξ2 ∈ E ,
b ∈ B.

The construction of OF ,V in the proof below is the basis for all results
in the following sections. It depends on some subtle details in the definition
of a covariant correspondence. Schweizer [20] claims such a result also for
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non-proper correspondences, and he allows V to be a non-adjointable iso-
metry. In fact, the proof below will show that a pair (F , V ) where V is only
a non-adjointable isometry induces a correspondence between the Toeplitz
C∗-algebras. It is unclear, however, when this correspondence descends to one
between the absolute or relative Cuntz-Pimsner algebras. And we need E or F

to be proper. The case when E is proper is quite different, easier, and already
treated in [2]. An important new insight in this article is how to construct OF ,V

if F is proper instead of E .

Proof of Proposition 2.21. The canonical ∗-homomorphism πJB
: B →

OJB,G allows us to view OJB,G as a proper correspondence B � OJB,G . Thus
FO := F ⊗B OJB,G becomes a proper correspondence A � OJB,G , that is,
a Hilbert OJB,G -module with a representation π : A → K(FO ). The T-action
on OJB,G induces a T-action on FO because πJB

(B) ⊆ O 0
JB,G . We are going

to define a map t : E → K(FO ) such that (π, t) is a representation of (A, E )

on FO that is covariant on JA. Then Proposition 2.14 yields a representation
π̃ : OJA,E → K(FO ). This is the desired correspondence OJA,E � OJB,G .

There is an isometry μG : G ⊗B OJB,G ⇒ OJB,G , ζ ⊗ y �→ t∞(ζ ) · y, of
correspondences B � OJB,G . Usually, it is not unitary. We define an isometry

V !: E ⊗A FO = E ⊗A F ⊗B OJB,G

V ⊗1��⇒ F ⊗B G ⊗B OJB,G
1⊗μG��⇒ F ⊗B OJB,G = FO .

It yields a map t from E to the space of bounded operators on FO by t (ξ)(η) :=
V !(ξ ⊗ η). To show that t (ξ) is adjointable, we need that FO is a proper
correspondence A � OJB,G : then Tξ ∈ K(FO , E ⊗A FO ), and composition
with V ! maps this into K(FO ) by Lemma 2.1. So even t (ξ) ∈ K(FO ) for all
ξ ∈ E .

We claim that the pair (π, t) is a representation. We have π(a)t (ξ) =
t (ϕ(a)ξ) because V ! is a left A-module map. And t (ξ1)

∗t (ξ2) = π(〈ξ1|ξ2〉)
holds because

〈t (ξ1)η1|t (ξ2)η2〉 = 〈
V !(ξ1 ⊗ η1)|V !(ξ2 ⊗ η2)

〉
= 〈ξ1 ⊗ η1|ξ2 ⊗ η2〉 = 〈η1|π(〈ξ1|ξ2〉)η2〉 .

If JA = 0, then we are done at this point, and we have not yet used that V is
unitary. So the Toeplitz C∗-algebra of a correspondence remains functorial for
proper covariant correspondences where V is not unitary.

It remains to prove that π is covariant on JA. By Proposition 2.15, this is
equivalent to π(JA)(FO ) ⊆ t (E )(FO ). And JB · OJB,G ⊆ tJB

(G) · OJB,G holds
because the canonical representation of (B, G) on OJB,G is covariant on JB .
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Since JA · F ⊆ F · JB by assumption,

JA ·FO ⊆ F ⊗JB ·OJB,G ⊆ F ⊗tJB
(G)·OJB,G = (1⊗μG )(F ⊗B G⊗B OJB,G ).

Since V is unitary, we may rewrite this further as V !(E ⊗A F ⊗B OJB,G ) =
t (E ) · FO . This finishes the proof that (π, t) is covariant on JA. The operators
t (ξ) for ξ ∈ E are homogeneous of degree 1 for the T-action. Thus π̃ is
T-equivariant.

Example 2.22. Let A = B and J = JA = JB �= {0} and let E ⊆ G be an
A-invariant Hilbert submodule. Then the identity correspondence F = A with
the inclusion map E ⊗AF ∼= E ↪→ G ∼= F ⊗BG is a covariant correspondence
in the notation of Schweizer. There is indeed a canonical ∗-homomorphism
TE → TG . But it need not descend to the relative Cuntz-Pimsner algebras
because ϕG (a) ∈ K(G) for a ∈ J need not be the extension of ϕE (a) ∈ K(E )

given by Lemma 2.1. So the Cuntz-Pimsner covariance conditions for OJ,E

and OJ,G may be incompatible. We ask V to be unitary to avoid this problem.

Example 2.23. Turn O 0
J,E , into a proper C∗-correspondence A � O 0

J,E

with the obvious left action of A. We claim that the proper correspondence
O 0

J,E : A� O 0
J,E with the isomorphism from Lemma 2.16 is a proper covariant

correspondence from E : A � A with the ideal J to O 1
J,E : O 0

J,E � O 0
J,E with

Katsura’s ideal IO 1
J,E

. It remains to show that J · O 0
J,E ⊆ O 0

J,E · IO 1
J,E

= IO 1
J,E

.

Since O 1
J,E is a Hilbert bimodule, Katsura’s ideal is equal to the range ideal of

the left inner product, that is, the closed linear span of xy∗ for all x, y ∈ O 1
J,E .

This contains K(E ) for x, y ∈ E , which in turn contains J by the Cuntz-
Pimsner covariance condition on J (see Proposition 2.14). So J ·O 0

J,E ⊆ IO 1
J,E

.

The relative Cuntz-Pimsner algebra of (O 0
J,E , O 1

J,E , IO 1
J,E

) is again O 0
J,E by

Proposition 2.18. The correspondence O 0
J,E � O 0

J,E associated to the covariant
correspondence above is just the identity correspondence on O 0

J,E .

