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ATOMLESS PARTS OF SPACES
JOHN R. ISBELL

Introduction.

This paper concerns complete Brouwerian lattices regarded as a gen-
eralization of topologies (lattices of open sets). So regarding them is not
a new idea. However, the previous work [1], [6], [15] seems to suppose
that topology is embedded unchanged in the enlarged system. Of course
one can adumbrate numerous changes of one sort or another. At least
one is a considerable improvement: products of paracompact (regular)
generalized spaces are paracompact.

The generalized spaces will be called locales. ““Generalized’ is impre-
cise, since arbitrary spaces are not determined by their lattices of open
sets; but the ““insertion” from spaces to locales is full and faithful on
Hausdorff spaces. It preserves colimits and equalizers (subspaces with
induced topology). It preserves products of compact spaces. For spaces
A; (or locales) having compactifications C;, the locale product II4; is
embedded in 7IC; and is the expected intersection of cylinders. I do not
know if the cylinders 4, x IT,_,C, are spaces for all spaces 4,; they are
for paracompact A4, and some others. At any rate, intersections are
radically changed.

Lattices of sublocales cannot be said to be a technical improvement
on Boolean algebras of subspaces, but they are very good lattices (and
contain more information). Let us follow Benabou [1] in calling complete
Brouwerian lattices local lattices; besides the awkwardness of the other
term, Brouwerian people use different morphisms. A local lattice is a
complete lattice in which finite meets distribute over all joins; a mor-
phism is required to preserve finite meets and all joins. The lattice of
sublocales (equalizers) in a locale 4 is colocal; it is the lattice of closed
sublocales of a subobject R(4). The map R(4) - A is merely mono-
morphie, not an embedding. The open sublocales are closed under the
expected operations (joins and finite meets), and similarly for the closed
sublocales. While the local law zA(Vy,) =V (zAy,) does not hold in gen-
eral, it holds if x is open or closed.

This approach suffices for proving that finite space products of locally
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compact Hausdorff spaces are locale products, and a little on non-Haus-
dorff spaces. However, computing intersections of sublocales does not
go far in this paper. The intersection of the rational and irrational num-
bers is computed for an illustration; it is the largest pointless sublocale
of the rationals. Not every locale has a largest pointless sublocale, but a
weak separation axiom suffices for that.

The results on paracompactness require use of uniform structure.
Everything turns on the hyperspace HS (4) of closed non-empty sublocales
of a uniform locale A. It is embarrassing that I cannot define a hyper-
locale (which would inter al. contain 4). However, knowing whether the
mere hyperspace is complete determines whether A is absolutely closed.
HS(A4) governs my proof that the absolutely closed, or Aypercomplete,
uniform locales form a reflective subcategory. As in spaces [10], so here,
A admits a hypercomplete uniformity if and only if it is paracompact.
Therefore the paracompact locales are reflective, and therefore closed
under produects.

The problem, which space products of completely regular spaces are
locale products, is related to questions in uniform spaces about which
not much is known. But countable products of separable metric absolute
G,’s are preserved. For their uncountable products, the product space is
not in general normal, but the product locale differs little, being the
paracompact reflection of the product space.

So uniformity helps. But preservation of products is not such a delicate
matter. X x Y is preserved if it is covered by the interiors of rectangles
x; x y; which are preserved for all ¢ and j.

It should be noted that all locales are embeddable in spaces. In fact,
in spaces whose locale products are spaces, for free local lattices are
topologies. Every locale has a smallest dense sublocale. That is “discrete’’,
i.e. every monomorphism into it splits; we say limitless. They are
doubly without limits, topologically and categorically, for they are dual
to the category of complete Boolean algebras, which has limits but not
colimits. A third limitation that they lack is sparseness; the Cantor set
has a proper class of limitless subobjects. In general the limitless sub-
objects of a locale A form the lower class of a Dedekind cut. The upper
class consists of the universal epic subobjects of A. The functor R (recall,
R(A) represents sublocales) is a subfunctor of 1 and thus can be iterated
transfinitely; the lower bounds of all B%(4) are the limitless subobjects.
There is a smallest universal epic subobject only in the unusual case
that there is a largest limitless one. It seems to be unusual also to have
a smallest epic subobject, though most (not all) spaces have an obvious
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one, a discrete space. Oddly, every locale A has exactly one minimal
epic subobject, viz. the dense part of R(4).

