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A COMPARISON FORMULA FOR RESIDUE CURRENTS

RICHARD LÄRKÄNG

Abstract
Given two ideals I and J of holomorphic functions such that I ⊆ J , we describe a comparison
formula relating the Andersson-Wulcan currents of I and J . More generally, this comparison for-
mula holds for residue currents associated to two generically exact Hermitian complexes together
with a morphism between the complexes.

One application of the comparison formula is a generalization of the transformation law for
Coleff-Herrera products to Andersson-Wulcan currents of Cohen-Macaulay ideals. We also use
it to give an analytic proof by means of residue currents of theorems of Hickel, Vasconcelos and
Wiebe related to the Jacobian ideal of a holomorphic mapping.

1. Introduction

The theory of residue currents of Coleff-Herrera, Dickenstein-Sessa, Passare-
Tsikh-Yger, Andersson-Wulcan and others has provided a strong tool for prov-
ing different results. For example, it has been used to prove results about mem-
bership problems in commutative algebra, including Briançon-Skoda type res-
ults in [8], [11], [33]. However, there are similar results which appear natural
to approach by such methods, but which have so far not been possible to prove
in this way due to lack of precise enough description of the involved residue
currents.

In this paper we introduce a comparison formula for residue currents, gen-
eralizing the classical transformation law for complete intersections, which
allows for expressing residue currents in [9] and [32] in terms of “simpler”
currents. In Section 1.3 to Section 1.5 we discuss various applications of this
formula. Some of the applications are elaborated in this article, others are from
later work after the appearance of the first version of this article. One applic-
ation is that the comparison formula gives precise enough information about
residue currents to give analytic proofs of theorems of Hickel, Vasconcelos
and Wiebe, Theorem 1.4 and Corollary 1.5. These results had previously only
been proven by algebraic means. Other applications of the comparison for-
mula include the results in [25], where it is used to construct residue currents
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with prescribed annihilator ideals on singular varieties, and in [26], where it is
used to obtain precise descriptions of residue currents associated to Artinian
monomial ideals.

1.1. The transformation law

We begin by recalling the transformation law, which our formula is a generaliz-
ation of. Let f = (f1, . . . , fp) be a tuple of germs of holomorphic functions at
the origin inCn defining a complete intersection, i.e., so that codimZ(f ) = p.
Associated to f , there exists a current

μf = ∂̄
1

fp
∧ · · · ∧ ∂̄ 1

f1
, (1.1)

called the Coleff-Herrera product of f , which was introduced in [15]. We let
annO μf be the annihilator of μf , i.e., the holomorphic functions g such that
gμf = 0, and we let J (f ) be the ideal generated by f . One of the fundamental
properties of the Coleff-Herrera product is the duality theorem, which says
that annO μf = J (f ). The duality theorem was proven independently by
Dickenstein and Sessa [16], and Passare [31].

Another fundamental property of the Coleff-Herrera product is that it sat-
isfies the transformation law. Earlier versions of the transformation law in-
volving cohomological residues (Grothendieck residues) exist, see for ex-
ample [34, (4.3)] and [19, p. 657].

Theorem 1.1. Let f = (f1, . . . , fp) and g = (g1, . . . , gp) be tuples of
holomorphic functions defining complete intersections. Assume there exists a
matrix A of holomorphic functions such that f = gA. Then

∂̄
1

gp
∧ · · · ∧ ∂̄ 1

g1
= (detA)∂̄

1

fp
∧ · · · ∧ ∂̄ 1

f1
.

In the setting of Coleff-Herrera products the transformation law was first
stated in [16], and it was explained that the proof can be reduced to the absolute
case (when p = n) and cohomological residues together with the technique
from [15] of fibered residues. An elaboration of this proof can be found in [17].

For cohomological residues as in [19] the idea of the proof is that if dg1 ∧
· · · ∧ dgn is non-vanishing and A is invertible, then the transformation law is
essentially the change of variables formula for integrals.

In the case when p = n the transformation law combined with the Null-
stellensatz allow to express in an explicit fashion the action of μf , see for
example [35, p. 22]. Essentially the same idea is also used in [19] to prove the
duality theorem for Grothendieck residues by using the transformation law.
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One particular case of the transformation law is when we choose different
generators f ′ = (f ′

1, . . . , f
′
p) of the ideal generated by f . Then the Coleff-

Herrera product of f ′ differs from the one of f only by an invertible holo-
morphic function, and hence it can essentially be considered as a current as-
sociated to the ideal J (f ).

The requirement that f = gA means that J (f ) ⊆ J (g). If we consider
the Coleff-Herrera product of g as a current associated to the ideal J (g), then
the transformation law says that the inclusion J (f ) ⊆ J (g) implies that we
can express the Coleff-Herrera product of J (g) in terms of the Coleff-Herrera
product of J (f ).
1.2. A comparison formula for Andersson-Wulcan currents

Consider an arbitrary ideal J ⊆ O = OCn,0 of holomorphic functions. Through-
out this article we let O denote OCn,0, the ring of germs of holomorphic func-
tions at the origin in Cn, unless otherwise stated. Let (E, ϕ) be a Hermitian
resolution of O/J ,

0 → EN
ϕN−→ EN−1 → · · · ϕ1−→ E0 → O/J → 0,

i.e., a free resolution of O/J where the free modules are equipped with Her-
mitian metrics. Given (E, ϕ), Andersson and Wulcan constructed in [9] a cur-
rent RE such that annO RE = J , where RE = ∑N

k=p R
E
k , p = codimZ(J ),

and REk are Hom(E0, Ek)-valued (0, k)-currents. We will sometimes denote
the current RE by RJ , although it depends on the choice of Hermitian res-
olution E of O/J . We refer to Section 2 for a more thorough description of
the current RE . As mentioned above, such currents have been used to study
membership problems. Another important application has been to construct
solutions to the ∂̄-equation on singular varieties [7], [6].

In case J is a complete intersection defined by a tuple f , then J has an
explicit free resolution; the Koszul complex of f . In that case, the Andersson-
Wulcan current associated to the Koszul complex coincides with the Coleff-
Herrera product of f , see Section 2.5.

We now consider two ideals I and J such that I ⊆ J , and free resolutions
(E, ϕ) and (F,ψ) of O/J and O/I respectively. If we choose minimal free
resolutions, then in particular rankE0 = rank F0 = 1, i.e., E0

∼= O ∼= F0, and
we let a0:F0 → E0 be this isomorphism. Since I ⊆ J , we have the natural
surjection π : O/I → O/J , and by the choice of a0, the diagram

E0 −−−−−→ O/J
a0 π

F0 −−−−−→ O/I
(1.2)
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commutes. In fact, even when (E, ϕ) and (F,ψ) are not minimal, one can
always find a0 making (1.2) commute, and we thus assume a0 is chosen in this
way. Using the fact that the Fk are free and that (E, ϕ) is exact, by a simple
diagram chase one can complete this to a commutative diagram

0 −−→ EN
ϕN−−−→ EN−1

ϕN−1−−−−→ · · · ϕ1−−−→ E0 −−→ O/J −−→ 0

aN aN−1 a0 π

0 −−→ FN
ψN−−−→ FN−1

ψN−1−−−−→ · · · ψ1−−−→ F0 −−→ O/I −−→ 0

(1.3)

The commutativity means that a: (F,ψ) → (E, ϕ) is a morphism of com-
plexes, cf., Proposition 3.1.

The main result of this article is a comparison formula for the currents
associated to I and J obtained from the morphism a. The formula involves
forms uE and uF , which are certain endomorphism-valued forms on the free
resolutions E and F . These forms are smooth outside of Z(I) ∪ Z(J ); see
Section 2 for details about how they are defined. Throughout the article,
χ(t):R≥0 → R≥0 is a smooth cut-off function such that χ(t) ≡ 0 for t 
 1
and χ(t) ≡ 1 for t � 1.