Remark 2.24. If JA = 0 or JB = ϕ−1(K(G)), then the condition JA ·F ⊆
F · JB for covariant correspondences (A, E , JA) → (B, G, JB) always holds
and so may be left out. This is clear if JA = 0. Assume JB = ϕ−1(K(G)).
Since F is proper, JA acts on E ⊗A F ∼= F ⊗B G by compact operators
by Lemma 2.6. Again by Lemma 2.6, this implies JA ⊆ K(F · JB). Thus
JA · F ⊆ F · JB .

Example 2.25. Covariant correspondences are related to the T -pairs used
by Katsura [14] to describe the ideal structure of relative Cuntz-Pimsner alge-
bras. For this, we specialise to covariant correspondences out of (A, E , J )

where the underlying correspondence comes from a quotient map A → A/I .
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That is, F = A/I : A � A/I for an ideal I � A. When is this part of a
covariant correspondence from (A, E , J ) to (A/I, E ′, J ′) for some E ′, J ′?
More precisely, E ′ is a correspondence A/I � A/I and J ′ is an ideal in A/I

that acts on E ′ by compact operators.
There are natural isomorphisms E ⊗A F ∼= E /E I and F ⊗A/I E ′ ∼= E ′ as

correspondences A� A/I . So the only possible choice for E ′ is E ′ := E /E I

with a left A/I -action which gives the canonical A-action when composed
with the quotient map A → A/I . Such a correspondence E /E I : A/I � A/I

exists if and only if E is positively invariant, that is, IE ⊆ E I . Assume this to
be the case.

The ideal J ′ � A/I is equivalent to its preimage in A, which is an ideal
I ′ � A that contains I . For a covariant correspondence, we require JF ⊆ FJ ′,
which means that J ⊆ I ′; and for (A/I, E ′, J ′) to define a relative Cuntz-
Pimsner algebra, we require the ideal J ′ or, equivalently, I ′, to act by compact
operators on E ′ := E /E I . There is an isomorphism E ⊗A F ∼= F ⊗A E ′. (It is
unique up to an automorphism of E /E I , that is, a unitary operator on E /E I that
also commutes with the left action of A or A/I , but this shall not concern us.)
So we get a covariant correspondence in this case. It induces a correspondence
from OJ,E to OJ ′,E ′ by Proposition 2.21. Since our covariant correspondence is a
covariant homomorphism, the correspondence built in Proposition 2.21 comes
from a T-equivariant ∗-homomorphism, which turns out to be surjective. So a
pair of ideals (I, I ′) as above induces a T-equivariant quotient or, equivalently,
a T-invariant ideal in OJ,E .

Sometimes different pairs (I, I ′) produce the same quotient of OJ,E . If I ′/I
contains elements that act by 0 on K(E /E I ), then the map A/I → OJ ′,E ′ is
not injective by Proposition 2.10. Then we may enlarge I without changing the
relative Cuntz-Pimsner algebra. When we add the condition that no non-zero
element of I ′/I acts by a compact operator on E /E · I , then we get exactly
the T -pairs with J ⊆ I ′ of [14]. The T -pairs (I, I ′) with J ⊆ I ′ correspond
bijectively to gauge-invariant ideals of OJ,E by [14, Proposition 11.9].

3. Bicategories of correspondences and Hilbert bimodules

We are going to enrich the relative Cuntz-Pimsner algebra construction to a
homomorphism (functor) from a suitable bicategory of covariant correspon-
dences to the T-equivariant correspondence bicategory. Most of the work is
already done in Proposition 2.21, which describes how this homomorphism
acts on arrows. It remains to define the appropriate bicategories and write down
the remaining data of a homomorphism.

The correspondence bicategory of C∗-algebras and related bicategories have
been discussed in [6], [7], [5], [2]. We recall basic bicategorical definitions in
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the appendix for the convenience of the reader. Here we go through these
notions much more quickly. Let � be the correspondence bicategory. It has
C∗-algebras as objects, C∗-correspondences as arrows, and correspondence
isomorphisms as 2-arrows. The composition is the tensor product ⊗B of C∗-
correspondences.

Given any bicategory �, there is a bicategory �� with homomorphisms
� → � as objects, transformations between these homomorphisms as arrows,
and modifications between these transformations as 2-arrows (see the appendix
for these notions). There is also a continuous version of this for a locally com-
pact, topological bicategory �. In particular, we shall use the T-equivariant
correspondence bicategory �T. Its objects are C∗-algebras with a continuous
T-action. Its arrows are T-equivariant C∗-correspondences, and 2-arrows are
T-equivariant isomorphisms of C∗-correspondences.

When � is the monoid (N, +), we may simplify the bicategory �� (see [2,
Section 5]). An object in it is equivalent to a C∗-algebra A with a self-corre-
spondence E : A � A. An arrow is equivalent to a covariant correspondence
(without the condition JAF ⊆ FJB), and a 2-arrow is equivalent to an iso-
morphism between two covariant correspondences. The bicategory �Npr that
we need is a variant of �N where we add the ideal J and allow only proper
covariant correspondences as arrows.

Definition 3.1. The bicategory �Npr has the following data (see Defini-
tion A.1):

• Objects are triples (A, E , J ), where A is a C∗-algebra, E : A � A is a
C∗-correspondence, and J ⊆ ϕ−1(K(E )) is an ideal.

• Arrows (A, E , J ) → (A1, E1, J1) are proper covariant correspondences
(F , u) from (A, E , J ) to (A1, E1, J1), that is, F is a proper correspon-
dence A� A1 with JF ⊆ FJ1 and u is a correspondence isomorphism
E ⊗A F ⇒ F ⊗A1 E1.

• 2-Arrows (F0, u0) ⇒ (F1, u1) are isomorphisms of covariant corres-
pondences, that is, correspondence isomorphisms w: F0 ⇒ F1 for
which the following diagram commutes:

E ⊗A F0
u0

F0 ⊗A1 E1

1E ⊗w w⊗1E1

E ⊗A F1
u1

F1 ⊗A1 E1

• The vertical product of 2-arrows

w0: (F0, u0) ⇒ (F1, u1), w1: (F1, u1) ⇒ (F2, u2)
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is the usual product w1 · w0: F0 → F2. This is indeed a 2-arrow from
(F0, u0) to (F2, u2). And the vertical product is associative and unital.
Thus the arrows (A, E , J ) → (A1, E1, J1) and the 2-arrows between
them form a category �Npr((A, E , J ), (A1, E1, J1)).

