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A COMPARISON FORMULA FOR RESIDUE CURRENTS

RICHARD LARKANG

Abstract

Given two ideals Z and 7 of holomorphic functions such that Z C 7, we describe a comparison
formula relating the Andersson-Wulcan currents of Z and 7. More generally, this comparison for-
mula holds for residue currents associated to two generically exact Hermitian complexes together
with a morphism between the complexes.

One application of the comparison formula is a generalization of the transformation law for
Coleft-Herrera products to Andersson-Wulcan currents of Cohen-Macaulay ideals. We also use
it to give an analytic proof by means of residue currents of theorems of Hickel, Vasconcelos and
Wiebe related to the Jacobian ideal of a holomorphic mapping.

1. Introduction

The theory of residue currents of Coleff-Herrera, Dickenstein-Sessa, Passare-
Tsikh-Yger, Andersson-Wulcan and others has provided a strong tool for prov-
ing different results. For example, it has been used to prove results about mem-
bership problems in commutative algebra, including Briangon-Skoda type res-
ults in [8], [11], [33]. However, there are similar results which appear natural
to approach by such methods, but which have so far not been possible to prove
in this way due to lack of precise enough description of the involved residue
currents.

In this paper we introduce a comparison formula for residue currents, gen-
eralizing the classical transformation law for complete intersections, which
allows for expressing residue currents in [9] and [32] in terms of “simpler”
currents. In Section 1.3 to Section 1.5 we discuss various applications of this
formula. Some of the applications are elaborated in this article, others are from
later work after the appearance of the first version of this article. One applic-
ation is that the comparison formula gives precise enough information about
residue currents to give analytic proofs of theorems of Hickel, Vasconcelos
and Wiebe, Theorem 1.4 and Corollary 1.5. These results had previously only
been proven by algebraic means. Other applications of the comparison for-
mula include the results in [25], where it is used to construct residue currents
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with prescribed annihilator ideals on singular varieties, and in [26], where it is
used to obtain precise descriptions of residue currents associated to Artinian
monomial ideals.

1.1. The transformation law

We begin by recalling the transformation law, which our formula is a generaliz-
ation of. Let f = (f1, ..., fp) be atuple of germs of holomorphic functions at
the origin in C" defining a complete intersection, i.e., so that codim Z(f) = p.
Associated to f, there exists a current

-1 -1

f:a—/\---/\a—, 1.1
7 7, 7 (L.1)

called the Coleff-Herrera product of f, which was introduced in [15]. We let
anny, u’ be the annihilator of 1/, i.e., the holomorphic functions g such that
gn’/ =0,and welet 7 (f) be the ideal generated by f. One of the fundamental
properties of the Coleff-Herrera product is the duality theorem, which says
that annp /' = J(f). The duality theorem was proven independently by
Dickenstein and Sessa [16], and Passare [31].

Another fundamental property of the Coleff-Herrera product is that it sat-
isfies the transformation law. Earlier versions of the transformation law in-
volving cohomological residues (Grothendieck residues) exist, see for ex-
ample [34, (4.3)] and [19, p. 657].

THEOREM 1.1. Let f = (f1,..., fp) and g = (g1, ..., &p) be tuples of
holomorphic functions defining complete intersections. Assume there exists a
matrix A of holomorphic functions such that f = gA. Then

1 -1 -1 -1
d— A ANd— =(detA)0— A---AND—.
8p 81 Ip fi

In the setting of Coleff-Herrera products the transformation law was first
stated in [16], and it was explained that the proof can be reduced to the absolute
case (when p = n) and cohomological residues together with the technique
from [15] of fibered residues. An elaboration of this proof can be found in [17].

For cohomological residues as in [19] the idea of the proof is that if dg; A
-+ A dgy, is non-vanishing and A is invertible, then the transformation law is
essentially the change of variables formula for integrals.

In the case when p = n the transformation law combined with the Null-
stellensatz allow to express in an explicit fashion the action of u/, see for
example [35, p. 22]. Essentially the same idea is also used in [19] to prove the
duality theorem for Grothendieck residues by using the transformation law.
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One particular case of the transformation law is when we choose different
generators = (f{,..., f,) of the ideal generated by f. Then the Coleff-
Herrera product of f’ differs from the one of f only by an invertible holo-
morphic function, and hence it can essentially be considered as a current as-
sociated to the ideal 7 (f).

The requirement that f = gA means that 7(f) € J(g). If we consider
the Coleff-Herrera product of g as a current associated to the ideal 7 (g), then
the transformation law says that the inclusion J(f) € J(g) implies that we
can express the Coleff-Herrera product of 7 (g) in terms of the Coleff-Herrera
product of 7 (f).

1.2. A comparison formula for Andersson-Wulcan currents

Consider an arbitrary ideal 7 € O = O¢» o of holomorphic functions. Through-
out this article we let O denote O o, the ring of germs of holomorphic func-
tions at the origin in C”, unless otherwise stated. Let (E, ¢) be a Hermitian
resolution of O/ 7J,

0> Ey B Eyv— - B Ey—>0/T—0,

i.e., a free resolution of O/J where the free modules are equipped with Her-
mitian metrics. Given (E, ¢), Andersson and Wulcan constructed in [9] a cur-
rent RE such that annp RY = 7, where R = Z,]CV:[, RE, p = codim Z(J),
and R,f are Hom(E, E;)-valued (0, k)-currents. We will sometimes denote
the current RE by R7, although it depends on the choice of Hermitian res-
olution £ of O/J. We refer to Section 2 for a more thorough description of
the current RE. As mentioned above, such currents have been used to study
membership problems. Another important application has been to construct
solutions to the 5—equation on singular varieties [7], [6].

In case J is a complete intersection defined by a tuple f, then 7 has an
explicit free resolution; the Koszul complex of f. In that case, the Andersson-
Waulcan current associated to the Koszul complex coincides with the Coleff-
Herrera product of f, see Section 2.5.

We now consider two ideals Z and 7 such that 7 C 7, and free resolutions
(E, @) and (F, ) of O/J and O/T respectively. If we choose minimal free
resolutions, then in particular rank £y = rank Fy = 1,1.e., Eg = O = Fy, and
we let ag: Fy — Ep be this isomorphism. Since Z C 7, we have the natural
surjection w: O/Z — O/J, and by the choice of ag, the diagram

Ey— 0/J

aOT Tn (1.2)

Fo —— O)T
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commutes. In fact, even when (E, ¢) and (F, i) are not minimal, one can
always find ag making (1.2) commute, and we thus assume a is chosen in this
way. Using the fact that the F; are free and that (E, ¢) is exact, by a simple
diagram chase one can complete this to a commutative diagram

0 EN ¢N EN—l PN-1 ! EO O/j 0
T T GOT ”T (1.3)
0 Fy YN Fy_ Yn-1 o Fo 01 0

The commutativity means that a: (F, ) — (E, ¢) is a morphism of com-
plexes, cf., Proposition 3.1.