The rings of real-valued continuous functions on locales are already
known [9]. They have a natural lattice structure (positive=square) and
are the archimedean homomorphs of rings of functions on spaces. They
have a simpler characterization than is known, or seems possible, for the
rings on spaces.

Another property besides paracompactness behaves better for locales
than for topological spaces. This is quasi-compactness: each open cover-
ing has a finite subcovering. It is preserved under formation of directed
inverse limits. For that, however, one need not go so far as to locales;
it is true already for the maximal T, -spaces with a given topology,
sometimes called ‘“‘sober’ spaces, here called primal spaces.

1. Order.

A local lattice is a complete lattice satisfying za(Vy,)=V(zAy,) for
every family {y,}. A morphism of local lattices is a mapping preserving
finite meets (including the empty meet 1) and arbitrary joins (including
0). Any category defined in this manner is called equational [14]. Equa-
tional categories in which free algebras exist (unlike the complete lattices
and complete homomorphisms, for instance) are called varietal and are
very good categories [14]. Benabou showed that free local lattices exist
[1]. Indeed the word problem for free local lattices is easy, and they are
topologies, the topologies of powers FI of the two-point space F with
one open point p. (Proof sketch. The generators are the subbasic open
sets U,={zx: x;=p}. The basic meets M;=N{U,: i€J}, J finite, are
ordered in the obvious way, and their joins have unique irredundant
forms. So, one readily calculates, they are free. This is in [1] except for
the representation as topologies.)

The main points of the connection between topological spaces and
local lattices are given in [15], but with more special treatment than is
needed. The fact that it is a functorial Galois connection [12] sums it up.
Every such connection between categories as good as these is represent-
able, in this case as follows. Note that we have two categories over sets,
Top (of spaces) and &£ (local lattices). On one set {0,1} one can put the
topology of F, with 1 open, and the local lattice structure with 0<1.
This is a topological local lattice (though infinite meets are not continu-
ous). Let F' denote the set with both structures or either one. (Compare
8! in the Pontrjagin connection.) Then taking the topology of a space,
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T:Top°r -~ %, is homming into F; the continuous functions X — F
are closed under the continuous local lattice operations (pointwise) and
make a local lattice 7'(X). Similarly for L in # we have a topological
space P(L) on Hom (L, F) in the topology of pointwise convergence, and
a functor P: #°r — Top. An easy (and general) calculation shows that 7'
and P are adjoint on the right. Now consider the form of P. The kernels
of morphisms L — F are closed under joins, thus principal ideals. Their
generators p must be a-irreducible and distinet from 1; call these ele-
ments primes of L. Every prime yields a morphism to F. In a topology
T(X), every open set U is the intersection of the complements of the
closures of single points not in U, thus a meet of primes. By easy calcula-
tion [15], TPT(X) is isomorphic with 7'(X); and the adjunction mor-
phism is an isomorphism. Therefore [13] (or by parallel calculation) PT P
is also naturally equivalent to P.

Consequently 7': Topor - &, regarded as a functor on Top to For,
is full and faithful on primal spaces P(L), T,-spaces in which every
prime open set is the complement of the closure of a point. Hausdorff
spaces are primal. We call #°r the category of locales, and the locales
dual to topologies, primal locales. The functor TP: £or —~ Fop is a co-
reflection taking each locale to its primal part.

Incidentally, though 7': Top -~ #°r does not preserve products, it
preserves powers of F and hence takes F to a localic local lattice. That
represents the duality between & and #°p, but not very usefully, since
one has to associate to a locale 4 its set of points as underlying set—
and this is not enough.

(Idly inquiring about other topological local lattices, one sees that
every local lattice L has a unique compatible T, topology; a set S<L
is closed if and only if it is closed under taking s’ <s and directed joins.
The topology is primal. I have no idea which L’s make localic local
lattices.)