• Let
(F , u): (A, E , J ) → (A1, E1, J1),

(F1, u1): (A1, E1, J1) → (A2, E2, J2)

be arrows. Their product is (F1, u1) ◦ (F , u) := (F ⊗A1 F1, u • u1),
where u • u1 is the composite correspondence isomorphism

E ⊗A F ⊗A1 F1
u⊗1F1−−−→ F ⊗A1 E1 ⊗A1 F1

1F ⊗u1−−−→ F ⊗A1 F1 ⊗A2 E2.

• The horizontal product for a diagram of arrows and 2-arrows

(F ,u)

(A, E ,J ) (A1, E1,J1) (A2, E2,J2)

(F ,u)

w w1

(F1,u1)

(F1,u1)

is the 2-arrow

(A, E , J )

(F⊗A1 F1,u•u1)

(A2, E2, J2).w⊗w1

(F⊗A1 F1,u•u1)

This horizontal product and the product of arrows combine to composi-
tion bifunctors

�Npr((A, E , J ), (A1, E1, J1)) × �Npr((A1, E1, J1), (A2, E2, J2))

−→ �Npr((A, E , J ), (A2, E2, J2)).

• The unit arrow on the object (A, E , J ) is the proper covariant corres-
pondence (A, ιE ), where A is the identity correspondence, that is, A with
the obvious A-bimodule structure and the inner product 〈x|y〉 := x∗y,
and ιE is the canonical isomorphism

E ⊗A A ∼= E ∼= A ⊗A E

built from the right and left actions of A on E .

• The associators and unitors are the same as in the correspondence bicate-
gory. Thus they inherit the coherence conditions needed for a bicategory.
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Theorem 3.2. There is a homomorphism �Npr → �T that maps each object
(A, E , J ) to its relative Cuntz-Pimsner algebra and is the construction of
Proposition 2.21 on arrows.

Proof. The construction in Proposition 2.21 is “natural” and thus func-
torial for isomorphisms of covariant correspondences, and it maps the identity
covariant correspondence to the identity T-equivariant correspondence on the
relative Cuntz-Pimsner algebras. Let (F , u): (A, E , J ) → (A1, E1, J1) and
(F1, u1): (A1, E1, J1) → (A2, E2, J2) be covariant correspondences and let
OF ,u and OF1,u1 be the associated correspondences of relative Cuntz-Pimsner
algebras. By definition, OF ,u ⊗OJ1 ,E1

OF1,u1 and OF⊗A1 F1,u•u1 are equal to
(F ⊗A1 OJ1,F1) ⊗OJ1 ,F1

(F1 ⊗A2 OJ2,F2) and (F ⊗A1 F1) ⊗A2 OJ2,F2 as T-
equivariant correspondences A � OJ2,F2 . Associators and unit transforma-
tions give a canonical T-equivariant isomorphism between these correspon-
dences. This isomorphism also intertwines the representations of E . Hence
it is an isomorphism of correspondences OJ,F � OJ2,F2 . These canonical
isomorphisms satisfy the coherence conditions for a homomorphism of bicat-
egories in Definition A.5.

The relative Cuntz-Pimsner algebra OJ,E is the crossed product O 0
J,E �O 1

J,E

by Theorem 2.17. So OJ,E with the gauge T-action and the Hilbert O 0
J,E -

bimodule O 1
J,E contain the same amount of information. We now study the

construction that sends (A, E , J ) to the Hilbert O 0
J,E -bimodule O 1

J,E . The ap-
propriate bicategory of Hilbert bimodules is a sub-bicategory of �Npr:

Definition 3.3. Let �Npr,∗ ⊆ �Npr be the full sub-bicategory whose objects
are triples (B, G, IG ), where G is a Hilbert B-bimodule and IG is Katsura’s
ideal for G , which is also equal to the range ideal 〈G | G〉 of the left inner
product on G . The arrows and 2-arrows among objects of �Npr,∗ are the same as
in �Npr, including the condition IE F ⊆ F IG for covariant correspondences.

When we restrict the relative Cuntz-Pimsner algebra construction �Npr → �T

to �Npr,∗, we get the (partial) crossed product construction for Hilbert bimodules
by Proposition 2.19. Thus Theorem 3.2 also completes the crossed product for
Hilbert bimodules to a functor �Npr,∗ → �T.

The map that sends (A, E , J ) to (O 0
J,E , O 1

J,E , IO 1
J,E

) is part of a functor

�Npr → �Npr,∗ which, when composed with the crossed product functor �Npr,∗ →
�T, gives the relative Cuntz-Pimsner algebra functor of Theorem 3.2. We do
not prove this now because it follows from our main result. The key step is the
following universal property of (O 0

J,E , O 1
J,E , IO 1

J,E
):

Proposition 3.4. Let (A, E , J ) and (B, G, IG ) be objects of �Npr and �Npr,∗,
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respectively. Let

υ(A,E ,J ): (A, E , J ) −→ (O 0
J,E , O 1

J,E , IO 1
J,E

)

be the covariant correspondence from Example 2.23. Composition with
υ(A,E ,J ) induces a groupoid equivalence

�Npr

(
(A, E , J ), (B, G, IG )

) � �Npr,∗
(
(O 0

J,E , O 1
J,E , IO 1

J,E
), (B, G, IG )

)
.

Recall that �Npr ((A, E , J ), (A1, E1, J1)) for objects (A, E , J ) and
(A1, E1, J1) of �Npr denotes the groupoid with arrows (A, E , J ) → (A1, E1, J1)

as objects and 2-arrows among them as arrows.