Theorem 1.2. Let I,J ⊆ O be two ideals such that I ⊆ J , and let
(E, ϕ) and (F,ψ) be Hermitian resolutions of O/J and O/I respectively.
Let a: (F,ψ) → (E, ϕ) be the morphism in (1.3) induced by the natural
surjection π : O/I → O/J . Then,

RJ a0 − aRI = ∇ϕM, (1.4)

where ∇ϕ = ∑
ϕk − ∂̄ , and

M = lim
ε→0+

∂̄χ(|h|2/ε) ∧ uEauF ,

where h is a tuple of holomorphic functions such that h ≡ 0, and {h = 0}
contains Z(I) ∪ Z(J ).

The theorem in fact holds in a more general setting. First of all, there are
Andersson-Wulcan currents associated not just to Hermitian resolutions, but to
any generically exact Hermitian complex. The theorem holds for such residue
currents together with arbitrary morphisms of the complexes, Theorem 3.2.
In addition, the current M is there interpreted as the so-called residue of an
almost semi-meromorphic current. To elaborate more precisely howM and ∇ϕ

are defined, more background from the construction of the Andersson-Wulcan
currents is required. We refer to Section 2 for the necessary background, and
Section 3 for a more precise statement of the comparison formula in the general
form.
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1.3. A transformation law for Andersson-Wulcan currents associated with
Cohen-Macaulay ideals

Our first application is a situation in which the current M in (1.4) vanishes.
This gives a direct generalization of the transformation law for Coleff-Herrera
products to Andersson-Wulcan currents associated with Cohen-Macaulay
ideals. We recall that an ideal J is Cohen-Macaulay if O/J has a free resol-
ution of length equal to codimZ(J ).

Theorem 1.3. Let I,J ⊆ O be two Cohen-Macaulay ideals of the same
codimension p such that I ⊆ J . Let (F,ψ) and (E, ϕ) be Hermitian resolu-
tions of length p of O/I and O/J respectively. If a: (F,ψ) → (E, ϕ) is the
morphism in (1.3) induced by the natural surjection π : O/I → O/J , then

RJ
p a0 = apR

I
p .

The proof of Theorem 1.3 is given in Section 4; it is a special case of
the more general Theorem 4.1. In Remark 4.4 in Section 4, we describe how
the transformation law for Coleff-Herrera products is a special case of The-
orem 1.3.

In the article [17] two proofs of the transformation law for Coleff-Herrera
products are given. One of the proofs can in fact be adapted to give an alternative
proof of Theorem 1.3, see Section 4.

See Section 4 for various examples of how one can use Theorem 1.3 or its
generalization Theorem 4.1 to express the current RI for a Cohen-Macaulay
ideal I in terms of other currents in an explicit way. This type of expres-
sions were used by Lejeune-Jalabert in [28] to create certain cohomological
residues for Cohen-Macaulay ideals in terms of Grothendieck residues. She
used this type of residues to express the fundamental cycle of such ideals in
terms of Grothendieck residues. However, duality properties of such cohomo-
logical residues were not investigated. Lundqvist [29], [30], also constructed
cohomological residues associated to pure dimensional ideals, and proved that
they satisfy a duality theorem. With the help of the comparison formula, we
elaborate in [24] a bit on the relation between such residues, and the relation
with Andersson-Wulcan currents. The comparison formula also plays an im-
portant role in that article, as it is used to prove functoriality for a pairing
defined with the help of Andersson-Wulcan currents.

In Section 5 we give an example of a computation when the ideal is not
Cohen-Macaulay.

In the joint article [27] withWulcan we use Theorem 1.3 to express explicitly
the fundamental cycle of a pure dimensional ideal in terms of residue currents,
generalizing the Poincaré-Lelong formula. This is related to the construction
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of Lejeune-Jalabert mentioned above. In another joint article, [26], we use
Theorem 1.3 to calculate in a simpler and in some aspects more explicit way
residue currents associated to Artinian monomial ideals, compared to earlier
work by Wulcan. Having such explicit expression for the currents, we were
able to directly prove the results from [27] for such ideals.

1.4. The Jacobian determinant of a holomorphic mapping

Let f = (f1, . . . , fm) ∈ O⊕m. Let Jac(f ) be the ideal generated by the
coefficients of df1 ∧ · · · ∧ dfm, i.e., if

df1 ∧ · · · ∧ dfm =
∑
|I |=m

fIdzi1 ∧ · · · ∧ dzim,

then Jac(f ) is the ideal generated by all the fI ’s.
We give an analytic proof of the following (slightly weaker variant of a)

theorem of Vasconcelos, [36, Theorem (2.4)], using the generalization The-
orem 3.2 of Theorem 1.2. In [36] this theorem was proved for the polynomial
ring over a field. In [37] Wiebe proved this theorem (formulated slightly dif-
ferently) in the case m = n for any local ring. We recall that if I and J are
ideals in a ring R, then the ideal quotient I : J is the ideal

I : J := {r ∈ R | rJ ⊆ I }.
Theorem 1.4. Let f = (f1, . . . , fm) be a tuple of holomorphic functions

in O vanishing at {0}, and assume that O/J (f ) has a free resolution of length
≤ m. Let Jm(f ) be the ideal of all holomorphic functions vanishing at all
irreducible irreducible components of Z(f ) of codimension m. Then,

Jm(f ) = J (f ) : Jac(f ).

Note that if I and J are ideals in O, then J : I = O if and only if I ⊆ J ,
and that Jm(f ) = O if and only if Z(f ) has no irreducible components of
codimension m. Combining these two remarks with the theorem, one gets
that Jac(f ) ⊆ J (f ) if and only if Z(f ) has no irreducible component of
codimension m (under the assumption that O/J (f ) has a free resolution of
length ≤ m).

Note that if f = (f1, . . . , fn), then Jac(f ) is generated by the Jacobian de-
terminant Jf of f . Moreover, by the Hilbert syzygy theorem, O/J (f1, . . . , fm)

always has a free resolution of length n. Finally, if f = (f1, . . . , fn) vanishes
at 0, then codimZ(f ) = n if and only ifZ(f ) has an irreducible component of
codimension n. Thus, we have the following corollary of Theorem 1.4, which
was proven by Hickel [20] in the analytic setting. It is not too hard to show
that this is in fact equivalent to Theorem 1.4 when m = n.
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Corollary 1.5. Let f = (f1, . . . , fn) be a tuple of germs of holomorphic
functions in OCn,0 vanishing at {0}, and let Jf be the Jacobian determinant
of f . Then Jf ∈ J (f1, . . . , fn) if and only if codimZ(f1, . . . , fn) < n. In
addition, if codimZ(f1, . . . , fn) = n, then �Jf ⊆ J (f1, . . . , fn).

We will use the generalization Theorem 3.2 of Theorem 1.2 to give a proof
of this theorem by means of residue currents, the proof is given in Section 6.

The results in [20] concern more general rings than just O = OCn,0, the ring
of germs of holomorphic functions. In the proof in [20], as is the case here,
residues are used. However, the proof in [20] uses Lipman residues, which
are very much algebraic in nature, compared to Andersson-Wulcan currents,
which are analytic in nature.

In the other applications of our comparison formula that we consider in the
introduction we consider Andersson-Wulcan currents associated to Hermitian
resolutions. In the proof of Theorem 1.4 we use the comparison formula when
the source complex is the Koszul complex of f , which is generically exact,
and exact if and only if f is a complete intersection. The target complex is a
free resolution of the ideal J (f ), and in order to get the induced morphism
between the complexes, it is only required that the target complex is exact, see
Proposition 3.1.

The current associated to the Koszul complex of f is called the Bochner-
Martinelli current, as introduced in [32]. In fact, Corollary 1.5 was an important
tool in the study of annihilators of Bochner-Martinelli currents in [21].