Each locale 4 has several associated constructs, foremost being the
local lattice by means of which it is defined. Officially that is A4 itself
considered as an object of the dual category £, but obviously one re-
quires a different notation. We write it 7'(4) and may call it the dual
of A or the lattice of open parts or the paratopology of A (following [1],
[15]). Another part, the primal part, was already noted; this will be
fitted in with the general notion of a part or sublocale of A, defined as
an equalizer £ — A of #°r. (Equivalently, the dual of 4 maps to the
dual of E surjectively; the paratopology is induced). Compare coequali-
zers or quotient locales, which generalize quotient spaces. (The dual map
of local lattices must be an equalizer, not the same as injective; that
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would give only an epimorphism of locales.) The terminology clashes with
the general categorical terms, sub- and quotient objects (originally sub-
and quotient gadgets [8]). Those are of less topological interest since a
discrete space D mapping bijectively to, say, a real line R exhibits D
as a subobject and R as a quotient object. However, we are just starting
in locales, and such subtopological matters as the construction of D will
be of interest for a while. Equivalence classes of epics (quotient objects)
will be called ¢tmages. The single word subobject seems distinctive enough
to retain.

An open part z € T(4) determines a sublocale (part) X — 4. Then
T(X) is the principal ideal generated by x, and the map X — 4 is defined
by T(4) - T(X), where y > yAx. Clearly this is a surjective morphism,
so that X is really a part. There are also closed parts CX or 4 — X in-
dexed bijectively by the open parts X of A. Then 7(CX) is the principal
dual ideal on z, and 7T'(4) maps to it by y > yva.

Let us summarize the first facts about the sublocales of A4 ; all non-
trivial portions of the proofs will be given. They form a complete lattice,
in fact a colocal lattice (an antiisomorph of a local lattice). The closed
sublocales form a subobject, i.e. finite joins and all meets of closed parts
are closed. Inserting the lattice of open parts preserves finite meets and
all joins. Thus all sublocales have closures and interiors just as in spaces.
Not all have complements; but closed CX is the complement of open X.
What complements exist are unique, since the lattice is distributive.

Proving these assertions will precipitate us into constructions ‘“‘refin-
ing the paratopology”. Let us define a basis for 4 as a subset of 7(4)
generating T'(A) by unrestricted joins. (A sub-basis is a local-lattice
generating set, a covering is a subset with join 1, etec.) The locale 4 is
zero-dimensional if it has a basis of open parts which are also closed.
The locale A4 is limitless if every sublocale of 4 is open.

ReMARK. In limitless 4, trivially, closed sublocales are open. Hence
T(A)is a complemented lattice. Immediately, 7'(4) is a complete Boolean
algebra. Thence one may calculate that A is limitless, closing a loop.
(1.6 improves it.)

The complemented local lattices are obviously closed under forming
products and homomorphic images. Since complements in local lattices
are unique, they are also closed under forming equalizers. Not just
equalizers of pairs of morphisms K — L where K and L are complemented ;
it suffices that K should be complemented.

One expects a subcategory of a complete category which has these
closure properties to be epireflective. More precisely, if the solution set
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condition holds it is reflective; in any case, each object that does have
a reflection in it will map epimorphically to its reflection. The expecta-
tion fails here. The subcategory consists of the complete Boolean algebras,
and the local lattice morphisms, preserving 0, complements, and arbi-
trary joins, are complete Boolean homomorphisms. In particular, a
reflection of the free local lattice on X, generators would be a free com-
plete Boolean algebra on 8, generators, which does not exist. (This
theorem of Gaifman and Hales has a short proof by Solovay [16].) To
justify a statement in the introduction, reflecting the topology of the
Cantor set X is the same unsolvable problem. Apropos of the question,
what locales (containing no Cantor set) may have a limitless coreflection,
a related problem is solved in [4].

Returning to the lattice S(A4) of sublocales of any locale A4, joining
them amounts to intersecting congruence relations, whence easily the
insertion ¢: 7'(4) — S(A) preserves joins. As for meets, we want more.
Let 7(xz) be an open sublocale and s an arbitrary sublocale. A candidate
for sa¢(x) (a common lower bound) is the open part of s given by the
image of # under 7'(4) - T'(s). Moreover, that is the largest sublocale of
s on which the image of x agrees with 1; so it is sA¢(x). Explicitly, u,v
in T(A) agree on sai(x) if and only if uax and vax agree on s.

In particular, ¢ preserves joins and finite meets. For closed parts CX
defined by x, we want: u,v in T(A) agree on sACX if and only if uva
and vvz agree on 8. (In effect, the same proof.) Next, complements. If
u,v agree on X and on CX, that is uar=vax and uver=vve, then u=v
since 7'(4) is distributive; XvCX=1. As x agrees with 0 on CX and
with 1 on X, XACX =0. Next, on the meet of CX,, 0 agrees with every
finite join of the X, and thus with VX,. So the meet in S(4) is all the
way down to the closed meet. Joins are evident.