The main result of this article is a comparison formula for the currents
associated to Z and J obtained from the morphism a. The formula involves
forms u® and u’’, which are certain endomorphism-valued forms on the free
resolutions E and F. These forms are smooth outside of Z(Z) U Z(J); see
Section 2 for details about how they are defined. Throughout the article,
x(@):R>9 — R is a smooth cut-off function such that x () = 0 for t < 1
and x(¢) = 1 fort > 1.

THEOREM 1.2. Let T, J < O be two ideals such that T < J, and let
(E, @) and (F, ) be Hermitian resolutions of O/J and O/ respectively.
Let a: (F,¥) — (E, @) be the morphism in (1.3) induced by the natural
surjection t: O/ — O/J. Then,

R7ay —aR* =V, M, (1.4)
where Vy, =) ¢ — 9, and
M = 11%1+ dx(|h)?/e) AuFau®,

where h is a tuple of holomorphic functions such that h # 0, and {h = 0}
contains Z(L)U Z(J).

The theorem in fact holds in a more general setting. First of all, there are
Andersson-Wulcan currents associated not just to Hermitian resolutions, but to
any generically exact Hermitian complex. The theorem holds for such residue
currents together with arbitrary morphisms of the complexes, Theorem 3.2.
In addition, the current M is there interpreted as the so-called residue of an
almost semi-meromorphic current. To elaborate more precisely how M and V,,
are defined, more background from the construction of the Andersson-Wulcan
currents is required. We refer to Section 2 for the necessary background, and
Section 3 for a more precise statement of the comparison formula in the general
form.



A COMPARISON FORMULA FOR RESIDUE CURRENTS 43

1.3. A transformation law for Andersson-Wulcan currents associated with
Cohen-Macaulay ideals

Our first application is a situation in which the current M in (1.4) vanishes.

This gives a direct generalization of the transformation law for Coleff-Herrera

products to Andersson-Wulcan currents associated with Cohen-Macaulay

ideals. We recall that an ideal 7 is Cohen-Macaulay if O/J has a free resol-

ution of length equal to codim Z (7).

THEOREM 1.3. Let Z, J € O be two Cohen-Macaulay ideals of the same
codimension p such that T C J. Let (F, ¥) and (E, ¢) be Hermitian resolu-
tions of length p of O/Z and O/J respectively. If a: (F, ) — (E, @) is the
morphism in (1.3) induced by the natural surjection w: O)Z — O/J, then

R [“,7 ap = a, le .

The proof of Theorem 1.3 is given in Section 4; it is a special case of
the more general Theorem 4.1. In Remark 4.4 in Section 4, we describe how
the transformation law for Coleff-Herrera products is a special case of The-
orem 1.3.

In the article [17] two proofs of the transformation law for Coleff-Herrera
products are given. One of the proofs can in fact be adapted to give an alternative
proof of Theorem 1.3, see Section 4.

See Section 4 for various examples of how one can use Theorem 1.3 or its
generalization Theorem 4.1 to express the current R for a Cohen-Macaulay
ideal Z in terms of other currents in an explicit way. This type of expres-
sions were used by Lejeune-Jalabert in [28] to create certain cohomological
residues for Cohen-Macaulay ideals in terms of Grothendieck residues. She
used this type of residues to express the fundamental cycle of such ideals in
terms of Grothendieck residues. However, duality properties of such cohomo-
logical residues were not investigated. Lundqvist [29], [30], also constructed
cohomological residues associated to pure dimensional ideals, and proved that
they satisfy a duality theorem. With the help of the comparison formula, we
elaborate in [24] a bit on the relation between such residues, and the relation
with Andersson-Wulcan currents. The comparison formula also plays an im-
portant role in that article, as it is used to prove functoriality for a pairing
defined with the help of Andersson-Wulcan currents.

In Section 5 we give an example of a computation when the ideal is not
Cohen-Macaulay.

In the joint article [27] with Wulcan we use Theorem 1.3 to express explicitly
the fundamental cycle of a pure dimensional ideal in terms of residue currents,
generalizing the Poincaré-Lelong formula. This is related to the construction
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of Lejeune-Jalabert mentioned above. In another joint article, [26], we use
Theorem 1.3 to calculate in a simpler and in some aspects more explicit way
residue currents associated to Artinian monomial ideals, compared to earlier
work by Wulcan. Having such explicit expression for the currents, we were
able to directly prove the results from [27] for such ideals.

1.4. The Jacobian determinant of a holomorphic mapping

Let f = (fi,..., fn) € O%" Let Jac(f) be the ideal generated by the
coefficients of df] A --- Adfy,ie.,if

dfi Ao ANdfy =) frdzi A Adz,,

|I|=m

then Jac(f) is the ideal generated by all the f;’s.

We give an analytic proof of the following (slightly weaker variant of a)
theorem of Vasconcelos, [36, Theorem (2.4)], using the generalization The-
orem 3.2 of Theorem 1.2. In [36] this theorem was proved for the polynomial
ring over a field. In [37] Wiebe proved this theorem (formulated slightly dif-
ferently) in the case m = n for any local ring. We recall that if / and J are
ideals in a ring R, then the ideal quotient / : J is the ideal

I1:J:={reR|rJ CI}

THEOREM 1.4. Let f = (f1, ..., fu) be a tuple of holomorphic functions
in O vanishing at {0}, and assume that O/ J (f) has a free resolution of length
< m. Let J,(f) be the ideal of all holomorphic functions vanishing at all
irreducible irreducible components of Z( f) of codimension m. Then,

In(f) =T (f) + Jac(f).

Note that if Z and 7 are ideals in O, then 7 : Z = O ifand only if Z C 7,
and that 7,,(f) = O if and only if Z(f) has no irreducible components of
codimension m. Combining these two remarks with the theorem, one gets
that Jac(f) < J(f) if and only if Z(f) has no irreducible component of
codimension m (under the assumption that O/ 7 (f) has a free resolution of
length < m).

Note thatif f = (f1, ..., fu), then Jac(f) is generated by the Jacobian de-
terminant J; of f. Moreover, by the Hilbert syzygy theorem, O/7 (fi, ..., fn)
always has a free resolution of length n. Finally, if f = (fi, ..., f,) vanishes
at0, then codim Z( f) = nif and only if Z( f) has an irreducible component of
codimension n. Thus, we have the following corollary of Theorem 1.4, which
was proven by Hickel [20] in the analytic setting. It is not too hard to show
that this is in fact equivalent to Theorem 1.4 when m = n.



A COMPARISON FORMULA FOR RESIDUE CURRENTS 45

COROLLARY 1.5. Let f = (fi,..., fu) be a tuple of germs of holomorphic
functions in Oc» o vanishing at {0}, and let J; be the Jacobian determinant
of f. Then Jy € J(f1,..., fu) if and only if codim Z(fi, ..., f,) < n. In
addition, if codim Z(f1, ..., fu) =n, then mJy C T (fi1, ..., fn)

We will use the generalization Theorem 3.2 of Theorem 1.2 to give a proof
of this theorem by means of residue currents, the proof is given in Section 6.

The results in [20] concern more general rings than just O = O¢» o, the ring
of germs of holomorphic functions. In the proof in [20], as is the case here,
residues are used. However, the proof in [20] uses Lipman residues, which
are very much algebraic in nature, compared to Andersson-Wulcan currents,
which are analytic in nature.