1.5. Residue currents with prescribed annihilator ideals on analytic
varieties

One of the main applications when constructing the comparison formula was
to construct residue currents with prescribed annihilator ideals on singular
varieties, generalizing the construction of Andersson-Wulcan. Let J ⊆ OZ be
an ideal on an analytic variety Z ⊆ Cn. If one considers the maximal lifting
J +IZ of J to an ideal in OCn , then theAndersson-Wulcan currentRJ +IZ ∧dz
is a current on Cn whose annihilator is J + IZ . Since the annihilator contains
IZ , this current is annihilated by all holomorphic functions vanishing at Z,
and one gets a well-defined multiplication of this current with OZ . Since the
annihilator as a OCn -module is J + IZ , its annihilator as a OZ-module is J .
We have thus constructed a current with a prescribed annihilator on a singular
subvariety ofCn. A priori, this current is just a current on Cn. It would be more
satisfactory that it defines an intrinsic current on Z, which means that it is
annihilated by all smooth forms vanishing on Z. This is indeed the case, and
in [25] we prove this using the comparison formula, give this construction a
more intrinsic interpretation, and show that this construction indeed generalizes
the construction of Andersson-Wulcan when the variety is smooth.
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Trying to prove thatRJ +IZ ∧dz is a current onZ was actually how we were
lead to discover the comparison formula. To prove that RIZ ∧ dz corresponds
to a current on Z is rather straightforward, using properties of pseudomero-
morphic currents if Z has pure dimension. Since the holomorphic annihilator
of RJ +IZ is larger than that of RIZ , and it has smaller support, it should be
easier to annihilate it, and henceRJ +IZ∧dz should also correspond to a current
on Z. One way of making this into a formal mathematical argument would be
to express RJ +IZ in terms of RIZ . In the case of two complete intersections f
and g instead of J +IZ and IZ , the transformation law expresses this relation.
Trying to extend this to more general ideals, we arrived at Theorem 1.2.

More precisely, by Theorem 1.2, we can write

RJ +IZ ∧ dz = aRIZ ∧ dz+ ∇M ∧ dz, (1.5)

and it thus remains to prove that ∇M ∧ dz is annihilated by any smooth form
vanishing on Z. This can be proven by induction, reducing to the fact that
aRIZ ∧ dz is a current on Z. In fact, in [25] we prove something stronger,
namely, we express (1.5) as the push-forward of the current

aωZ + ∇(V E ∧ ωZ)
on Z, where V E and ωZ are explicit almost semi-meromorphic currents on Z.

2. Andersson-Wulcan currents and pseudomeromorphic currents

In this section we recall the construction of residue currents associated to
Hermitian resolutions of ideals, or more generally, residue currents associated
to generically exact Hermitian complexes, as constructed in [9] and [2]. This
is done in a rather detailed manner, since in order to prove the comparison
formula and the properties of the currents appearing in the formula, we require
rather detailed knowledge of the construction of Andersson-Wulcan currents
and their properties.

Let (E, ϕ) be a Hermitian complex (i.e., a complex of free O-modules, such
that the corresponding vector bundles are equipped with Hermitian metrics),
which is generically exact, i.e., the complex is pointwise exact outside some
analytic setZ of positive codimension. Mainly, (E, ϕ)will be a free resolution
of a module O/J , for some ideal J ⊆ O. When we refer to exactness of the
complex, we mean that the induced complex of sheaves of O-modules is exact.
When we refer to exactness as vector bundles, we will refer to it as pointwise
exactness. This is in contrast to the notation in for example [9] where the
induced complex of sheaves of O-modules is denoted O(E), and exactness
as vector bundles or sheaves depends on if the complex is referred to as E or
O(E).
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2.1. The superbundle structure of the total bundle E

The bundle E = ⊕Ek has a natural superbundle structure, i.e., a Z2-grading,
which splits E into odd and even elements E+ and E−, where E+ = ⊕E2k

and E− = ⊕E2k+1. Then D′(E), the sheaf of current-valued sections of E,
inherits a superbundle structure by letting the degree of an element μ⊗ ω be
the sum of the degrees of μ and ω modulo 2, where μ is a current and ω is a
section of E.

The bundle EndE also inherits a superbundle structure by letting the even
elements be the endomorphisms preserving the degree, and the odd elements
the endomorphisms switching the degree. Given g in EndE, we consider it
also as an element of End D′(E) by the formula

g(μ⊗ ω) = (−1)(deg g)(degμ)μ⊗ gω

if g is homogeneous. We also consider ∂̄ as acting on D′(E) by the formula
∂̄(μ⊗ ω) = ∂̄μ⊗ ω if ω is a holomorphic section of E.

We let ∇ := ϕ − ∂̄ . Note that the action of ϕ on D′(E) is defined so that ∂̄
and ϕ anti-commute, and hence ∇2 = 0. Note also that since ϕ and ∂̄ are odd,
∇ is odd.

The O-morphism ∇ induces an O-morphism ∇End on D′(EndE) by the
formula ∇(αξ) = ∇End(α)ξ + (−1)degαα∇ξ, (2.1)

where α is a section of D′(EndE) and ξ is a section of E. By the fact that
∇2 = 0, and that ∇ is odd, we also get that ∇2

End = 0. Note also that if α and
β are sections of D′(EndE) of which at least one of them is smooth, so that
αβ is defined, then

∇End(αβ) = ∇End(α)β + (−1)degαα∇Endβ. (2.2)

2.2. Pseudomeromorphic currents

Many arguments regarding Andersson-Wulcan currents use the fact that they
are pseudomeromorphic. Pseudomeromorphic currents were introduced in
[10], based on similarities in the construction of Andersson-Wulcan currents
and Coleff-Herrera products.

A current of the form

1

z
n1
i1

· · · 1

z
nk
ik

∂̄
1

z
nk+1
ik+1

∧ · · · ∧ ∂̄ 1

z
nm
im

∧ α

in some local coordinate system z, where α is a smooth form with compact
support, is said to be an elementary current. A current on a complex mani-
fold X is said to be pseudomeromorphic, denoted T ∈ PM(X), if it can be
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written as a locally finite sum of push-forwards of elementary currents un-
der compositions of modifications and open inclusions. As can be seen from
the construction, Coleff-Herrera products, Andersson-Wulcan currents and all
currents appearing in this article are pseudomeromorphic. In addition, as is ap-
parent from the definition, the class of pseudomeromorphic currents is closed
under push-forwards of currents under modifications and under multiplication
by smooth forms.

An important property of pseudomeromorphic currents is that they satisfy
the following dimension principle, [10, Corollary 2.4].

Proposition 2.1. If T ∈ PM(X) is a (p, q)-current with support on a
variety Z, and codimZ > q, then T = 0.

Another important property is the following, [10, Proposition 2.3].

Proposition 2.2. If T ∈ PM(X), and � is a holomorphic form vanishing
on supp T , then

� ∧ T = 0.

Pseudomeromorphic currents also have natural restrictions to analytic sub-
varieties. If T ∈ PM(X), Z ⊆ X is a subvariety of X, and h is a tuple of
holomorphic functions such that Z = Z(h), one can define

1X\ZT := lim
ε→0+

χ(|h|2/ε)T and 1ZT := T − 1X\ZT .

This definition is independent of the choice of tuple h, and 1ZT is a pseudo-
meromorphic current with support on Z.

2.3. Almost semi-meromorphic currents

Let f be a holomorphic function on X, or, more generally, a holomorphic
section of a line bundle over X. The associated principal value current 1/f
can be defined, e.g., as the limit

lim
ε→0+

χ(|f |2/ε) 1

f
,

where as before, χ is a smooth cut-off function.
A semi-meromorphic current is a current of the form ω/f where ω is a

smooth form. Following [7], we say that a (pseudomeromorphic) current A is
almost semi-meromorphic,A ∈ ASM(X), if there is a modificationπ :X′ → X

such that A = π∗(ω/f ) where f is a holomorphic section of a line bundle
L → X′ that does not vanish identically on X′ and ω is a smooth form with
values in L.
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By the dimension principle, a semi-meromorphic current has the SEP, and
it then follows that almost semi-meromorphic currents have the SEP as well.
In particular, if a smooth form α, a priori defined outside a subvarietyW ⊂ X,
has an extension as a current A ∈ ASM(X), then A is unique. Moreover,
A = limε→0+ χ(|h|2/ε)α, where h ≡ 0 is any tuple of holomorphic functions
that vanishes on W . We will sometimes be sloppy and use the same notation
for the smooth form α and its extension.