(1.1) In any complete lattice M call an element x linear if xA(Vy,)=
V(zAy,) identically.

ReMARK. Finite meets of linear elements are linear.
Call the joins of linear elements smooth.

ReMAREK. The smooth elements, as a partially ordered set, form a
local lattice L.

Insertion L —~ M preserves joins, of course, including 0 and 1, but
generally not meets. Thus M is local if and only if every element is
linear, and if and only if every element is smooth.

(1.2) In a complete lattice L, whenever x>y there is a linear element t
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such that tay=0=*xtaz, if and only if L is colocal and its anti-isomorph 8
the dual of a zero-dimensional locale.

Proor. Among open parts of a zero-dimensional locale, ¥ > means
there is a complemented % under y but not under z; so ivy=1=iva,
where ¢ is the complement. This ¢ is antilinear, hence tv(As,)=A (tvs,).
For the two sides have the same meet with ¢ (viz. ¢) and with » (viz.
uA(As,)).

Conversely, the indicated condition on L makes every zv(Ay,) =
A(zvy,). Otherwise the left side would be less. A linear ¢ disjoint from
the left side is disjoint from the summands, so tA(zvy,)=tAy,, and the
meet of all these is 0. So L is the anti-dual of some locale. Every linear
element ¢ of L has a complement e, the join of all y disjoint from e.
Here eaet =0 since e is linear; evet <1 would yield non-zero ¢ disjoint
from evel, so from e, whence ¢<e', which is absurd. Now in the local
lattice Lor we have y >« implying {vy=1<¢{vx for some complemented
¢; hence y > ¢*, and y cannot strictly exceed the join of the complemented
elements under it.

From the proof of 1.2, the linear elements of one of these lattices are
the complemented elements. Looking ahead (of course, outside the pre-
sent chain of proof), the linear sublocales of a locale are the complemented
sublocales.

We need enough linear elements to apply 1.2; but we have them. For
open z, any %,v in 7'(4) agree on zA(Vs,) if and only if uAaz and vax
agree on Vs,, that is on each s,; thus if and only if 4 and v agree on
V(xAs,). Similarly a closed part is linear in S(4). As noted in 1.1, it
follows that the meet of an open and a closed part is linear. For 1.2,
if x>y in S(4), some u and v agree on y but not on z; then uAv (which is
1(uvv)ACM where m =uav) is disjoint from y but not from .

1.3 THEOREM. For every locale A there exist a zero-dimenstonal locale
R(A) and a morphism R(A4) - A inducing an isomorphism between the
colocal lattices of closed sublocales of R(A) and of sublocales of A by direct
tmage and tnverse image. This determines R(A) up to a unique isomorphism.

This is a routine translation of what we have proved. The routine be-
gins: by defining T(R(4)) and T(4) — T(R(A4)), respectively as an anti-
isomorph of 8(4) and as x > CX. The inverse-image map I(f) on equa-
lizers in any complete category, induced by f: B — A, is completely
meet-preserving; the direct-image map is completely join-preserving;
there are inequalities and IDI=1, DID=D. When I is injective, as
here, D inverts it.
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1.4. R is a subfunctor of 1.

Proor. The map R(4) -~ 4 is monic. For suppose two maps f,g:
B — R(A) are identified into 4. Observe that the inverse-image map is
functorial; I(f) and I(g) must agree on inverse images of parts of A4,
that is on all closed parts CX of R(A). But I(f)(CX) is the dual of the
pushout of the quotient map y > yvz, which one finds to be u > uv
T(f)(x). Hence T'(f)=T(g) and f=g.

Given f: B - A and the natural maps rz: R(B) -~ B and r,, we wish
to factor frp through r,. This is equivalent to extending 7'(frg) over
TR(A). This is equivalent, again, to extending the induced map from
the colocal lattice of closed parts of A to S(B) over S(A4). In fact I(f)
is the extension. We checked above that as a function it is an extension;
it remains to prove that I(f) is a morphism of colocal lattices, that is,
preserving finite joins. (We remarked that it preserves all meets, hence
l; observe that it also preserves 0 since a non-zero locale cannot map to
0.)