In the other applications of our comparison formula that we consider in the
introduction we consider Andersson-Wulcan currents associated to Hermitian
resolutions. In the proof of Theorem 1.4 we use the comparison formula when
the source complex is the Koszul complex of f, which is generically exact,
and exact if and only if f is a complete intersection. The target complex is a
free resolution of the ideal J(f), and in order to get the induced morphism
between the complexes, it is only required that the target complex is exact, see
Proposition 3.1.

The current associated to the Koszul complex of f is called the Bochner-
Martinelli current, as introduced in [32]. In fact, Corollary 1.5 was an important
tool in the study of annihilators of Bochner-Martinelli currents in [21].

1.5. Residue currents with prescribed annihilator ideals on analytic

varieties
One of the main applications when constructing the comparison formula was

to construct residue currents with prescribed annihilator ideals on singular
varieties, generalizing the construction of Andersson-Wulcan. Let 7 € Oy be
an ideal on an analytic variety Z € C". If one considers the maximal lifting
J+ZI7 of J toanideal in O¢n, then the Andersson-Wulcan current RV 722 Adz
is a current on C" whose annihilator is 7 + Z;. Since the annihilator contains
Iz, this current is annihilated by all holomorphic functions vanishing at Z,
and one gets a well-defined multiplication of this current with O . Since the
annihilator as a O¢c.-module is J + Zz, its annihilator as a Oz-module is 7.
We have thus constructed a current with a prescribed annihilator on a singular
subvariety of C". A priori, this current is just a current on C”. It would be more
satisfactory that it defines an intrinsic current on Z, which means that it is
annihilated by all smooth forms vanishing on Z. This is indeed the case, and
in [25] we prove this using the comparison formula, give this construction a
more intrinsic interpretation, and show that this construction indeed generalizes
the construction of Andersson-Wulcan when the variety is smooth.
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Trying to prove that R7 %2 Adz is a current on Z was actually how we were
lead to discover the comparison formula. To prove that RZ? A dz corresponds
to a current on Z is rather straightforward, using properties of pseudomero-
morphic currents if Z has pure dimension. Since the holomorphic annihilator
of R7%2z is larger than that of RZ#, and it has smaller support, it should be
easier to annihilate it, and hence RV 7% Adz should also correspond to a current
on Z. One way of making this into a formal mathematical argument would be
to express R 7z in terms of R%Z. In the case of two complete intersections f
and g instead of 7 +Zz and Z, the transformation law expresses this relation.
Trying to extend this to more general ideals, we arrived at Theorem 1.2.

More precisely, by Theorem 1.2, we can write

R7I*2 Adz = aR™” Adz + VM Adz, (1.5)

and it thus remains to prove that VM A dz is annihilated by any smooth form
vanishing on Z. This can be proven by induction, reducing to the fact that
aR*z A dz is a current on Z. In fact, in [25] we prove something stronger,
namely, we express (1.5) as the push-forward of the current

awz +V(VEAwz)
on Z, where V£ and w; are explicit almost semi-meromorphic currents on Z.

2. Andersson-Wulcan currents and pseudomeromorphic currents

In this section we recall the construction of residue currents associated to
Hermitian resolutions of ideals, or more generally, residue currents associated
to generically exact Hermitian complexes, as constructed in [9] and [2]. This
is done in a rather detailed manner, since in order to prove the comparison
formula and the properties of the currents appearing in the formula, we require
rather detailed knowledge of the construction of Andersson-Wulcan currents
and their properties.

Let (E, @) be a Hermitian complex (i.e., acomplex of free O-modules, such
that the corresponding vector bundles are equipped with Hermitian metrics),
which is generically exact, i.e., the complex is pointwise exact outside some
analytic set Z of positive codimension. Mainly, (£, ¢) will be a free resolution
of a module O/J, for some ideal 7 € O. When we refer to exactness of the
complex, we mean that the induced complex of sheaves of O-modules is exact.
When we refer to exactness as vector bundles, we will refer to it as pointwise
exactness. This is in contrast to the notation in for example [9] where the
induced complex of sheaves of O-modules is denoted O(E), and exactness
as vector bundles or sheaves depends on if the complex is referred to as E or
O(E).
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2.1. The superbundle structure of the total bundle E

The bundle E = @E; has a natural superbundle structure, i.e., a Z,-grading,
which splits E into odd and even elements E* and E~, where ET = @Ey;
and E- = ®Ey.. Then D'(E), the sheaf of current-valued sections of E,
inherits a superbundle structure by letting the degree of an element ;© ® » be
the sum of the degrees of i and w modulo 2, where u is a current and w is a
section of E.

The bundle End E also inherits a superbundle structure by letting the even
elements be the endomorphisms preserving the degree, and the odd elements
the endomorphisms switching the degree. Given g in End E, we consider it
also as an element of End D’'(E) by the formula

(1 ® w) = (—1)eeneew) @ o4

if g is homogeneous. We also consider 9 as acting on D’(E) by the formula
(1 ® w) = du ® w if w is a holomorphic section of E.

We let V := ¢ — 3. Note that the action of ¢ on D' (E) is defined so that 9
and ¢ anti-commute, and hence V2 = 0. Note also that since ¢ and 9 are odd,
V is odd.

The O-morphism V induces an O-morphism Vg,q on D'(End E) by the

formula d
V(aé) = Ve (@))€ + (=)™ % a VE, (2.1)

where « is a section of D'(End E) and £ is a section of E. By the fact that
V2 = 0, and that V is odd, we also get that V2, = 0. Note also that if o and
B are sections of D’'(End E) of which at least one of them is smooth, so that
af is defined, then

VEnd(@B) = Vina(@)B + (—1)*8%a Vg4 p. (2.2)

2.2. Pseudomeromorphic currents

Many arguments regarding Andersson-Wulcan currents use the fact that they
are pseudomeromorphic. Pseudomeromorphic currents were introduced in
[10], based on similarities in the construction of Andersson-Wulcan currents
and Coleff-Herrera products.

A current of the form

1 1 - -
nl"'ﬁa ﬂk+1/\ A0 nm/\(x
i ik k41 Im

in some local coordinate system z, where « is a smooth form with compact
support, is said to be an elementary current. A current on a complex mani-
fold X is said to be pseudomeromorphic, denoted T € PM(X), if it can be
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written as a locally finite sum of push-forwards of elementary currents un-
der compositions of modifications and open inclusions. As can be seen from
the construction, Coleff-Herrera products, Andersson-Wulcan currents and all
currents appearing in this article are pseudomeromorphic. In addition, as is ap-
parent from the definition, the class of pseudomeromorphic currents is closed
under push-forwards of currents under modifications and under multiplication
by smooth forms.

An important property of pseudomeromorphic currents is that they satisfy
the following dimension principle, [10, Corollary 2.4].

ProposiTiON 2.1. If T € PM(X) is a (p, q)-current with support on a
variety Z, and codim Z > q, then T = 0.

Another important property is the following, [10, Proposition 2.3].