It follows from the definition that A ∈ ASM(X) is smooth outside a proper
subvariety of X. Following [12], we let the Zariski singular support of a
be the smallest Zariski-closed set W such that A is smooth outside W . If
A,B ∈ ASM(X), there is a unique current A ∧ B ∈ ASM(X) that coincides
with the smooth form A∧B outside the Zariski singular supports of A and B.

Assume that A ∈ ASM(X) has Zariski singular support W . Then one can
write

∂̄A = B + R(A),

where B = 1X\W ∂̄A is the almost semi-meromorphic continuation of ∂̄A, and
R(A) = 1W ∂̄A is the residue of A, see [12, Section 4.1]. Note that ∂̄(1/f ) =
R(1/f ). If A is the principal value current A = limε→0+ χ(|h|2/ε)α, then
R(A) = limε→0+ ∂̄χ(|h|2/ε) ∧ α. We also notice that if ω is smooth, then

R(ω ∧ A) = (−1)degωω ∧ R(A). (2.3)

If (E, ϕ) is a complex of free O-modules, and A and B are almost semi-
meromorphic End(E)-valued currents such that ∇EndA = B where A and B
are smooth, then

R(A) = B − ∇EndA, (2.4)

which follows since ∂̄A = ϕEndA−B whereA andB are smooth, and ϕEndA−
B has an extension as a semi-meromorphic current, soR(A) = ∂̄A−(ϕEndA−
B), which gives (2.4).

2.4. The residue current R associated to a generically exact Hermitian
complex

Let Z be the set where (E, ϕ) is not pointwise exact. Outside of Z, let
σEk :Ek−1 → Ek be the right-inverse to ϕk which is minimal with respect
to the metrics on E, i.e., ϕkσEk |im ϕk = Idim ϕk , σ

E
k = 0 on (im ϕk)

⊥, and
im σEk ⊥ ker ϕk . Then,

ϕk+1σ
E
k+1 + σEk ϕk = IdEk . (2.5)
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From [9] it follows that if σE := ∑
σEk , then

uE :=
N∑
k=1

σE(∂̄σE)k−1

has an extension UE as a current in ASM(X). From (2.5) it follows that
∇Endu

E = IdE outside of Z. The residue current RE can then be defined
as the residue of UE ,

RE := R(UE).

Using that ∇Endu
E = IdE outside of Z, by (2.4),

RE = IE − ∇EndU
E,

which is the original definition of RE from [9]. From this definition it is clear
that ∇EndR

E = 0. The current RE satisfies the fundamental property that if E
is a free resolution of O/J , then annO RE = J .

Since RE is a End(E)-valued current, it consists of various components
R�k , where R�k is the part of RE taking values in Hom(E�, Ek) and R�k is a
(0, k − �)-current. In case we know more about the complex E, more can be
said about which componentsR�k are non-vanishing. First, ifZ is the set where
E is not pointwise exact, since R�k is a pseudomeromorphic (0, k− �)-current
with support in Z,

R�k = 0 if k − � < codimZ.

IfE is exact, i.e., a free resolution, thenR�k = 0 if � = 0, [9, Theorem 3.1]. We
thus get that ifE is a free resolution of lengthN of O/J , andp = codimZ(J ),
then

RE =
N∑
k=p

R0
k .

2.5. Residue currents associated to the Koszul complex

Let f = (f1, . . . , fp) be a tuple of holomorphic functions. Then there exists a
well-known complex associated to f , the Koszul complex

(∧k O⊕p, δf
)

of f ,
which is pointwise exact outside of the zero set Z(f ) of f . We let e1, . . . , ep
be the trivial frame of O⊕p, and identify f with the section f = ∑

fie
∗
i of

(O⊕p)∗, so that δf is the contraction with f .
In [32] Passare, Tsikh and Yger defined the Bochner-Martinelli current

of a tuple f , which we will denote by Rf . One way of defining it is as the
Andersson-Wulcan current associated to the Koszul complex of f , see [1] for
a presentation from this viewpoint.
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In case the tuple f defines a complete intersection, the Koszul complex of
f is exact, i.e., a free resolution of O/J (f ), so the annihilator of the Bochner-
Martinelli current equals J (f ). Another current with the same annihilator is
the Coleff-Herrera product of f , (1.1), which can be defined for examples as

∂̄
1

fp
∧ · · · ∧ ∂̄ 1

f1
:= lim

ε→0+

∂̄χ(|fp|2/ε)
fp

∧ · · · ∧ ∂̄χ(|f1|2/ε)
f1

.

In fact, these two currents coincide.

Theorem 2.3. Let f = (f1, . . . , fp) be a tuple of holomorphic functions
defining a complete intersection. Let Rf be the Bochner-Martinelli current of
f , Rf = μ ∧ e1 ∧ · · · ∧ ep, and let μf be the Coleff-Herrera product of f .
Then, μ = μf .

The theorem was originally proved in [32, Theorem 4.1]. See also [3, Co-
rollary 3.2] for an alternative proof.

2.6. Coleff-Herrera currents

Coleff-Herrera currents (in contrast to Coleff-Herrera products as discussed
above) were introduced in [16] (under the name “locally residual currents”), as
canonical representatives of cohomology classes in moderate local cohomo-
logy. Let Z be a subvariety of pure codimension p of a complex manifold X.
A (∗, p)-current μ on X is a Coleff-Herrera current, denoted μ ∈ CHZ , if
∂̄μ = 0, ψμ = 0 for all holomorphic functions ψ vanishing on Z, and μ has
the standard extension property, SEP, with respect to Z, i.e., 1V μ = 0 for any
hypersurface V of Z.

This description of Coleff-Herrera currents is due to Björk, see [13, Chap. 3]
and [14, Section 6.2]. In [16] locally residual currents were defined as currents
of the form ω ∧Rh, where ω is a holomorphic (∗, 0)-form, and Z = Z(h) (at
least if Z is a complete intersection defined by h).

One particular case of Coleff-Herrera currents that will be of interest to us
are Andersson-Wulcan currents RE associated to free resolutions (E, ϕ) of
minimal length of Cohen-Macaulay modules O/J . Such a current is ∂̄-closed
since ∇RE = 0 implies that ∂̄REp = ϕp+1R

E
p+1 = 0 since E is assumed to

be of minimal length. The other properties needed in order to be a Coleff-
Herrera current are satisfied by the fact that they are pseudomeromorphic,
Proposition 2.1 and Proposition 2.2.

2.7. Singularity subvarieties of free resolutions

In the study of residue currents associated to finitely generated O-modules
an important ingredient is certain singularity subvarieties associated to the
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module. Given a free resolution (E, ϕ) of a finitely generated module G, the
variety ZEk is defined as the set where ϕk does not have optimal rank. These
sets are independent of the choice of free resolution. Note that these varieties
can equally well be defined for any complex of free O-modules (E, ϕ) which
is generically exact.

The fact that these sets are important in the study of residue currents as-
sociated to generically exact Hermitian complexes stems from the following.
Outside of ZEk the form σEk defined in Section 2.4 is smooth, so by using
that σE�+1∂̄σ

E
� = ∂̄σE�+1σ

E
� (see [9, (2.3)]), REk = ∂̄σEk R

E
k−1 outside of ZEk .

This combined with the dimension principle for pseudomeromorphic currents
allows for inductive arguments regarding residue currents.