We have noted that I(f) takes closed parts CX to C[T'(f)(x)]. Similarly
it agrees with T'(f) on open parts. Consider the Boolean algebra W(A)
generated (finitely) in S(4) by the open and the closed parts. On it,
I(f) is a meet-preserving function into a distributive lattice with 0 and 1.
We have a generating set G < W(A) closed under complements, on which
I(f) preserves complements. Hence I(f) on W(A) is a Boolean homo-
morphism. (Having meets, it suffices to show that if p,p and ¢, are
preserved complementary pairs, the map A preserves also the pair pvq,
PpAg. This is clear if

h(p) v h(q) v h(PAG) = 1.
That follows from

= [M(P)ah(9)] v [A(P) A1(7)]
= k(P) A [M@)vM@)] = W(D).)

Now in proving 1.3 we showed that ,y in S(4) are meets of {z,},
{ys} in W(A4). Because S(4) is colocal, xvy is a(x,vy,), expressed in
terms of preserved operations; and the expression is correct in S(B).

Applying 1.1 to S(A) gives us another local lattice 7X(4) of smooth
sublocales of 4. (In incredible generality; the smooth elements of the
lattice of equalizers or any other complete lattice associated with an
object X define a locale associated with X. Not functorially; not in
general and not here.) Moreover, open sublocales are smooth. Inserting
them even into S(A4) preserves local-lattice operations; hence so does
inserting them into 7'2(4), and we have a locale morphism.

hq) v M(PAq) = MPAg) v h(PA])
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1.5 THEOREM. Every locale A has a smallest dense sublocale D(A),
which 4s limitless. The composite DR(A) — R(4) —~ A s monomorphic
and eprmorphic. Also DR(A)=2(A), the dual locale of the lattice of smooth
parts of 4, is a minimal epic subobject of A.

Proor. D(4) is just the familiar regular open sets. Precisely, define
T(A) -~ TD(A) by identifying any two open parts which have the same
closure. This is a congruence relation for finite meets and infinite joins,
so T'D(A) is a local lattice and we have D(A4) — A, a sublocale. The rela-
tion turns pseudo-complements (the join of all y disjoint from x) into
complements, so D(A4) is limitless. Now {0} is a coset of the congruence,
80 D(A) is dense in 4. If j: £ — A is a dense sublocale, and 7'(j) identi-
fies two open sets w,v, then udv has interior disjoint from E, hence
empty; thus 7(4) - T D(A) factors across 7'(j).

What we have connecting 72(A4) and T'R(4) is an insertion

k: TX(A) - S(4);

but it looks right, since it inserts the smooth closed parts of RB(A4), and
as we have noted ‘“linear” =‘complemented” =‘‘open-closed”, hence
“smooth closed” = ‘“regular closed” in R(A). In fact k followed by com-
plementation is order-isomorphic into 7R(A4) and is the standard cross-
section of TR(A) -~ TDR(A). The map 7'(4) - T2X(4) is injective, so
2(4) - A is epic. It is monic since it is a composite of monics.

A proper sublocale of 2(A) would map to a non-dense sublocale of
R(A) and thus into a proper sublocale of 4. So 1.5 will follow from

1.6. A subobject of a limitless locale s a sublocale.

Proor. If N is limitless and L — N is monic, introduce the image
M of L and a limitless K =2(L) mapping monically and epically to L.
Then K — M is epic and monic; that is, T'(M) - T'(K) is epic and monic
in complete Boolean algebras. But a (complete) subalgebra is an equa-
lizer. (If k € T'(K) is not in T'(M), subtract off the join of the elements of
T(M) below it, and look.) So K -~ L - M is a string of isomorphisms.

ReMARKs. We have a minimal epic subobject X(4). Not smallest
epic; if A is the primal space with topology [0,1], the primal part of
R(4) is a Sorgenfrey space and X(4) has no points, but obviously there
is a discrete epic subobject disjoint from 2(A4). Clearly a space A whose
points have complements in S(A4) has a smallest epic subobject, namely
the discrete space; ‘“‘epic”’ = “missing no points”. If the points are closed
they have complements; even if they are open in their closures they
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have complements. On the other hand, the smallest dense sublocale D(4)
is not a smallest dense subobject nor even under all epic subobjects; if 4
is a space without open points then D(A4) has no points and is disjoint
from the discrete subobject.

REMAREK. One would like to characterize the locales which can occur
as R(4). They are severely restricted. One can show that if R(4) is pri-
mal, it (and A) has no non-empty pointless part; if R(A4) is primal
Hausdorff, it is scattered.