PrOPOSITION 2.2. If T € PM(X), and \V is a holomorphic form vanishing

onsupp T, then FAT—0

Pseudomeromorphic currents also have natural restrictions to analytic sub-
varieties. If T € PM(X), Z C X is a subvariety of X, and 4 is a tuple of
holomorphic functions such that Z = Z(h), one can define

1x\ 2T = 1ir51+ x(h*/e)T and 1T :=T — 1x\,T.
€—>

This definition is independent of the choice of tuple 4, and 1,7 is a pseudo-
meromorphic current with support on Z.

2.3. Almost semi-meromorphic currents

Let f be a holomorphic function on X, or, more generally, a holomorphic
section of a line bundle over X. The associated principal value current 1/f
can be defined, e.g., as the limit

1
7

where as before, x is a smooth cut-off function.

A semi-meromorphic current is a current of the form w/f where w is a
smooth form. Following [7], we say that a (pseudomeromorphic) current A is
almost semi-meromorphic, A € ASM (X), if there is amodification: X' — X
such that A = m,(w/f) where f is a holomorphic section of a line bundle
L — X’ that does not vanish identically on X’ and w is a smooth form with
values in L.

Jim (1 f1*/e)
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By the dimension principle, a semi-meromorphic current has the SEP, and
it then follows that almost semi-meromorphic currents have the SEP as well.
In particular, if a smooth form «, a priori defined outside a subvariety W C X,
has an extension as a current A € ASM(X), then A is unique. Moreover,
A =lim._ ¢+ x(|h|?/€)a, where h # 0 is any tuple of holomorphic functions
that vanishes on W. We will sometimes be sloppy and use the same notation
for the smooth form « and its extension.

It follows from the definition that A € ASM (X) is smooth outside a proper
subvariety of X. Following [12], we let the Zariski singular support of a
be the smallest Zariski-closed set W such that A is smooth outside W. If
A, B € ASM(X), there is a unique current A A B € ASM (X) that coincides
with the smooth form A A B outside the Zariski singular supports of A and B.

Assume that A € ASM(X) has Zariski singular support W. Then one can
write

A = B + R(A),

where B = 1x\w 9 A is the almost semi-meromorphic continuation of 9A, and
R(A) = 1y dA is the residue of A, see [12, Section 4.1]. Note that 3(1/f) =
R(1/f). If A is the principal value current A = lim._, o+ x (|h|?/€)a, then
R(A) = lim._,¢+ dx (|h|?/€) A a. We also notice that if w is smooth, then

R(w A A) = (—1)% 0w A R(A). (2.3)

If (E, ¢) is a complex of free O-modules, and A and B are almost semi-
meromorphic End(E)-valued currents such that Vg,gA = B where A and B
are smooth, then

R(A) = B — VEuA, 2.4)

which follows since dA = ©EndA — B where A and B are smootl_l, and @gpg A —
B has an extension as a semi-meromorphic current, so R(A) = 0A — (@gna A —
B), which gives (2.4).

2.4. The residue current R associated to a generically exact Hermitian
complex

Let Z be the set where (E, ¢) is not pointwise exact. Outside of Z, let

okE: Ey_1 — E; be the right-inverse to ¢; which is minimal with respect

to the metrics on E, i.e., 940 limy, = Idimg, 0Ff = 0 on (img¢;)*, and

imof L ker . Then,

<Pk+1G;£r1 + GkEfpk = ldg, . (2.5)
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From [9] it follows that if 0 £ := Y o/F, then
N
uf = X:O'E(aorE)k_1
=1

has an extension UF as a current in ASM(X). From (2.5) it follows that
Venat? = Idg outside of Z. The residue current R* can then be defined

as the residue of UE,
RE := R(UY).

Using that Vg,qu? = Idg outside of Z, by (2.4),
RE =Ig — VEndUE,

which is the original definition of RZ from [9]. From this definition it is clear
that Vg,q RE = 0. The current RY satisfies the fundamental property that if E
is a free resolution of O/ 7, then anng RE = 7.

Since R is a End(E)-valued current, it consists of various components
R,f, where R,f is the part of RF taking values in Hom(E,, E;) and R,f is a
(0, k — £)-current. In case we know more about the complex E, more can be
said about which components R} are non-vanishing. First, if Z is the set where
E is not pointwise exact, since R} is a pseudomeromorphic (0, k — ¢)-current

with support in Z,
R, =0 ifk—¢ < codimZ.

If E is exact, i.e., a free resolution, then R,f =0if £ # 0, [9, Theorem 3.1]. We
thus get that if E is a free resolution of length N of O/ 7, and p = codim Z(7),

then N
R* =>"R{.
k=p

2.5. Residue currents associated to the Koszul complex

Let f = (fi,..., fp) be atuple of holomorphic functions. Then there exists a
well-known complex associated to f, the Koszul complex ( /\k 0%r s f) of f,
which is pointwise exact outside of the zero set Z(f) of f. Weletey, ..., e,
be the trivial frame of O®”, and identify f with the section f = )" fief of
(O®P)*, 5o that § ¢ is the contraction with f.

In [32] Passare, Tsikh and Yger defined the Bochner-Martinelli current
of a tuple f, which we will denote by R/. One way of defining it is as the
Andersson-Wulcan current associated to the Koszul complex of f, see [1] for
a presentation from this viewpoint.
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In case the tuple f defines a complete intersection, the Koszul complex of
f is exact, i.e., a free resolution of O/ (f), so the annihilator of the Bochner-
Martinelli current equals 7 (f). Another current with the same annihilator is
the Coleff-Herrera product of f, (1.1), which can be defined for examples as

sl UK Bx AP/

f p f 1 e—~>0* f P f 1
In fact, these two currents coincide.

THEOREM 2.3. Let f = (f1,..., fp) be a tuple of holomorphic functions
defining a complete intersection. Let R/ be the Bochner-Martinelli current of
fL,RlI =pune A A ep, and let w! be the Coleff-Herrera product of f.
Then, i = .

The theorem was originally proved in [32, Theorem 4.1]. See also [3, Co-
rollary 3.2] for an alternative proof.

2.6. Coleff-Herrera currents

Coleff-Herrera currents (in contrast to Coleff-Herrera products as discussed
above) were introduced in [16] (under the name “locally residual currents”), as
canonical representatives of cohomology classes in moderate local cohomo-
logy. Let Z be a subvariety of pure codimension p of a complex manifold X.
A (*, p)-current u on X is a Coleff-Herrera current, denoted u € CHg, if
dp = 0, Yo = 0 for all holomorphic functions ¥ vanishing on Z, and p has
the standard extension property, SEP, with respect to Z, i.e., 1y u = 0 for any
hypersurface V of Z.

This description of Coleff-Herrera currents is due to Bjork, see [13, Chap. 3]
and [14, Section 6.2]. In [16] locally residual currents were defined as currents
of the form w A R", where w is a holomorphic (%, 0)-form, and Z = Z(h) (at
least if Z is a complete intersection defined by 4).

One particular case of Coleff-Herrera currents that will be of interest to us
are Andersson-Wulcan currents RY associated to free resolutions (E, ¢) of
minimal length of Cohen-Macaulay modules @/.7. Such a current is 3-closed
since VRE = 0 implies that 5le = <pp+1Rf+l = 0 since E is assumed to
be of minimal length. The other properties needed in order to be a Coleff-
Herrera current are satisfied by the fact that they are pseudomeromorphic,
Proposition 2.1 and Proposition 2.2.