If codimG = p, then ZEk = suppG for k ≤ p, [18, Corollary 20.12]. In
addition, by [18, Theorem 20.9],

codimZEk ≥ k. (2.6)

In particular,
codimZEk ≥ codimG. (2.7)

In fact, [18, Theorem 20.9] is a characterization of exactness, the Buchsbaum-
Eisenbud criterion, which says that a generically exact complex (E, ϕ) of free
modules is exact if and only if codimZEk ≥ k.

3. A comparison formula for Andersson-Wulcan currents

The starting point of Theorem 1.2 is that when I ⊆ J , the natural surjection
π : O/I → O/J induces a morphism of complexes a: (F,ψ) → (E, ϕ),
where (F,ψ) and (E, ϕ) are free resolutions of O/I and O/J respectively.
The existence of such a morphism holds much more generally in homological
algebra, of which the following formulation is suitable for our purposes. This
is sometimes referred to as the comparison theorem.

Proposition 3.1. Let α:G → H be a homomorphism of O-modules, let
(F,ψ) be a complex of free O-modules with cokerψ1 = G, and let (E, ϕ) be
a free resolution of H . Then, there exists a morphism a: (F,ψ) → (E, ϕ) of
complexes which extends α. If ã is any other such morphism, then there exists a
homotopy s: (F,ψ) → (E, ϕ)of degree −1 such thatai−ãi = ϕi+1si−si−1ψi .

That a extends α means that the map induced by a0 on F0/(imψ1) ∼= G →
H ∼= E0/(im ϕ1) equals α. Both the existence and uniqueness up to homotopy
of a follows from defining a or s inductively by a relatively straightforward
diagram chase, see [18, Proposition A3.13].

This is the general formulation of our main theorem, Theorem 1.2.
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Theorem 3.2. Let a: (F,ψ) → (E, ϕ) be a morphism of generically exact
Hermitian complexes, and let M ′ := UEaUF be the product of the almost
semi-meromorphic currents UE and aUF . Let M be the residue

M := R(UEaUF ) (3.1)

Then
REa − aRF = ∇EndM, (3.2)

where ∇End acts on the complex (E ⊕ F, ϕ ⊕ ψ).

By definition of the residue, ifh is a tuple of holomorphic functions such that
h ≡ 0, and Z(h) contains the set where (E, ϕ) and (F,ψ) are not pointwise
exact, then

M = R(UEaUF ) = lim
ε→0+

∂̄χ(|h|2/ε) ∧ UEaUF .

Note that ∇End is defined with respect to the complex (E⊕F, ϕ⊕ψ), and
the superstructure, as in Section 2.1, of this complex is the grading (E⊕F)+ =
E+ ⊕ F+, (E ⊕ F)− = E− ⊕ F−.

If we let M�
k be the part of M in (3.1) with values in Hom(F�, Ek), we get

from (2.1) and (2.2) that

(RE)�ka� − ak(R
F )�k = ϕk+1M

�
k+1 +M�−1

k ψ� − ∂̄M�
k . (3.3)

In the important case � = 0, if we write Mk for the Hom(F0, Ek)-valued part
of M , and REk and RFk for the Hom(E0, Ek)- and Hom(F0, Fk)-valued parts
of RE and RF , we get

REk a0 − akR
F
k = ϕk+1Mk+1 − ∂̄Mk. (3.4)

Proof. Since a is a morphism of complexes, ϕa = aψ , and hence ∇Enda =
ϕa− aψ = 0. Let Z be a variety containing the sets where (E, ϕ) and (F,ψ)
are not pointwise exact. Since outside of Z, ∇EndU

E = IdE and ∇EndU
F =

IdF , we get using (2.2) and the fact that UE has odd degree and a has even
degree that ∇EndM

′ = aUF − UEa

outside of Z. Since M ′, aUF and UEa are almost semi-meromorphic,

M = R(UEaUF ) = aUF − UEa − ∇EndM
′

by (2.4). Applying ∇End to this equation we get (3.2) since ∇2
End = 0, and

∇End(aU
F − UEa) = a∇EndU

F − ∇EndU
Ea

= a(IdF −RF )− (IdE −RE)a = REa − aRF .
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The main idea in the proof of Theorem 3.2, to form a ∇-potential toR−R′,
essentially of the form ∇(U ∧U ′), appears in various works regarding residue
currents. One example is in [1] and [9] where this idea is used to prove that
under suitable conditions the residue currents do not depend on the choice
of metrics. This corresponds to applying the comparison formula in the case
when (E, ϕ) and (F,ψ) have the same underlying complex, but are equipped
with different metrics.

Another instance where such a construction appears is in [22], regarding
the transformation law for Coleff-Herrera products of (weakly) holomorphic
functions, of which its relation to the comparison formula is elaborated in
Remark 4.4. It also appears in [4] and [38], regarding products of residue
currents, but the relation to the comparison formula is not as apparent.

Remark 3.3. Note that in Proposition 3.1 the complex (F,ψ) does not
have to be exact. For our comparison formula to work, neither the complex
(E, ϕ) has to be exact, as long as the morphism a exists. For example, if
we have f = gA for some tuples g and f of holomorphic functions, and a
holomorphic matrix A as in Remark 4.4, then A induces a morphism between
the Koszul complexes of f and g. We can then apply the comparison formula
also when the Koszul complex of g is not exact.

3.1. The current M

We will here describe the current M a bit more thoroughly. First of all, we
have the following inductive description.

Lemma 3.4. Let (E, ϕ), (F,ψ), a: (F,ψ) → (E, ϕ) and M be as in The-
orem 3.2, and let M�

k be the part of M which takes values in Hom(F�, Ek).
Then, outside of ZEk , where σEk is smooth,

M�
k = ∂̄σEk M

�
k−1 − σEk ak−1(R

F )�k−1. (3.5)

Proof. Using that σEj+1∂̄σ
E
j = ∂̄σEj+1σ

E
j , one gets that

σEk ∂̄σ
E
k−1 · · · ∂̄σEm+1 = ∂̄σEk · · · ∂̄σEm+2σ

E
m+1.

Hence,

M�
k =

k−1∑
m=�+1

R(∂̄σEk ∂̄σ
E
k−1 · · · ∂̄σEm+2σ

E
m+1amσ

F
m ∂̄σ

F
m−1 · · · ∂̄σ F� ).
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Splitting the sum into when � + 1 ≤ m ≤ k − 2 and when m = k − 1, and
using (2.3), we get

M�
k = ∂̄σEk

k−2∑
m=�+1

R(∂̄σEk−1∂̄σ
E
k−2 · · · ∂̄σEm+2σ

E
m+1amσ

F
m ∂̄σ

F
m−1 · · · ∂̄σ F� )

− σEk ak−1R(σ
F
k−1∂̄σ

F
k−2 · · · ∂̄σ F� ) = ∂̄σEk M

�
k−1 − σEk ak−1(R

F )�k−1.

In order to understand when parts of the current M in Theorem 3.2 van-
ishes, we begin with the following lemma about when parts of the current RF

vanishes.

Lemma 3.5. Let (F,ψ) be a generically exact Hermitian complex, and
assume that codimZF�+m ≥ m + 1 for m = 1, . . . , k − �. Then (RF )�k = 0,
where (RF )�k is the part of RF with values in Hom(F�, Fk).

In the special case when (F,ψ) is a free resolution and � ≥ 1, then
codimZF�+m ≥ �+m ≥ m+ 1, see (2.6). The lemma thus implies that

(RF )�k = 0 for � ≥ 1 (3.6)

under these assumptions, which is [9, Theorem 3.1]. The proof of Lemma 3.5 is
the same as the proof of [9, Theorem 3.1], as it only uses these inequalities about
the codimension of the setsZF�+m (and the “vague principle” about vanishing of
residue currents referred to in the proof was later formalized as the dimension
principle, Proposition 2.1).