Proof. We begin with an auxiliary construction. Proposition 2.19 identifies
OIG ,G

∼= B �G as Z-graded C∗-algebras. In particular, O 0
IG ,G

∼= B and O 1
IG ,G

∼=
G , O−1

IG ,G
∼= G∗ as Hilbert B-bimodules. Let (F , u) be a proper covariant

correspondence (A, E , J ) → (B, G, IG ). It induces a proper, T-equivariant
correspondence OF ,V = ⊕

n∈Z O n
F ,V

from OJ,E to OIG ,G by Proposition 2.21.
By construction, O n

F ,V
= F⊗BO n

IG ,G . Thus O 0
F ,V

= F⊗BO 0
IG ,G

∼= F⊗BB ∼=
F and O 1

F ,V
= F ⊗B O 1

IG ,G
∼= F ⊗B G . The left action on OF ,V is a

nondegenerate, T-equivariant ∗-homomorphism OJ,E → K(OF ,V ). So O 0
J,E

acts on OF ,V by grading-preserving operators. Restricting to the degree-0 part,
we get a nondegenerate ∗-homomorphism O 0

J,E → K(O 0
F ,V

) ∼= K(F ). Let F #

be F viewed as a correspondence O 0
J,E � B in this way.

We now construct an isomorphism of correspondences

u#: O 1
J,E ⊗O 0

J,E
F # ⇒ F # ⊗B G .

We need two descriptions of u#. The first shows that it is unitary, the second that
it intertwines the left actions of O 0

J,E . The first formula for u# uses Lemma 2.16,
which gives unitary Hilbert B-module maps

O 1
J,E ⊗O 0

J,E
F # ∼= E ⊗A O 0

J,E ⊗O 0
J,E

F # ∼= E ⊗A F .

Composing with u: E ⊗A F ⇒ F ⊗B G gives the desired unitary u#. The
second formula for u# restricts the left action of OJ,E on OF ,V to a multipli-
cation map

O 1
J,E ⊗O 0

J,E
F # = O 1

J,E ⊗O 0
J,E

O 0
F ,V −→ O 1

F ,V
∼= F # ⊗B G . (3.5)

This is manifestly O 0
J,E -linear because the isomorphism F # ⊗B O n

IG ,G
∼= O n

F ,V

is by right multiplication and so intertwines the left actions of O 0
J,E . The map
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in (3.5) maps tJ (ξ) ⊗ η �→ u(ξ ⊗ η) for all ξ ∈ E , η ∈ F . This determines it
by Lemma 2.16. So both constructions give the same map u#.

We claim that IO 1
J,E

· F # ⊆ F # · IG holds, so that the pair (F #, u#) is a

proper covariant correspondence from (O 0
J,E , O 1

J,E , IO 1
J,E

) to (B, G, IG ). The

ideal IO 1
J,E

is equal to the range of the left inner product on O 1
J,E . Using the Fell

bundle structure, we may rewrite this as O 1
J,E · O−1

J,E . Thus

IO 1
J,E

·O 0
F ,V = O 1

J,E ·O−1
J,E ·O 0

F ,V ⊆ O 1
J,E ·O−1

F ,V
= E ·O 0

J,E ·O−1
F ,V

= E ·O−1
F ,V

.

The product E · O−1
F ,V

uses the representation of E on OF ,V built in the proof

of Proposition 2.21. So E · O−1
F ,V

is the image of the map

E ⊗A F ⊗B G∗ ∼= F ⊗B G ⊗B G∗ = F · IG .

So IO 1
J,E

· O 0
F ,V

⊆ F · IG as claimed. We have turned a proper covariant
correspondence (F , u) from (A, E , J ) to (B, G, IG ) into a proper covariant
correspondence (F #, u#) from (O 0

J,E , O 1
J,E , IO 1

J,E
) to (B, G, IG ).

Conversely, take a proper covariant correspondence

(F , u): (O 0
J,E , O 1

J,E , IO 1
J,E

) −→ (B, G, IG ).

Composing it with υ(A,E ,J ) gives a proper covariant correspondence from
(A, E , J ) to (B, G, IG ). We now simplify this product of covariant corre-
spondences. The underlying correspondence A → O 0

J,E in υ(A,E ,J ) is O 0
J,E ,

and the isomorphism E ⊗A O 0
J,E

∼= O 0
J,E ⊗O 0

J,E
O 1

J,E = O 1
J,E is the one from

Lemma 2.16. We identify the tensor product O 0
J,E ⊗O 0

J,E
F with F by the

canonical map. Thus the product of (F , u) with υ(A,E ,J ) is canonically iso-
morphic to a covariant correspondence (F �, u�) with underlying correspon-
dence F � = F : A � B with the left A-action through πJ : A → O 0

J,E . The
isomorphism u�: E ⊗AF � ⇒ F �⊗B G is the composite of the given isomorph-
ism u: O 1

J,E ⊗O 0
J,E

F ⇒ F ⊗B G with the isomorphism E ⊗A O 0
J,E

∼= O 1
J,E

from Lemma 2.16.
Now let (F , u) be a proper covariant correspondence from (A, E , J ) to

(B, G, IG ). We claim that

(F #�, u#�) = (F , u). (3.6)

By construction, the underlying Hilbert B-module of F #� is F . We even have
F #� = F as correspondences A � B, that is, the left O 0

J,E -action on F #

composed with πJ : A → O 0
J,E is the original action of A. The isomorphism
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E ⊗A O 0
J,E

∼= O 1
J,E is used both to get u# from u and to get u#� from u#.

Unravelling this shows that u#� = u.
Next we claim that the map that sends a proper covariant correspondence

(F , u): (O 0
J,E , O 1

J,E , IO 1
J,E

) −→ (B, G, IG )

to (F �, u�) is injective. This claim and (3.6) imply (F �#, u�#) = (F , u), that
is, our two operations are inverse to each other. To prove injectivity, we use
Proposition 2.21 to build a correspondence OF ,u: OJ,E � OIG ,G from (F , u).
This correspondence determines (F , u): we can get back F as its degree-0
part because OIG ,G = B �G , and because u and the left O 0

J,E -module structure
on F are both contained in the left OJ,E -module structure on OF ,u. An OJ,E -
module structure on OIG ,G is already determined by a representation of (A, E ).
Since O n

IG ,G = O 0
IG ,G ·O n

IG ,G , this representation is determined by its restriction
to O 0

IG ,G
∼= B. And (F �, u�) determines the representation of (A, E ) on B.