2.7. Singularity subvarieties of free resolutions

In the study of residue currents associated to finitely generated O-modules
an important ingredient is certain singularity subvarieties associated to the
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module. Given a free resolution (E, ¢) of a finitely generated module G, the
variety ZF is defined as the set where ¢; does not have optimal rank. These
sets are independent of the choice of free resolution. Note that these varieties
can equally well be defined for any complex of free O-modules (E, ¢) which
is generically exact.

The fact that these sets are important in the study of residue currents as-
sociated to generically exact Hermitian complexes stems from the following.
Outside of Zf the form of defined in Section 2.4 is smooth, so by using
that o | d0f = d0f 0f (see [9, (2.3)]), RE = 00 RE| outside of Zf.
This combined with the dimension principle for pseudomeromorphic currents
allows for inductive arguments regarding residue currents.

If codim G = p, then ZF = supp G for k < p, [18, Corollary 20.12]. In
addition, by [18, Theorem 20.9],

codim Z{ > k. (2.6)

In particular,
codim ZkE > codim G. 2.7)

In fact, [18, Theorem 20.9] is a characterization of exactness, the Buchsbaum-
Eisenbud criterion, which says that a generically exact complex (E, ¢) of free
modules is exact if and only if codim Z,f > k.

3. A comparison formula for Andersson-Wulcan currents

The starting point of Theorem 1.2 is that when Z C 7, the natural surjection
n:0/I — O/J induces a morphism of complexes a: (F,{¥) — (E, ¢),
where (F, ¥) and (E, ¢) are free resolutions of O/Z and O/J respectively.
The existence of such a morphism holds much more generally in homological
algebra, of which the following formulation is suitable for our purposes. This
is sometimes referred to as the comparison theorem.

ProrosITION 3.1. Let a: G — H be a homomorphism of O-modules, let
(F, ) be a complex of free O-modules with coker V| = G, and let (E, ¢) be
a free resolution of H. Then, there exists a morphism a: (F, ) — (E, ¢) of
complexes which extends «. If a is any other such morphism, then there exists a
homotopys: (F, ) — (E, @) ofdegree —1 suchthata;—a; = ;1 15;i—Si_1V;.

That a extends o means that the map induced by ag on Fy/(im ) = G —
H = Ey/(im ¢ ) equals «. Both the existence and uniqueness up to homotopy
of a follows from defining a or s inductively by a relatively straightforward
diagram chase, see [18, Proposition A3.13].

This is the general formulation of our main theorem, Theorem 1.2.
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THEOREM 3.2. Let a: (F, ) — (E, @) be a morphism of generically exact
Hermitian complexes, and let M' := UEaU¥ be the product of the almost
semi-meromorphic currents UE and aU* . Let M be the residue

M = R(UEaUT) (3.1)

Then E -
R*a —aR" = VguM, (3.2)

where Vgnq acts on the complex (E @ F, ¢ @ V).

By definition of the residue, if /2 is a tuple of holomorphic functions such that
h # 0, and Z(h) contains the set where (E, ¢) and (F, ¥) are not pointwise
exact, then

M = RWUEaU") = 11%1+ dx(h*/e) AnUEQUT .

Note that Vg,q is defined with respect to the complex (E @ F, ¢ @ ), and
the superstructure, as in Section 2.1, of this complex is the grading (E® F)* =
ET®FT, (E®@F) =E ®F".

If we let M,f be the part of M in (3.1) with values in Hom(F,, Ey), we get
from (2.1) and (2.2) that

(RE)tar — ar(RY), = @ MY, + M g — OM. (3.3)

In the important case £ = 0, if we write M} for the Hom(Fy, Ej)-valued part
of M, and RF and R} for the Hom(Ey, E)- and Hom(Fy, Fy)-valued parts
of RE and RY, we get

Riag — axR} = @ri1Misy — M. (3.4)

PRrROOF. Since a is amorphism of complexes, pa = a, and hence Vgyqa =
pa —ay = 0. Let Z be a variety containing the sets where (E, ¢) and (F, ¥)
are not pointwise exact. Since outside of Z, Vgy,U E = Idg and Vg,qaUF =
Idr, we get using (2.2) and the fact that UZ has odd degree and a has even
degree that

VenaM' = aUF —UEa
outside of Z. Since M’, aU" and U£a are almost semi-meromorphic,
M =RUEaU") =aU" —UEa — VguaM'
by (2.4). Applying Vg to this equation we get (3.2) since Vénd =0, and

Vena(@U" — U*a) = aVeaU" — VEaUFa
=a(ldp —RY) — Adg —R%)a = REa — aR".
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The main idea in the proof of Theorem 3.2, to form a V-potential to R — R/,
essentially of the form V(U A U’), appears in various works regarding residue
currents. One example is in [1] and [9] where this idea is used to prove that
under suitable conditions the residue currents do not depend on the choice
of metrics. This corresponds to applying the comparison formula in the case
when (E, ¢) and (F, ¥) have the same underlying complex, but are equipped
with different metrics.

Another instance where such a construction appears is in [22], regarding
the transformation law for Coleff-Herrera products of (weakly) holomorphic
functions, of which its relation to the comparison formula is elaborated in
Remark 4.4. It also appears in [4] and [38], regarding products of residue
currents, but the relation to the comparison formula is not as apparent.

REMARK 3.3. Note that in Proposition 3.1 the complex (F, ) does not
have to be exact. For our comparison formula to work, neither the complex
(E, ¢) has to be exact, as long as the morphism a exists. For example, if
we have f = gA for some tuples g and f of holomorphic functions, and a
holomorphic matrix A as in Remark 4.4, then A induces a morphism between
the Koszul complexes of f and g. We can then apply the comparison formula
also when the Koszul complex of g is not exact.

3.1. The current M

We will here describe the current M a bit more thoroughly. First of all, we
have the following inductive description.

LEMMmA 3.4. Let (E, @), (F, V), a: (F,{¥) — (E, @) and M be as in The-
orem 3.2, and let M,f be the part of M which takes values in Hom(Fy, Ey).
Then, outside of Z ,f , where okE is smooth,

M{ =dofM{ | —ofar_(R");_,. (3.5)

ProoF. Using that oiiléqiE = 5q/’fr1q5, one gets that

E7 _E 5 E _ a3 E a_E _E
O 004y -+ 00,1 = 00} 00,70, 4.
Hence,
k—1

¢ _ 5 E3 E 3 E _E F3 _F 3 _F
M, = E R(d0, 00, |-+ 00,,,,0, 140,00, _;---30, ).
m={+1
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Splitting the sum into when £ + 1 < m < k — 2 and when m = k — 1, and
using (2.3), we get

k=2
¢t _ 3 E 5. E 3 E 3 E _E F3 _F 3 F
M, = 90, E R(00y~ 100y 5+ 00,70, 14n0,, 0, 130, )
m=L+1
E F 3 _F 3Fy _ 3 Epft E Fye
— o0 ag—1R(0,_00;_,--- 00, ) =00y My_| — o ar—1(R" )_,.