Proposition 3.6. Let (E, ϕ), (F,ψ), a: (F,ψ) → (E, ϕ) and M be as in
Theorem 3.2, and letM�

k be the part ofM which takes values in Hom(F�, Ek).
If

codimZF�+m ≥ m+ 1, for m = 1, . . . , k − �− 1, (3.7)

and
codimZE�+m ≥ m, for m = 2, . . . , k − �, (3.8)

then M�
k = 0.

Proof. We prove this by induction over k − �, starting with the first non-
trivial case k = �+2. SinceM�

�+2 = R(σE�+2a�+1σ
F
�+1) has support where σE�+2

and σF�+1 are not smooth, suppM�
�+2 ⊆ W := ZE�+2 ∪ ZF�+1. By assumption,

codimW ≥ 2, and since M�
�+2 is a pseudomeromorphic (0, 1)-current, it is 0

by the dimension principle.
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Note that the assumptions (3.7) imply by Lemma 3.5 that (RF )��+m = 0 for
1 ≤ m ≤ k − � − 1. Assume now that we have proven that M�

�+m−1 = 0 for
3 ≤ m ≤ k − �. Then, by (3.5), outside of ZE�+m,

M�
�+m = ∂̄σE�+mM

�
�+m−1 − σE�+ma�+m(R

F )��+m−1.

Since the currents M�
�+m−1 and R��+m−1 both vanish, we thus get that M�

�+m
vanishes outside of ZE�+m. Since M�

�+m is a pseudomeromorphic (0,m − 1)-
current with support in ZE�+m of codimension ≥ m, it is 0 by the dimension
principle. By induction, we thus conclude that M�

k = 0.

Corollary 3.7. Let (E, ϕ), (F,ψ), a: (F,ψ) → (E, ϕ) and M be as in
Theorem 3.2, and letM�

k be the part ofM which takes values in Hom(F�, Ek).
Assume that (F,ψ) and (E, ϕ) are free resolutions of modules G and H
respectively. Then,

M�
k = 0 for � = 1, . . . , k − 2, (3.9)

and if G and H have codimension ≥ k, then

M0
k = 0. (3.10)

In addition, for any k,
M0
k ψ1 = 0. (3.11)

Proof. By (2.6), for all j ≥ 1, codimZEj ≥ j , and codimZFj ≥ j , and
thus (3.9) follows directly from Proposition 3.6. In addition, if k < codimG

and k < codimH , then codimZFj ≥ codimG and codimZEj ≥ codimH

by (2.7), so (3.10) also follows directly from Proposition 3.6.
By (3.3),

M0
k ψ1 = −ϕk+1M

1
k+1 + ∂̄M1

k + (RE)1ka1 − ak(R
F )1k,

and by (3.6) and (3.9), all currents in the right-hand side vanish, so we have
proven (3.11).

4. A transformation law for Andersson-Wulcan currents associated to
Cohen-Macaulay modules

In this section we state and prove the general version of our transformation
law for Andersson-Wulcan currents associated to Cohen-Macaulay modules.

Theorem 4.1. Let G be a finitely generated O-module of codimension p,
and assume that G is Cohen-Macaulay. Let (E, ϕ) be a free resolution of G
of length p, and let (F,ψ) be a generically exact Hermitian complex such



A COMPARISON FORMULA FOR RESIDUE CURRENTS 57

that the set Z where (F,ψ) is not pointwise exact has codimension ≥ p. If
a: (F,ψ) → (E, ϕ) is a morphism of complexes, then

REp a0 = apR
F
p .

If a0 is any morphism F0 → E0 such that a0(imψ1) ⊆ im ϕ1, then a0 can be
extended to a morphism a: (F,ψ) → (E, ϕ).

Note in particular, if F0
∼= O ∼= E0, a0:F0 → E0 is this isomorphism,

and J := im ϕ1, and I := imψ1, then a0 can be extended if I ⊆ J , and the
morphism a then extends the natural surjection π : O/I → O/J .

Proof. The last part about the existence of a follows immediately from
Proposition 3.1.

By (3.4),
REp a0 = apR

F
p + ϕp+1M

0
p+1 − ∂̄M0

p.

Since (E, ϕ) has length p, ϕp+1M
0
p+1 = 0, and M0

p = 0 by (3.10).

Example 4.2. Let π :C → C3, π(t) = (t3, t4, t5), and let Z be the germ
at 0 of π(C). One can show that the ideal of holomorphic functions vanishing
at Z equals J = (y2 − xz, x3 − yz, x2y − z2).

The module O/J has a minimal free resolution

0 → O⊕2 ϕ2−→ O⊕3 ϕ1−→ O → O/J ,

where

ϕ2 =
[ −z −x2

−y −z
x y

]
and ϕ1 = [ y2 − xz x3 − yz x2y − z2 ] .

To check that this is a resolution, one verifies first that it indeed is a complex.
Secondly, since I1 = I (ϕ1) = J , and I2 = I (ϕ2) = J (the Fitting ideals of
ϕ1 and ϕ2), the complex is exact by the Buchsbaum-Eisenbud criterion, see
Section 2.7 (and note that ZEk = Z(Ik)).

In particular, since O/J has a minimal free resolution of length 2 with
rankE2 = 2, Z is Cohen-Macaulay but not a complete intersection. However,
Z is in fact a set-theoretic complete intersection. Let f = (z2 −x2y, x4 +y3 −
2xyz), and I = J (f ). One can verify thatZ(I) = Z, and since codimZ = 2,
Z is indeed a set-theoretic complete intersection.

Now, let (E, ϕ) be the free resolution of O/J , and (F,ψ) be the Koszul
complex of f , which is a free resolution of O/I since f is a complete in-
tersection. Since O/J is Cohen-Macaulay and Z(I) = Z(J ), we can apply
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Theorem 1.3 to (F,ψ) and (E, ϕ). One verifies that a: (F,ψ) → (E, ϕ),

a2 =
[
x3 − yz

y2 − xz

]
, a1 =

[ 0 y

0 x

−1 0

]
and a0 = [ 1 ] ,

is a morphism of complexes extending the natural surjection π : O/I → O/J .
This morphism can be found with for example the computer algebra system
Macaulay2. Since the current associated to the Koszul complex of a complete
intersection f is the Coleff-Herrera product of f by Theorem 2.3, we get by
Theorem 1.3 that

RE = ∂̄
1

x4 + y3 − 2xyz
∧ ∂̄ 1

z2 − x2y
∧

[
x3 − yz

y2 − xz

]
.

The fact that we can express the residue current corresponding to the ideal
above in terms of a Coleff-Herrera product can be done more generally, as the
following example shows.

Example 4.3. Let J ⊆ O be a Cohen-Macaulay ideal of codimension p,
and let Z = Z(J ). Then, there exists a complete intersection (f1, . . . , fp)

such that Z ⊆ Z(f ), see for example [23, Lemma 19]. By the Nullstellensatz,
there existNi such that f Nii ∈ J . Thus, by replacing fi by f Nii , we can assume
that (f1, . . . , fp) is a complete intersection such that J (f1, . . . , fp) ⊆ J . Let
(F,ψ) be the Koszul complex of f , and let (E, ϕ) be a free resolution of O/J
of length p. By Theorem 1.3, we then have that

RJ
p = ∂̄

1

fp
∧ · · · ∧ ∂̄ 1

f1
∧ ap(e1 ∧ · · · ∧ ep),

where ap is the morphism in Theorem 1.3, since the current associated with
the Koszul complex of f is the Coleff-Herrera product of f .

Remark 4.4. The transformation law for Coleff-Herrera products is a co-
rollary of Theorem 1.3 in the following way. Let f and g be two complete
intersections of codimension p, and assume that there exists a matrix A of
holomorphic functions such that f = gA.