Thus (F �, u�) determines (F , u).
The constructions of (F #, u#) and (F �, u�) are clearly natural for iso-

morphisms of covariant correspondences. So they form an isomorphism of
categories

�Npr

(
(A, E , J ), (B, G, IG )

) ∼= �Npr,∗
(
(O 0

J,E , O 1
J,E , IO 1

J,E
), (B, G)

)
.

One piece in this isomorphism is naturally equivalent to the functor that com-
poses with υ(A,E ,J ). Hence this functor is an equivalence of categories, as
asserted.

4. The reflector from correspondences to Hilbert bimodules

We now strengthen Proposition 3.4 using some general results on adjunctions
of homomorphisms between bicategories. We first recall the related and better
known results about ordinary categories and functors.

Let C and B be categories. Let R: C → B be a functor and b ∈ ob B.
An object c ∈ ob C with an arrow υ: b → R(c) is called a universal arrow
from b to R if, for each x ∈ ob C and each f ∈ B(b, R(x)), there is a unique
g ∈ C (c, x) with R(g) ◦ υ = f . Equivalently, the maps

C (c, x) −→ B(b, R(x)), g �→ R(g) ◦ υ, (4.1)

are bijective for all x ∈ ob C . The functor R has a left adjoint L: B → C if and
only if such universal arrows exist for all x ∈ ob C . The left adjoint functor
L: B → C is uniquely determined up to natural isomorphism. It maps b �→ c

on objects, and the isomorphisms (4.1) become natural in both b and x when
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we replace c by L(b). An adjunction between L and R may also be expressed
through its unit and counit, that is, natural transformations L ◦ R ⇒ idC and
idB ⇒ R ◦ L such that the induced transformations L ⇒ L ◦ R ◦ L ⇒ L and
R ⇒ R ◦ L ◦ R ⇒ R are unit transformations.

A subcategory C ⊆ B is called reflective if the inclusion functor R: C → B

has a left adjoint L: B → C . The functor L is called a reflector. The case we
care about is a bicategorical version of a full subcategory. If C ⊆ B is a full
subcategory, then we may choose L ◦ R to be the identity functor on C and
the counit L ◦ R ⇒ idC to be the unit natural transformation.

Fiore [9] carries the story of adjoint functors over to homomorphisms
between 2-categories (which he calls “pseudo functors”), that is, bicategor-
ies where the associators and unitors are identity 2-arrows. The bicategories
we need are not 2-categories. But any bicategory is equivalent to a 2-category
by MacLane’s Coherence Theorem. Hence Fiore’s definitions and results ap-
ply in bicategories as well. We shorten notation by speaking of “universal”
arrows and “adjunctions” instead of “biuniversal” arrows and “biadjunctions.”
A 2-category is also a category with some extra structure. So leaving out the
prefix “bi” may cause confusion in that setting. But it will always be clear
whether we mean the categorical or bicategorical notions.

Definition 4.2 ([9, Definition 9.4]). Let B and C be bicategories, R: C →
B a homomorphism, and b ∈ ob B. Let c ∈ ob C and let g: b → R(c) be
an arrow in B. The pair (c, g) is a universal arrow from b to R if, for every
x ∈ ob C , the following functor is an equivalence of categories:

g∗: C (c, x) −→ B(b, R(x)), f �→ R(f ) · g, w �→ R(w) • 1g.

Universal arrows are called left biliftings by Street [22].
We can now reformulate Proposition 3.4:

Proposition 4.3. Let (A, E , J ) ∈ ob �Npr. The covariant correspondence
υ(A,E ,J ) from (A, E , J ) to (O 0

J,E , O 1
J,E , IE ) is a universal arrow from (A, E , J )

to the inclusion homomorphism �Npr,∗ → �Npr.

There are two alternative definitions of adjunctions, based on equivalences
between morphism categories or on units and counits. These are spelled out,
respectively, by Fiore in [9, Definition 9.8] and by Gurski in [12, Definition
2.1]. We shall use Fiore’s definition.

Definition 4.4 ([9, Definition 9.8]). Let B and C be bicategories. An
adjunction between them consists of

• two homomorphisms L: B → C , R: C → B;
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• equivalences of categories

ϕb,c: C (L(b), c) � B(b, R(c))

for all b ∈ ob B, c ∈ ob C ;

• natural equivalences of functors

C (L(b1), c1)
f ∗

C (L(b2), c1)
g∗ C (L(b2), c2)

ϕb1 ,c1 ϕb2 ,c2

B(b1, R(c1))
f ∗ B(b2, R(c1)) g∗ B(b2, R(c2))

for all arrows f : b2 → b1, g: c1 → c2 in B and C .

These are subject to a coherence condition. In brief, the functors ϕb,c and the
natural equivalences form a transformation between the two homomorphisms

Bop × C →→ Cat, (b, c) �→ C (L(b), c), B(b, R(c)).

Here Cat is the bicategory of categories (see Example A.2).

Theorem 4.5 ([9, Theorem 9.17]). Let B and C be bicategories and let
R: C → B be a homomorphism. It is part of an adjunction if and only if there
are universal arrows from c to R for each object c ∈ ob C .

More precisely, let cb ∈ ob C and υb: b → R(cb) for b ∈ ob C be universal
arrows from b to R. Then there is an adjoint homomorphism L: B → C that
maps b �→ cb on objects. In particular, this assignment is part of a homo-
morphism of bicategories.

Theorem 4.6 ([9, Theorem 9.20]). Two left adjoints L, L′: B →→ C of
R: C → B are equivalent, that is, there are transformations L ⇒ L′ and
L′ ⇒ L that are inverse to each other up to invertible modifications.

Using these general theorems, we may strengthen Proposition 3.4 (in the
form of Proposition 4.3) to an adjunction theorem:

Corollary 4.7. The sub-bicategory �Npr,∗ ⊆ �Npr is reflective, that is,
the inclusion homomorphism R: �Npr,∗ → �Npr has a left adjoint (reflector)
L: �Npr → �Npr,∗. On objects, this adjoint homomorphism maps

(A, E , J ) �→ (O 0
J,E , O 1

J,E , IO 1
J,E

).