In order to understand when parts of the current M in Theorem 3.2 van-
ishes, we begin with the following lemma about when parts of the current R”
vanishes.

LEmMMA 3.5. Let (F, yr) be a generically exact Hermitian complex, and
assume that codim Z[er >m+1form=1,...,k — L Then (RF)i =0,
where (RF)ﬁ is the part of RY with values in Hom(F,, Fy).

In the special case when (F, ) is a free resolution and £ > 1, then
codim Z{ ym =€+ m>m+1,see (2.6). The lemma thus implies that
(RMHE=0 fore>1 (3.6)

under these assumptions, which is [9, Theorem 3.1]. The proof of Lemma 3.5 is
the same as the proof of [9, Theorem 3.1], as it only uses these inequalities about
the codimension of the sets Z[ . (and the “vague principle” about vanishing of
residue currents referred to in the proof was later formalized as the dimension

principle, Proposition 2.1).

ProrosITION 3.6. Let (E, @), (F,¥), a: (F,¥) — (E, ¢) and M be as in
Theorem 3.2, and let M,f be the part of M which takes values in Hom(Fy, Ey).

If
codimZ;,, >m+1, form=1,....k—£{—1, (3.7)

and
codim Zf,,, > m, form=2,....k—¢ (3.8)

then M{ = 0.

Proor. We prove this by induction over k — £, starting with the first non-
trivial case k = €+2. Since M{,, = R(0/,,ar410/,,) has support where o %,
and o/, are not smooth, supp My, € W := ZF , U Z[,. By assumption,
codim W > 2, and since M f 4o 18 a pseudomeromorphic (0, 1)-current, it is 0
by the dimension principle.
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Note that the assumptions (3.7) imply by Lemma 3.5 that (RT)¢ +m = O for
1 <m <k — ¢ — 1. Assume now that we have proven that Mf , = 0 for

+m—
3 <m <k — €. Then, by (3.5), outside of Zf, ,,

4 __a E 4 E F\¢
Ml+m - aU€+ian+n1—l - O'“_md“,m(R )Z—O—m—l‘

Since the currents My, _, and R/, _, both vanish, we thus get that M;,

vanishes outside of Zﬁrm. Since Mf +m 18 @ pseudomeromorphic (0, m — 1)-
current with support in Z€E+)n of codimension > m, it is 0 by the dimension

principle. By induction, we thus conclude that M} = 0.

COROLLARY 3.7. Let (E, @), (F,¥), a: (F,¥) — (E, ¢) and M be as in
Theorem 3.2, and let M ,f be the part of M which takes values in Hom(F, Ey).
Assume that (F, ) and (E, @) are free resolutions of modules G and H
respectively. Then,

M{=0 fort=1,....k—2, (3.9)
and if G and H have codimension > k, then
M) =0. (3.10)

In addition, for any k,
MYy, = 0. (3.11)

ProoOF. By (2.6), for all j > 1, codim ZJE > j, and codim Zf > j, and
thus (3.9) follows directly from Proposition 3.6. In addition, if £ < codim G
and k < codim H, then codim ZJF > codim G and codim ZJ.E > codim H
by (2.7), so (3.10) also follows directly from Proposition 3.6.

By (3.3),

MM = =i M, + IM, + (RF) a1 — ax(RP)],

and by (3.6) and (3.9), all currents in the right-hand side vanish, so we have
proven (3.11).

4. A transformation law for Andersson-Wulcan currents associated to
Cohen-Macaulay modules

In this section we state and prove the general version of our transformation
law for Andersson-Wulcan currents associated to Cohen-Macaulay modules.

THEOREM 4.1. Let G be a finitely generated O-module of codimension p,
and assume that G is Cohen-Macaulay. Let (E, @) be a free resolution of G
of length p, and let (F, ) be a generically exact Hermitian complex such
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that the set Z where (F, ) is not pointwise exact has codimension > p. If
a: (F,¥) — (E, @) is a morphism of complexes, then
E F
Rp ag = a, Rp .
If ag is any morphism Fy — Eg such that ag(im ;) C im @y, then ay can be
extended to a morphism a: (F,¥) — (E, @).

Note in particular, if Fy = O = Ey, ap: Fy — Ey is this isomorphism,
and 7 := im ¢y, and 7 := im v, then ag can be extended if Z C 7, and the
morphism a then extends the natural surjection 7: O/Z — O/J.

Proor. The last part about the existence of a follows immediately from
Proposition 3.1.

By (3.4), . - 0 .
R,a0 =ayR, + ¢pr 1M, —IM,.

Since (E, @) has length p, ¢, 1 M), = 0, and M, = 0 by (3.10).

ExAMPLE 4.2. Let m: C — C3, (1) = (¢, 1%, +°), and let Z be the germ
at 0 of 7 (C). One can show that the ideal of holomorphic functions vanishing
at Z equals J = (y> — xz, x> — yz, x2y — 2%).

The module O/J has a minimal free resolution

00928 0% % 0 0/7,

where

-z —x?
<p2=|:—y —Z:| and ¢ =[y>—xz x*—yz x’y—2%].
X y

To check that this is a resolution, one verifies first that it indeed is a complex.
Secondly, since I} = I(¢;) = J, and I, = I(¢;) = J (the Fitting ideals of
¢ and ¢,), the complex is exact by the Buchsbaum-FEisenbud criterion, see
Section 2.7 (and note that ZF = Z(I})).

In particular, since O/J has a minimal free resolution of length 2 with
rank E, = 2, Z is Cohen-Macaulay but not a complete intersection. However,
Z isin fact a set-theoretic complete intersection. Let f = (z2 —x2y, x*+y° —
2xyz),and Z = J(f). One can verify that Z(Z) = Z, and since codim Z = 2,
Z is indeed a set-theoretic complete intersection.

Now, let (E, ¢) be the free resolution of O/ 7, and (F, 1) be the Koszul
complex of f, which is a free resolution of O/Z since f is a complete in-
tersection. Since O/ is Cohen-Macaulay and Z(Z) = Z(J), we can apply
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Theorem 1.3 to (F, ¥) and (E, ¢). One verifies that a: (F, ) — (E, ¢),

x3—yz 0y
a2=|: ) ] a; = 0 x and ap=1[1],
yoA -1 0

is a morphism of complexes extending the natural surjectionn: O/ — O/J.
This morphism can be found with for example the computer algebra system
Macaulay?2. Since the current associated to the Koszul complex of a complete
intersection f is the Coleff-Herrera product of f by Theorem 2.3, we get by
Theorem 1.3 that

i 1 I | 3_
RE=3 A D Al TR
x4+ y3—2xyz 2 —x2y Yo —xz

The fact that we can express the residue current corresponding to the ideal
above in terms of a Coleff-Herrera product can be done more generally, as the
following example shows.