Since f and g are complete intersections, the Koszul complexes
(∧ O⊕p,

δf
)

and
(∧ O⊕p, δg

)
are free resolutions of O/J (f ) and O/J (g). Since

J (f ) ⊆ J (g), we get a morphism a of the Koszul complexes of f and g in-
duced by the inclusion π : O/J (f ) → O/J (g) by Proposition 3.1. In fact, the
morphism ak:

∧k O⊕p → ∧k O⊕p is readily verified to be
∧k

A:
∧k O⊕p →∧k O⊕p, see [22, Lemma 7.2]. In particular, ap = ∧p

A = detA, so since
the Andersson-Wulcan currents associated to the Koszul complexes of f and
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g are the Coleff-Herrera products of f and g, the transformation law μg =
(detA)μf follows directly from Theorem 1.3.

In fact, the proof of Theorem 1.3 in this particular situation becomes exactly
the proof of the transformation law for Coleff-Herrera products given in [22,
Theorem 7.1].

As mentioned above, the transformation law for Coleff-Herrera products is
a special case of Theorem 1.3. In [17], two proofs of the transformation law
are given, and in fact, we can essentially use the same argument as the second
proof of the transformation law in [17, p. 54–55], to prove Theorem 1.3.

Alternative proof of Theorem 1.3. Consider EpJ := ExtpO(O/J ,O).
One way of computing EpJ is by taking a free resolution (E, ϕ) of O/J ,
applying Hom(•,O) and taking cohomology, i.e., EpJ ∼= Hp(Hom(E•,O)).
On the other hand, it can also be computed by taking an injective resolution
of O, which can be taken as the complex of (0, ∗)-currents, (C0,•, ∂̄), ap-
plying Hom(O/J , •) to this complex, and taking cohomology, i.e., EpJ ∼=
Hp(Hom(O/J , C0,•)).

Since these are different realizations of Ext, they are naturally isomorphic,
and by [5, Theorem 1.5] this isomorphism is given by

φ: [ξ ]Hp(Hom(E•,O)) �→ [ξREp ]Hp(Hom(O/J ,C0,•)). (4.1)

We now consider the map π : O/I → O/J , which induces a map
π∗:EpJ → E

p
I . In the first realization of Ext, π∗ becomes the map

a∗
p:Hp(Hom(E•,O)) → Hp(Hom(F•,O)) induced by a: (F,ψ) → (E, ϕ).

In the second realization of Ext, the map becomes just the identity map on the
currents (due to the fact that currents annihilated by J are also annihilated by
I). Thus, using the naturality of π∗ and the isomorphism (4.1) we get from the
commutative diagram

Hp(Hom(E•,O)) π∗−−−−−−−−→ Hp(Hom(F•,O))
φ φ

Hp(Hom(O/J , C0,•)) π∗−−−−→ Hp(Hom(O/I, C0,•))

that [(a∗
p)ξR

F
p ]∂̄ = [ξREp ]∂̄ , where ξ is a holomorphic section of ker ϕ∗

p+1.

Hence, ξapRFp = ξREp + ∂̄ηξ , where ηξ is annihilated by I. Since (E, ϕ)
has length p, ϕp+1 = 0, so the equality holds for all holomorphic sections ξ
of Ep, i.e., apRFp = REp + ∂̄η for some (vector-valued) current η annihilated
by I. Since ap is holomorphic and RFp and REp are in CHZ , see Section 2.6,

where Z = Z(I), we get from the decomposition ker(C0,p
Z

∂̄→ C0,p+1
Z ) =
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CHZ ⊕ ∂̄C0,p−1
Z , see [17, Theorem 5.1], that ∂̄η = 0, where C0,p

Z is the sheaf
of (0, p)-currents supported on Z.

The only difference of the proof here to the proof in [17] is that we have the
isomorphism (4.1) from [5], while in [17] this isomorphism was only available
if J was a complete intersection ideal, see the proof of [16, Proposition 3.5].

We end this section with an example of how we can express Andersson-
Wulcan currents associated to Cohen-Macaulay ideals in terms of Bochner-
Martinelli currents.

Example 4.5. Let f = (f1, . . . , fk) be a tuple of holomorphic functions,
let J = J (f1, . . . , fk) and Z = Z(f ), and assume that codimZ = p.
Assume in addition that O/J is Cohen-Macaulay. Note that we do not assume
that f is a complete intersection, i.e., that k = p. Let O⊕k be the trivial
vector bundle with frame e1, . . . , ek , and consider f as a section of (O⊕k)∗,
f = ∑

fie
∗
i . LetRf be the Bochner-Martinelli current associated with f , and

write Rfp = ∑
RI ∧ eI , i.e., RI ∧ eI is the component of Rfp with values in

eI := ei1 ∧ · · · ∧ eip ∈ ∧p O⊕k .
In [3] Andersson proves that if μ ∈ CHZ , then there exist holomorphic

(∗, 0)-forms αI such that μ = ∑
αI ∧RI (after first replacing fi by f Nii such

that f Nii μ = 0). In particular, this applies in our case to RJ , see Section 2.6.
In [3] the αI are not explicitly given, but when μ = RJ , we can obtain them
from Theorem 4.1. We let (F,ψ) be the Koszul complex of f , and (E, ϕ) a
minimal free resolution of O/J . Since the current associated with the Koszul
complex of f is the Bochner-Martinelli current of f , Theorem 4.1 gives the
factorization

RJ =
∑

αI ∧ RI ,
where αI = ap(eI ).

5. A non-Cohen-Macaulay example

When the ideals involved in the comparison formula are not Cohen-Macaulay,
the comparison formula does not have as simple form as in the Cohen-Macaulay
case in Section 4. In this section we illustrate with an example how one could
still use the comparison formula also to compute the residue current associated
to a non Cohen-Macaulay ideal.

Example 5.1. LetZ ⊆ C4 be the varietyZ = {x = y = 0}∪{z = w = 0}.
The ideal IZ of holomorphic functions on C4 vanishing on Z equals IZ =
J (xz, xw, yz, yw). It can be verified that IZ has a minimal free resolution
(E, ϕ) of the form

0 → O ϕ3−→ O⊕4 ϕ2−→ O⊕4 ϕ1−→ O → O/IZ,
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where

ϕ3 =
⎡
⎢⎣

w

−z
−y
x

⎤
⎥⎦ , ϕ2 =

⎡
⎢⎣

−y 0 −w 0
0 −y z 0
x 0 0 −w
0 x 0 z

⎤
⎥⎦

and
ϕ1 = [ xz xw yz yw ] .

Note that Z has codimension 2, while the free resolution above, which is
minimal, has length 3, so Z is not Cohen-Macaulay.

We compare this resolution with the Koszul complex (F,ψ) of the com-
plete intersection ideal I = J (xz, yw). One can verify that the morphism
a: (F,ψ) → (E, ϕ),

a2 = 1

2

⎡
⎢⎣
w

z

y

x

⎤
⎥⎦ , a1 =

⎡
⎢⎣

1 0
0 0
0 0
0 1

⎤
⎥⎦ and a0 = [ 1 ] ,

is a morphism of complexes extending the natural surjection π : O/I → O/IZ
as in Proposition 3.1.

By (3.4),RE2 = a2R
F
2 +ϕ3M3 − ∂̄M2. Note thatM2 = 0 by (3.10). By (3.5)

and the fact that M2 = 0, outside of ZE3 = {0} we get that M3 = −σE3 a2R
F
2 .

Thus, outside of {0}
RE2 = (IE2 − ϕ3σ

E
3 )a2R

F
2 .

Then, RE2 is the standard extension in the sense of [14, Section 6.2], of (IE2 −
ϕ3σ3)a2R

F
2 . One way to interpret the standard extension here is that since RE2

is a pseudomeromorphic (0, 2)-current defined on all of C4, its extension from
C4 \ {0} is uniquely defined by the dimension principle.

We have that

(IE2 − ϕ3σ3)a2 = 1

|x|2 + |y|2 + |z|2 + |w|2

⎡
⎢⎢⎢⎣
w(|y|2 + |z|2)
z(|x|2 + |w|2)
y(|x|2 + |w|2)
x(|y|2 + |z|2)

⎤
⎥⎥⎥⎦ .