The homomorphism L is determined uniquely up to equivalence by The-
orem 4.6. So we have characterised the construction of relative Cuntz-Pimsner
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algebras in bicategorical terms, as the reflector for the full sub-bicategory
�Npr,∗ ⊆ �Npr. By Corollary 4.7, the relative Cuntz-Pimsner algebra construc-
tion is part of a homomorphism L: �Npr → �Npr,∗. For instance, this implies the
following:

Corollary 4.8. The relative Cuntz-Pimsner algebras OJ,E and OJ1,E1 are
Morita equivalent if there is a Morita equivalence F between E and E1 as in
[18, Definition 2.1] with J · F = F · J1.

The proof of Theorem 4.5 also describes the adjoint functor. We now de-
scribe the reflector L: �Npr → �Npr,∗ explicitly, thereby explaining part of the
proof of Theorem 4.5. Much of the work in this proof is needed to check that
various diagrams of 2-arrows commute. We do not repeat these computations
here.

The homomorphism L maps (A, E , J ) �→ (O 0
J,E , O 1

J,E , IO 1
J,E

) on objects.

Let (A, E , J ) and (A1, E1, J1) be objects of �Npr and let (F , u): (A, E , J ) →
(A1, E1, J1) be proper covariant correspondences. We use the notation of the
proof of Proposition 3.4 and write ῑE1 for the canonical isomorphism E1 ⊗A1

O 0
J1,E1

∼= O 1
J1,E1

⊗O 0
J1 ,E1

O 0
J1,E1

from Lemma 2.16, which is the covariance part
of υ(A1,E1,J1). Let

L(F , u): (O 0
J,E , O 1

J,E , IO 1
J,E

) −→ (O 0
J1,E1

, O 1
J1,E1

, IO 1
J1 ,E1

),

L(F , u) := (
(F ⊗A1 O 0

J1,E1
)#, (u • ῑE1)

#
)
.

In other words, we first compose (F , u) with υ(A1,E1,J1) to get a covariant
correspondence (F ⊗A1 O 0

J1,E1
, u• ῑE1) from (A, E , J ) to (O 0

J1,E1
, O 1

J1,E1
, IO 1

J1 ,E1
)

and then apply the equivalence in Proposition 3.4.
The construction on covariant correspondences above is clearly “natural”,

that is, functorial for isomorphisms. Explicitly, L maps an isomorphism of
covariant correspondences w: (F , u) ⇒ (F ′, u′) to

L(w) := (w ⊗ 1O 0
J1 ,E1

)#: L(F , u) ⇒ L(F ′, u′).

To make L a homomorphism, we also need compatibility data for units
and composition of arrows. The construction of L above maps the iden-
tity covariant correspondence on (A, E , J ) to υ#

(A,E ,J )
: (O 0

J,E , O 1
J,E , IE ) →

(O 0
J,E , O 1

J,E , IE ). This is canonically isomorphic to the identity covariant cor-
respondence on (O 0

J,E , O 1
J,E , IE ) because the equivalence in Proposition 3.4 is

by composition with υ(A,E ,J ). This is the unit part in our homomorphism L.
Let (F , u): (A, E , J ) → (A1, E1, J1) and (F1, u1): (A1, E1, J1) →

(A2, E2, J2) be proper covariant correspondences. Then the homomorphism L
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contains isomorphisms of covariant correspondences

λ
(
(F , u), (F1, u1)

)
: L(F , u) ◦ L(F1, u1) ⇒ L

(
(F , u) ◦ (F1, u1)

)
, (4.9)

which are natural for isomorphisms of covariant correspondences and satisfy
some coherence conditions when we compose three covariant correspondences
or compose with identity covariant correspondences. We take λ to be the iso-
morphism

(F0 ⊗A1 O 0
J1,E1

) ⊗O 0
J1 ,E1

(F1 ⊗A2 O 0
J2,E2

) ∼= (F0 ⊗A1 F1) ⊗A2 O 0
J2,E2

given by the left action of O 0
J1,E1

on (F1 ⊗A2 O 0
J2,E2

) that is constructed in the
proof of Proposition 2.21.

The proof of Theorem 4.5 builds λ using only the universality of the ar-
rows υ(A,E ,J ). By the equivalence of categories in Proposition 3.4, whiskering
(horizontal composition) with υ(A,E ,J ) maps isomorphisms as in (4.9) biject-
ively to isomorphisms

υ(A,E ,J ) ◦ L(F , u) ◦ L(F1, u1) ⇒ υ(A,E ,J ) ◦ L
(
(F , u) ◦ (F1, u1)

)
. (4.10)

The construction of L implies υ(A,E ,J ) ◦ L(F , u) ◦ L(F1, u1) ∼= (F , u) ◦
υ(A1,E1,J1)◦L(F1, u1) ∼= (F , u)◦(F1, u1)◦υ(A2,E2,J2) and υ(A,E ,J )◦L

(
(F , u)◦

(F1, u1)
) ∼= (

(F , u) ◦ (F1, u1)
) ◦ υ(A2,E2,J2), where we disregard associa-

tors. Hence there is a canonical isomorphism of covariant correspondences as
in (4.10). This Ansatz produces the same isomorphisms λ as above. We have
now described the data of the homomorphism L. Fiore’s arguments in [9] show
that it is indeed a homomorphism.

Proposition 4.11. The composite ofLand the crossed product homomorph-
ism �Npr,∗ → �T is naturally isomorphic to the homomorphism �Npr → �T of
Theorem 3.2.

Proof. Our homomorphisms agree on objects by Proposition 2.18. The
proof of Proposition 3.4 constructed the covariant correspondence (F #, u#)

by taking the degree-0 part in the correspondence constructed in the proof
of Proposition 2.21. Thus we may build a natural isomorphism between the
functors in question out of the nondegenerate left action of O 0

J1,E1
on OJ1,E1 .