ExampLE 4.3. Let 7 C O be a Cohen-Macaulay ideal of codimension p,
and let Z = Z(J). Then, there exists a complete intersection (f1, ..., fp)
such that Z € Z(f), see for example [23, Lemma 19]. By the Nullstellensatz,
there exist V; such that fiNi € J.Thus, by replacing f; by fiN" , WE can assume
that (fi, ..., f,) is a complete intersection such that 7(f1, ..., f,) € J. Let
(F, ) be the Koszul complex of f, and let (E, ¢) be a free resolution of O/ J
of length p. By Theorem 1.3, we then have that

7 =1 -1
Ry =0—N--NI— ANapler A+ Nep),
V4 fl

where a,, is the morphism in Theorem 1.3, since the current associated with
the Koszul complex of f is the Coleff-Herrera product of f.

REMARK 4.4. The transformation law for Coleff-Herrera products is a co-
rollary of Theorem 1.3 in the following way. Let f and g be two complete
intersections of codimension p, and assume that there exists a matrix A of
holomorphic functions such that f = gA.

Since f and g are complete intersections, the Koszul complexes ( N\ O®P,
(Sf) and (/\ o%r, 8g) are free resolutions of O/J(f) and O/J(g). Since
J(f) € J(g), we get a morphism a of the Koszul complexes of f and g in-
duced by the inclusion w: O/ J (f) — O/J(g) by Proposition 3.1. In fact, the
morphism a;: \¥ 0% — AF O®7 is readily verified to be AF A: AF 0%F —
/\k O®P, see [22, Lemma 7.2]. In particular, a, = A\” A = det A, so since
the Andersson-Wulcan currents associated to the Koszul complexes of f and
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g are the Coleff-Herrera products of f and g, the transformation law u& =
(det A)u/ follows directly from Theorem 1.3.

In fact, the proof of Theorem 1.3 in this particular situation becomes exactly
the proof of the transformation law for Coleff-Herrera products given in [22,
Theorem 7.1].

As mentioned above, the transformation law for Coleff-Herrera products is
a special case of Theorem 1.3. In [17], two proofs of the transformation law
are given, and in fact, we can essentially use the same argument as the second
proof of the transformation law in [17, p. 54-55], to prove Theorem 1.3.

ALTERNATIVE PROOF OF THEOREM 1.3. Consider E, := Ext,(0/J, O).
One way of computing Ef; is by taking a free resolution (E, ¢) of O/J,
applying Hom(e, O) and taking cohomology, i.e., E; = H?(Hom(E,, O)).
On the other hand, it can also be computed by taking an injective resolution
of O, which can be taken as the complex of (0, x)-currents, (e, 5), ap-
plying Hom(O/J, e) to this complex, and taking cohomology, i.e., E "} =
HP(Hom(0/J,C%*)).

Since these are different realizations of Ext, they are naturally isomorphic,
and by [5, Theorem 1.5] this isomorphism is given by

¢: [ ar Hom(E., 0) > [ng]HP(Hom(O/j,COJ))‘ 4.1

We now consider the map n:O/Z — O/J, which induces a map
n*:EY — EZ. In the first realization of Ext, 7* becomes the map
a;: H? (Hom(E,, O)) — H?(Hom(F,, O)) induced by a: (F, ) — (E, ¢).
In the second realization of Ext, the map becomes just the identity map on the
currents (due to the fact that currents annihilated by 7 are also annihilated by
7). Thus, using the naturality of 7* and the isomorphism (4.1) we get from the
commutative diagram

H?(Hom(E,, 0)) —X 5 HP(Hom(F,, O))

I I
H?(Hom(0/J,C%*)) —=— HP?Hom(O/Z,C"**))

that [(a})ER]]; = [§R] 15, where £ is a holomorphic section of ker ¢ .
Hence, SapR[f = SRf + 57]5, where 7; is annihilated by Z. Since (E, ¢)
has length p, ¢,+1 = 0, so the equality holds for all holomorphic sections &
of E,, ie., apR[f = Rf + an for some (vector-valued) current n annihilated
by Z. Since a,, is holomorphic and R} and R} are in C Hz, see Section 2.6,

where Z = Z(Z), we get from the decomposition ker(Cg’p 2 Cg’p +1) =
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CH; & 502"”—1, see [17, Theorem 5.1], that 6_)77 = 0, where C%p is the sheaf
of (0, p)-currents supported on Z.

The only difference of the proof here to the proof in [17] is that we have the
isomorphism (4.1) from [5], while in [17] this isomorphism was only available
if 7 was a complete intersection ideal, see the proof of [16, Proposition 3.5].

We end this section with an example of how we can express Andersson-
Waulcan currents associated to Cohen-Macaulay ideals in terms of Bochner-
Martinelli currents.

ExaMpLE 4.5. Let f = (fi, ..., fi) be a tuple of holomorphic functions,
let 7 = J(f1,..., fr) and Z = Z(f), and assume that codimZ = p.
Assume in addition that O/J is Cohen-Macaulay. Note that we do not assume
that f is a complete intersection, i.e., that k = p. Let O% be the trivial
vector bundle with frame ey, ..., e, and consider f as a section of (ODk)*,
f =Y fief Let R/ be the Bochner-Martinelli current associated with f, and
write R,{ = Y R; Aey,ie., Ry A e is the component of R,{ with values in
ep=e, N---Nej € N O%k,

In [3] Andersson proves that if © € CHz, then there exist holomorphic
(*, 0)-forms «; such that u = Y a; A R; (after first replacing f; by fiN" such
that fiN "u = 0). In particular, this applies in our case to R7, see Section 2.6.
In [3] the a; are not explicitly given, but when 4 = R7, we can obtain them
from Theorem 4.1. We let (F, ¥) be the Koszul complex of f, and (E, ¢) a
minimal free resolution of O/J. Since the current associated with the Koszul
complex of f is the Bochner-Martinelli current of f, Theorem 4.1 gives the

factorization
R7 = Z o; ARy,

where a; = a,(e).

5. A non-Cohen-Macaulay example

When the ideals involved in the comparison formula are not Cohen-Macaulay,
the comparison formula does not have as simple form as in the Cohen-Macaulay
case in Section 4. In this section we illustrate with an example how one could
still use the comparison formula also to compute the residue current associated
to a non Cohen-Macaulay ideal.

EXAMPLE 5.1. Let Z € C*bethe variety Z = {x = y = 0}U{z = w = 0}.
The ideal Z, of holomorphic functions on C* vanishing on Z equals Z; =
J((xz,xw, yz, yw). It can be verified that 7, has a minimal free resolution
(E, @) of the form

0508 0% 45 04 05 0/1,,
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where w —y 0 —w 0
| —z _ 0 —y b4 0
@3 = —y 5 Oy = x O 0 —w
X 0 X 0 z
and

o1 =[xz xw yz yw].

Note that Z has codimension 2, while the free resolution above, which is
minimal, has length 3, so Z is not Cohen-Macaulay.

We compare this resolution with the Koszul complex (F, i) of the com-
plete intersection ideal Z = J(xz, yw). One can verify that the morphism

a:(F,y) — (E, ),

S O =

w 0
1| 7 0
y 0 and a9g=1[1],

1

X 0

is a morphism of complexes extending the natural surjectionw: O/7 — O/Z,
as in Proposition 3.1. _

By (3.4), R¥ = ay R + g3 M3 — d M,. Note that M, = 0 by (3.10). By (3.5)

and the fact that M, = 0, outside of Z¥ = {0} we get that M5 = —cfa, R} .
Thus, outside of {0}
R2E =g, — g0303E)a2R§.
Then, Rf is the standard extension in the sense of [14, Section 6.2], of (/g, —
©303)a; R2F . One way to interpret the standard extension here is that since Rf
is a pseudomeromorphic (0, 2)-current defined on all of C*, its extension from
C*\ {0} is uniquely defined by the dimension principle.