SinceRF2 = ∂̄(1/yw)∧ ∂̄(1/xz), see Theorem 2.3, we get from the transform-
ation law and Proposition 2.2 that RE2 is the standard extension of

1

|x|2 + |y|2 + |z|2 + |w|2

⎡
⎢⎢⎢⎢⎣

|z|2∂̄ 1
y

∧ ∂̄ 1
xz

|w|2∂̄ 1
yw

∧ ∂̄ 1
x

|x|2∂̄ 1
w

∧ ∂̄ 1
xz

|y|2∂̄ 1
yw

∧ ∂̄ 1
z

⎤
⎥⎥⎥⎥⎦ .
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Using again the transformation law and Proposition 2.2, one gets that RE2 is
the standard extension of

RE2 = 1

|z|2 + |w|2

⎡
⎢⎣
z

w

0
0

⎤
⎥⎦ ∧ ∂̄ 1

y
∧ ∂̄ 1

x
+ 1

|x|2 + |y|2

⎡
⎢⎣

0
0
x

y

⎤
⎥⎦ ∧ ∂̄ 1

w
∧ ∂̄ 1

z
.

6. The Jacobian determinant of a holomorphic mapping

Throughout this section, we let f = (f1, . . . , fm) be a tuple of holomorphic
functions, and let J := J (f1, . . . , fm). Let (F,ψ) be the Koszul complex of
f , let (E, ϕ) be a free resolution of O/J , and let a: (F,ψ) → (E, ϕ) be a
morphism of complexes extending the identity morphism cokerψ1

∼= O/J ∼=
coker ϕ1, which exists by Proposition 3.1.

Lemma 6.1. Let f , (E, ϕ), and a be as above, let Rf be the Bochner-
Martinelli current of f , and let Rfk be the part of Rf of bidegree (0, k). For
k < m,

df1 ∧ · · · ∧ dfm ∧ akRfk = 0.

If (E, ϕ) has length ≤ m, and if h is a holomorphic function which vanishes
on all the irreducible components of Z(f ) of codimension m, then

h df1 ∧ · · · ∧ dfm ∧ amRfm = 0.

The condition about the length of (E, ϕ) in Theorem 1.4 comes in due to
the following lemma.

Lemma 6.2. Let f , (E, ϕ) and a be as above. If (E, ϕ) has length ≤ m,
then am vanishes on all irreducible components of Z(f ) of codimension< m.

Proof. Let V be an irreducible component of Z(f ) of codimension < m.
Since codimZEm ≥ m by (2.6), ZEm ∩ V is nowhere dense in V . Thus, by
continuity, it is enough to prove that am vanishes on V \ ZEm .

Consider thus a point z0 ∈ V \ ZEm , and take a minimal free resolution
(K, η) of Oz0/J (f )z0 , which has length < m since we are outside of ZEm . Let
b:

(∧ O⊕m
z0
, δf

) → (K, η) be a morphism induced by the identity morphism
as in Proposition 3.1. Since a minimal free resolution is a direct summand of
any free resolution, we get an inclusion i: (K, η) → (E, ϕ). Thus, one choice
of a′:

(∧ O⊕m
z0
, δf

) → (E, ϕ) would be a′ = ib. Because (K, η) has length
< m, bm = 0, and thus, a′

m = 0. Hence, there exists one choice of morphism
a:

(∧ O⊕m
z0
, δf

) → (E, ϕ) such that am vanishes near z0. We need to prove
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that for any choice of a, am vanishes onZ(f ) near z0. By Proposition 3.1 there
exists s:

(∧ O⊕m
z0
, δf

) → (E, ϕ) of degree −1 such that

ak − a′
k = ϕk+1sk − sk−1(δf )k.

In particular, if k = m, then ϕm+1 = 0 because (E, ϕ) has length ≤ m, so

am = a′
m + sm−1(δf )m.

Thus, am vanishes at Z(f ) since both a′
m and (δf )m vanish on Z(f ).

Proof of Lemma 6.1. We let df := df1 ∧· · ·∧dfm. From the proof of [1,
Lemma 8.3] it follows that there exists a modification π : X̃ → (Cn, 0), such
that π∗df ∧ Rπ∗f

k is of the form

(f m−1
0 df0 ∧ η1 + f m0 η2) ∧ ∂̄ 1

f k0
,

where f0 is a single holomorphic function such that {f0 = 0} = {π∗f = 0},
and η1 and η2 are smooth forms. By the Poincaré-Lelong formula and the
duality theorem, this equals −2πi[f0 = 0]f m−k

0 η1. If k < m, we thus get that
π∗df ∧ Rπ∗f

k = 0. If k = m, then

π∗(h df am) ∧ Rπ∗f
m = −(2πi)π∗(ham)η1 ∧ [f0 = 0],

which is 0 since ham vanishes on Z(f ) by Lemma 6.2, and thus, π∗(ham)
vanishes on {f0 = 0} = {π∗f = 0}. To conclude, h df ∧ akRfk = 0 for all k
since

h df ∧ akRfk = π∗(π∗(df ∧ hak)Rπ∗f
k ) = 0.

Proof of Theorem 1.4. We first prove that J (f ) : Jac(f ) ⊆ Jm(f ).
Let Wm := Z(Jm(f )) be the union of the irreducible components of Z(f )
of codimension m. Generically on Wm (more precisely, where it does not
intersect any irreducible component of codimension different from m) f is a
complete intersection. Assume that we are at such a generic point z of Wm.
Take h ∈ J (f ) : Jac(f ). Since f is a complete intersection near z, it follows
from the Poincaré-Lelong formula, [15, Section 3.6], that near z,

h
1

(2πi)m
∂̄

1

fm
∧· · ·∧ ∂̄ 1

f1
∧df1 ∧· · ·∧dfm = h[f1 = · · · = fm = 0], (6.1)

where [f1 = · · · = fm = 0] is the integration current along {f1 = · · · = fm =
0} with appropriate multiplicities. On the other hand, by the duality theorem
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and the fact that hJac(f ) ⊆ J (f ),

h∂̄
1

fm
∧ · · · ∧ ∂̄ 1

f1
∧ df1 ∧ · · · ∧ dfm = 0, (6.2)

so combining (6.1) and (6.2), h must vanish on Wm near z. Thus, h ∈ Jm(f )z
for generic z ∈ Wm, i.e., h vanishes generically on Wm. By continuity, since
Jm(f ) = IWm

, we must have h ∈ Jm(f ).
We take (E, ϕ), and a:

(∧ O⊕n, δf
) → (E, ϕ) as above. We now prove

the other inclusion, Jm(f ) ⊆ J (f ) : Jac(f ). Take h ∈ Jm(f ). Since
annO RE = J (f ), what we want to prove is equivalent to that h df ∧RE = 0,
where df := df1 ∧ · · · ∧ dfm. We get from (3.4) that

REk = akR
f

k + ϕk+1Mk+1 − ∂̄Mk, (6.3)

where Rfk is the part of the Bochner-Martinelli current of f of bidegree (0, k),
and Mk is the part of M with values in Hom(O, Ek). We are done if we can
prove that h df annihilates all the currents of the right-hand side of (6.3).

To begin with, h df annihilates akR
f

k by Lemma 6.1. It is thus sufficient to
also prove that h df annihilatesMk for all k. Note first thatM1 = 0, so we use
this as a starting case for a proof by induction. By (3.5), outside of ZEk

Mk = ∂̄σEk Mk−1 − σEk ak−1R
f

k−1. (6.4)

By induction and Lemma 6.1, h df annihilates both currents on the right-hand
side of (6.4) outside ofZEk , where σEk is smooth. Thus, supp(h df ∧Mk) ⊆ ZEk ,
and since h df ∧Mk is a (m, k−1)-current with support onZEk of codimension
≥ k by (2.6), h df ∧Mk = 0 by the dimension principle.
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