So the reflector L lifts the Cuntz-Pimsner algebra homomorphism �Npr →
�T to a homomorphism with values in �Npr,∗. Such a lifting should exist because
a Hilbert bimodule and its crossed product with the T-action determine each
other.
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An adjunction also contains “natural” equivalences of categories

ϕb,c: C (L(b), c) � B(b, R(c)),

where naturality is further data (see Definition 4.4). In the case at hand, these
equivalences are exactly the equivalences of categories

υ∗
(A,E ,J ): �Npr

(
(A, E , J ), (B, G, IG )

) � �Npr,∗
(
(O 0

J,E , O 1
J,E , IO 1

J,E
), (B, G, IG )

)

in Proposition 3.4. Their naturality boils down to the canonical isomorphisms
of correspondences υ(A,E ,J ) ◦ L(F , u) ∼= (F , u) ◦ υ(A,E ,J ), which we have
already used above to describe the multiplicativity data λ in the homomorph-
ism L.

Finally, we relate our adjunction to the colimit description of Cuntz-Pimsner
algebras in [2]. Let C and D be categories. Let C D be the category of functors
D → C , which are also called diagrams of shape D in C . Identify C with the
subcategory of “constant” diagrams in C D . This subcategory is reflective if
and only if all D -shaped diagrams in C have a colimit, and the reflector maps
a diagram to its colimit.

This remains true for the bicategorical colimits in [2]: by definition, the
colimit of a diagram is a universal arrow to a constant diagram. In our context,
a constant diagram in �Npr is an object of the form (B, B, B) that is, the Hilbert
B-bimodule is the identity bimodule and J = B as always for objects of �Npr,∗.
Since the condition J · F ⊆ F · B always holds, the ideal J plays no role,
compare Remark 2.24.

A proper covariant correspondence (A, E , J ) → (B, B, B) is equivalent
to a proper correspondence F : A � B with an isomorphism E ⊗A F ⇒
F because F ⊗B B ∼= F . As shown in [2], such a pair is equivalent to a
representation (ϕ, t) of the correspondence E on F that is nondegenerate in
the sense that t (E ) · F = F . The properness of F means that ϕ(A) ⊆ K(F ),
which implies t (E ) ⊆ K(F ).

It is shown in [2] that all diagrams of proper correspondences of any shape
have a colimit. This is probably false for diagrams of non-proper correspon-
dences, such as the correspondence �2(N):C � C that defines the Cuntz
algebra O∞. The way around this problem that we found here is to enlarge the
sub-bicategory of constant diagrams, allowing diagrams of Hilbert bimodules.
In addition, we added an ideal J to have enough data to build relative Cuntz-
Pimsner algebras.

Since the sub-bicategory � ⊆ �Npr of constant diagrams is contained in �Npr,∗,
we may relate universal arrows to objects in � and �Npr,∗ as follows. Let
(A, E , J ) be an object of �Npr. Then υ(A,E ,J ): (A, E , J ) → (O 0

J,E , O 1
J,E , IO 1

J,E
)
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is a universal arrow to an object of �Npr,∗ by Proposition 4.3. The universality
of υ(A,E ,J ) implies that a universal arrow from (A, E , J ) to a constant dia-
gram factors through υ(A,E ,J ), and that an arrow from (O 0

J,E , O 1
J,E , IO 1

J,E
) to

a constant diagram is universal if and only if its composite with υ(A,E ,J ) is
universal. In other words, the diagram (A, E , J ) has a colimit if and only if
(O 0

J,E , O 1
J,E , IO 1

J,E
) has one, and then the two colimits are the same. We are

dealing with the same colimits as in [2] because the ideal J in (A, E , J ) plays
no role for arrows to constant diagrams.

Appendix A. Bicategories

We recall some basic definitions from bicategory theory, following [3], [11].
We also give a few examples with Sections 3 and 4 in mind.

Definition A.1. A bicategory B consists of the following data:

• a set of objects ob B;

• a category B(x, y) for each pair of objects (x, y); objects of B(x, y)

are called arrows (or morphisms) from x to y, and arrows in B(x, y)

are called 2-arrows (or 2-morphisms); the category structure on B(x, y)

gives us a unit 2-arrow 1f on each arrow f : x → y, and a vertical
composition of 2-arrows: w0: f0 ⇒ f1 and w1: f1 ⇒ f2 compose to a
2-arrow w1 · w0: f0 ⇒ f2;

• composition functors

◦: B(y, z) × B(x, y) −→ B(x, z)

for each triple of objects (x, y, z); this contains a horizontal composition
of 2-arrows as displayed below:

x y

g0f0 g0·f0

z w1•w0w0 w1 x

f1 g1 g1·f1

z.

• a unit arrow 1x ∈ B(x, x) for each x;

• natural invertible 2-arrows (unitors) rf : f · 1x ⇒ f and �f : 1y · f ⇒ f

for all f ∈ B(x, y);
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• natural isomorphisms

a

B(x, y) × B(y, z) × B(z, w)
(◦,1)

B(x, z) × B(z, w)

(1,◦) ◦

B(x, y) × B(y, w)
◦

B(x,w)

that is, natural invertible 2-arrows, called associators,

a(f1, f2, f3): (f3 · f2) · f1 ⇒� f3 · (f2 · f1),

where f1: x → y, f2: y → z and f3: z → w.

This data must make the following diagrams commute:

((f4 · f3) · f2) · f1 (f4 · f3) · (f2 · f1) f4 · (f3 · (f2 · f1))

(f4 · (f3 · f2)) · f1 f4 · ((f3 · f2) · f1),

(f2 · 1y) · f1 f2 · (1y · f1)

f2 · f1,

where f1, f2, f3, and f4 are composable arrows, and the 2-arrows are associ-
ators and unitors and horizontal products of them with unit 2-arrows.

We write “·” or nothing for vertical products and “•” for horizontal products.

Example A.2. Categories form a bicategory Cat with functors as arrows
and natural transformations as 2-arrows. Here the composition of morphisms
is strictly associative and unital, that is, Cat is even a 2-category.