We have that
w(lyl*+ 2%
(Ig, — p303)ar = : 2(el” £ Tl
] X2+ Y2+ 1z 4 [wl? | y(x]> + [w]?)
x(Iyl> +1z1?)

Since Rf = 3(1/yw) Ad(1/xz), see Theorem 2.3, we get from the transform-
ation law and Proposition 2.2 that R¥ is the standard extension of

251 A 5L

|Z] By ANO+

1 w9 A9

yw X

X2+ P+ 2P+ wl | x128L A gL
w XZ

29 1 a1l
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Using again the transformation law and Proposition 2.2, one gets that RY is
the standard extension of

-1 -1 1
ANd—AD

1
. Tt e
y ooox o xIF 41yl

Ry = ——
2Tz + wl?

oS o gl il
<l %l o o
|
—_
|
—

6. The Jacobian determinant of a holomorphic mapping

Throughout this section, we let f = (fj, ..., fi) be a tuple of holomorphic
functions, and let 7 := J(f1, ..., fm). Let (F, ¥) be the Koszul complex of
f,let (E, ¢) be a free resolution of O/ 7, and let a: (F, ) — (E, ¢) be a
morphism of complexes extending the identity morphism coker ¥y = O/ J =
coker ¢, which exists by Proposition 3.1.

LEMMA 6.1. Let f, (E, ¢), and a be as above, let R/ be the Bochner-
Martinelli current of f, and let R,{ be the part of R of bidegree (0, k). For

k <m, X
dfi A Adfn AaxR] = 0.

If (E, @) has length < m, and if h is a holomorphic function which vanishes
on all the irreducible components of Z( f) of codimension m, then

hdfi A Adfy AanRL =0.

The condition about the length of (E, ¢) in Theorem 1.4 comes in due to
the following lemma.

LEMMA 6.2. Let f, (E, @) and a be as above. If (E, ¢) has length < m,
then a,, vanishes on all irreducible components of Z( f) of codimension < m.

ProOF. Let V be an irreducible component of Z( f) of codimension < m.
Since codim ZE > m by (2.6), ZE N V is nowhere dense in V. Thus, by
continuity, it is enough to prove that a,, vanishes on V \ ZE.

Consider thus a point zg € V \ Z,ﬁ , and take a minimal free resolution
(K, n) of O, /T (f)z, which has length < m since we are outside of ZZ. Let
b: ( A\ O;’E’”, 8f) — (K, n) be a morphism induced by the identity morphism
as in Proposition 3.1. Since a minimal free resolution is a direct summand of
any free resolution, we get an inclusion i: (K, n) — (E, ¢). Thus, one choice
of a': (/\ Ofﬁ’", Sf) — (E, ¢) would be a’ = ib. Because (K, 1) has length
< m, b, = 0, and thus, a;, = 0. Hence, there exists one choice of morphism

a: (/\ szm, 8f) — (E, ¢) such that a,, vanishes near zo. We need to prove



A COMPARISON FORMULA FOR RESIDUE CURRENTS 63

that for any choice of a, a,, vanishes on Z( f) near zo. By Proposition 3.1 there
exists s: (/\ O;’f}m, 8f) — (E, @) of degree —1 such that
ay — ap = Qrr18k — Sk—1(87)k-
In particular, if K = m, then ¢,,+; = 0 because (E, ¢) has length < m, so
am = ap, + Sm—1(8f)m-
Thus, a,, vanishes at Z( f) since both a,, and (§;),, vanish on Z(f).

PrROOF OF LEMMA 6.1. Weletdf :=dfi A--- Adf,. From the proof of [1,
Lemma 8.3] it f9110ws that there exists a modification 7: X — (C", 0), such
that 7*df A R} 7 is of the form

1
Y fo A+ f'm) A 87,
0

where fj is a single holomorphic function such that { fy = 0} = {7* f = 0},
and 7, and 7, are smooth forms. By the Poincaré-Lelong formula and the
duality theorem, this equals —2mi[ fy = 0] fg”*km. If k < m, we thus get that

m*df A RY 7 =0.1f k = m, then
n*(hdfay) A RE T = —Qri)w* (hay)m Alfo = 0],

which is 0 since ha,, vanishes on Z(f) by Lemma 6.2, and thus, 7*(ha,,)
vanishes on {fy = 0} = {7* f = 0}. To conclude, A df A akR,{ = 0 for all k

since .
hdf naxR] = m.(r*(df A ha)RE) = 0.

PrROOF OF THEOREM 1.4. We first prove that 7(f) : Jac(f) € Tn(f).
Let W,, :== Z(J,(f)) be the union of the irreducible components of Z( f)
of codimension m. Generically on W,, (more precisely, where it does not
intersect any irreducible component of codimension different from m) f is a
complete intersection. Assume that we are at such a generic point z of W,,.
Take h € J(f) : Jac(f). Since f is a complete intersection near z, it follows
from the Poincaré-Lelong formula, [15, Section 3.6], that near z,

(N 1
G V7 NN AR Adfy = hUfy = = fu =01 6D

where [ f| = --- = f,, = 0] is the integration current along { f} = --- = f,, =
0} with appropriate multiplicities. On the other hand, by the duality theorem
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and the fact that A Jac(f) € J(f),

héiA---AéfiAdfm---/\dfm=0, (6.2)
m 1
so combining (6.1) and (6.2), 4 must vanish on W,, near z. Thus, & € J,,(f).
for generic z € W, i.e., h vanishes generically on W,,. By continuity, since
In(f) = Iw,, we must have h € J,,(f).

We take (E, ¢), and a: (/\ 0% 5f) — (E, ¢) as above. We now prove
the other inclusion, 7, (f) € J(f) : Jac(f). Take h € J,(f). Since
anny RE = J(f), what we want to prove is equivalent to that h df A RE = 0,
where df :=df; A --- ANdf,. We get from (3.4) that

Rf = akka + Q1 M1 — OMy, (6.3)

where R,{ is the part of the Bochner-Martinelli current of f of bidegree (0, k),
and M, is the part of M with values in Hom(O, E}). We are done if we can
prove that 4 df annihilates all the currents of the right-hand side of (6.3).

To begin with, & df annihilates a; R,{ by Lemma 6.1. It is thus sufficient to
also prove that & df annihilates M, for all k. Note first that M; = 0, so we use
this as a starting case for a proof by induction. By (3.5), outside of Zf

My = doF My —ofar\R]_,. (6.4)

By induction and Lemma 6.1, /& d f annihilates both currents on the right-hand
side of (6.4) outside of ZF, where o/F is smooth. Thus, supp(h df AM;) C ZE,
and since h df A My is a (m, k— 1)-current with support on Z£ of codimension
> k by (2.6), hdf A M, = 0 by the dimension principle.
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