Example A.3. A category C may be regarded as a bicategory in which the
categories C (x, y) have only identity arrows.

Example A.4. The correspondence bicategory � is defined in [7] as the
bicategory with C∗-algebras as objects, correspondences as arrows, and cor-
respondence isomorphisms as 2-arrows. The unit arrow 1A on a C∗-algebra A

is A viewed as a Hilbert A-bimodule in the canonical way. The A, B-bimodule
structure on F provides the unitors A⊗AF ⇒ F and F ⊗B B ⇒ F for a cor-
respondence F : A� B. The associators (E ⊗A F )⊗B G ⇒ E ⊗A (F ⊗B G)

are the obvious isomorphisms.
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Definition A.5. Let B, C be bicategories. A homomorphism F : B → C

consists of

• a map F 0: ob B → ob C between the object sets;

• functors Fx,y : B(x, y) → C (F 0(x), F 0(y)) for all x, y ∈ ob B;

• natural transformations

B(y, z) × B(x, y) ◦ B(x, z)

ϕxyz
(Fy,z,Fx,y ) Fx,z

C (F (y), F (z)) × C (F (x), F (y)) C (F (x), F (z))◦

for all triples x, y, z of objects of B; explicitly, these are natural 2-arrows
ϕ(f1, f2): Fy,z(f2) · Fx,y(f1) ⇒ Fx,z(f2 · f1);

• 2-arrows ϕx : 1F(x) ⇒ Fx,x(1x) for all objects x of B.

This data must make the following diagrams commute:

(Fz,w(f3) · Fy,z(f2)) · Fx,y(f1)
a

Fz,w(f3) · (Fy,z(f2) · Fx,y(f1))

ϕ(f2,f3)•1Fx,y (f1) 1Fz,w(f3)•ϕ(f1,f2)

Fy,w(f3 · f2) · Fx,y(f1) Fz,w(f3) · Fx,z(f2 · f1)

ϕ(f1,f3·f2) ϕ(f2·f1,f3)

Fx,w((f3 · f2) · f1)
Fx,w(a)

Fx,w(f3 · (f2 · f1));
(A.6)

Fx,y(f1) · Fx,x(1x)
ϕ(1x ,f1)

Fx,y(f1 · 1x)

1Fx,y (f1)•ϕx Fx,y (rf1 )

Fx,y(f1) · 1F(x)

rFx,y (f1)

Fx,y(f1);
(A.7)

Fy,y(1y) · Fx,y(f1)
ϕ(f1,1y )

Fx,y(1y · f1)

ϕy•1Fx,y (f1) Fx,y f1)

1F(y) · Fx,y(f1)
Fx,y (f1)

Fx,y(f1).

(A.8)

Example A.9. A monoid P may be viewed as a category with one object
and P as its set of arrows. It may be viewed as a bicategory as well as in
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Example A.3. A homomorphism from P to � is equivalent to an essential
product system (A, (Ep)p∈P op , μ) over P op as defined by Fowler [10]. The

condition (A.6) says that the multiplication maps μp,q : Ep ⊗A Eq
�→ Eqp are

associative. The conditions (A.7) and (A.8) mean that μ1,p(a ⊗ ξ) = ϕp(a)ξ

and μp,1(ξ ⊗ a) = ξa for a ∈ A, ξ ∈ Ep.

A morphism f : x → y in a bicategory B induces functors

f∗: B(c, x) −→ B(c, y), f ∗: B(y, c) −→ B(x, c)

for c ∈ ob B by composing arrows with f and composing 2-arrows horizon-
tally with 1f on one side (this is also called whiskering with f ).

Definition A.10. Let F, G: B →→ C be homomorphisms. A transforma-
tion α: F ⇒ G consists of

• morphisms αx : F(x) → G(x) for all x ∈ ob B;

• natural transformations

B(x, y)
Fx,y

C (F (x), F (y))

Gx,y αy ∗
αx,y

C (G(x),G(y))
αx

∗
C (F (x),G(y)),

that is, 2-arrows αx,y(f ): αyFx,y(f ) ⇒ Gx,y(f )αx for all x, y ∈ ob B.

This data must make the following diagrams commute:

αz(Fy,z(g)Fx,y(f ))
1 ϕF (f,g)

αzFx,z(gf )
αx,z(gf )

Gx,z(gf )αx

ϕG(f,g)•1

(αzFy,z(g))Fx,y G()f( y,z(g)Gx,y(f ))αx

αy,z(g)•1

(Gy,z(g)αy)Fx,y(f ) Gy,z(g)(αyFx,y(f ))
1•αx,y (f )

Gy,z(g)(Gx,y(f )αx);

αxFx,x(1x)
1αx ϕF

x

αx1F(x)
r

αx

αx,x (1x) −1

Gx,x(1x)αx

ϕG
x •1αx

1G(x)αx.

Example A.11. Let G be a group. A transformation between homomorph-
isms G → � consists of a correspondence F : A � B and isomorphisms
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αs : Es ⊗A F � F ⊗B Gs so that the following diagrams commute for all
s, t ∈ G:

(Es ⊗A Et ) ⊗A F
w1

s,t 1
Est ⊗A F

αst

F ⊗B Gst

1⊗w2
s,t

Es ⊗A (Et ⊗A F ) F ⊗B (Gs ⊗B Gt )

1⊗αt

Es ⊗A (F ⊗B Gt ) (Es ⊗A F ) ⊗B Gt

αs⊗1
(F ⊗B Gs) ⊗B Gt .

This is called a correspondence of Fell bundles (see [7, Proposition 3.23]).

Definition A.12. Let α, β: F ⇒ G be transformations between homo-
morphisms. A modification �: α � β is a family of 2-arrows �x : αx ⇒ βx

such that for every 2-arrow w: f1 ⇒ f2 for arrows f1, f2: x → y, the following
diagram commutes:

αyFx,y(f1)
y Fx,y (w)

βyFx,y(f2)

αx,y (f1) βx,y (f2)

Gx,y(f1)αx

Gx,y (w)•

•

x

Gx,y(f2)β .x
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