To pull the constructions together we want the concept of a universal
epimorphism: an epic e: B — A such that pulling back e along any
morphism ¢: 7' — A yields an epic ¢: P —~T. We won’t be looking at
pullbacks, which I cannot compute in £°r. Since the pullback is a uni-
versal commutative diagram, it is equivalent to say that there is always
a diagram

E — 4
[ I
X N

with f epic. Further, I know very little of general universal epics. Quo-
tient maps £ — 4 need not be universal (although all epics in Top, and
quotient maps in any variety, are universal). For any space A4 is a
quotient of a scattered space E, which has no non-empty pointless sub-
locale (clearly enough). Choose 4 having a pointless sublocale 7'. The
pullback P — E of an equalizer is an equalizer. Since P maps to 7' it is
pointless, so it is empty. We shall consider universal epic subobjects.
The subobjects of an object in any category are naturally partially
ordered, and if there are only a set of them, in a complete category,
they form a complete lattice. We know the Cantor set has more sub-
objects than that in #°r. Note that every set of subobjects has a meet:
their intersection. Every set of subobjects represented by m,: M, - A
has a join, obtained by mapping IIM, to A by means of m, on the ath
summand and factoring across the smallest possible quotient locale.
(Therefore the join of a set of limitless subobjects is limitless; this will
also follow from 1.7.)

1.7 THEOREM. The upper bounds of the limitless subobjects of a locale A
are the universal epic subobjects. The map R(A) - A is a universal epic
subobject. Thus transfinite iteration of R by R*+1(A)=RR*A) and inter-
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section at limit ordinals stays within the unsversal epic subobjects. The
lower bounds of all R*(A) are limitless. Each one is embedded in some
R*(A), hence open-closed in R*+3(A).

Proor. If a subobject Z — A contains all limitless subobjects, con-
sider any morphism 7' — 4. Let X — T be a limitless epic subobject of 7'.
Factor X - T — 4 across the quotient ¢, which is limitless and a sub-
object of 4. So @ - A4 factors through E; hence E is universal epic.

If E — A is monic and universal epic and K — 4 a limitless subobject,
pull back to P. Since P — K is monic and epic, P is limitless by 1.6 and
P — K is isomorphic; so K — 4 factors through E.

If f: K> A4 is a limitless subobject, then K =R(K) and f factors
through R(4). So the indicated transfinite iteration stays within the
upper bounds of all limitless subobjects. Suppose £ — 4 is a subobject
contained in all R*(4). The images F, of E in R*4) map to each other
epically, and £ —~ F_ is epic. Applying 7', we get a long expanding
sequence of sublattices of T'(E); so for some «, the map F  , — F, is
invertible. Then F_ is a retract of its inverse image in R*+(4). Thus
every part of ¥, is an inverse image of a closed part of R*+1(4), and is
closed. Hence F, is limitless; and the monic epic £ — F_ is invertible.

A curious corollary:
1.8. The locale X(A) is the only minimal epic subobject of A.

Proor skETCH. One shows first that, if B has no dense open proper
part, then B is limitless. One readily checks also that, if £ — B
is epic and U — B is an open part, then the pullback P — U is epic.
Then look at Z minimal epic in 4. Evidently E is limitless. Factor
E — A through R(A4), and apply the lemmas to the image B. Any dense
part of B maps epically to 4; so £ — B is invertible.

In the way of extrema, one might expect a largest sublocale without
points. Indeed, if each point is a complemented sublocale, this is imme-
diate from the proof of 1.2. That is a condition inherited by sublocales;
80 if A is embeddable in a space with complemented points, A has a largest
pointless sublocale. There is a primal space with just one non-closed point,
for which the conclusion fails. Besides the bad point p take a sequence
of real lines R,,. A non-empty open set consists of p, the complements
of (ordinary) compact sets in each R, for » >k, and an (ordinary) open
set in R;.
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If each point is not merely complemented, but is the difference of two
open parts, then pointless =without order-adjacent open parts; and it is
easy to check that transfinitely iterated identification of neighbors in
T(A) will yield T'(P). Therefore in a Hausdorff space A4, open sets U,V
agree on P if and only if UAV is scattered.

As mentioned in the Introduction, in the sublocales of the real line R,
the subspace ] of irrationals contains the pointless part of its spatial
complement Q; that is, if the difference of open U,V in R is contained
in Q, it is scattered (since it is locally compact). By the way, this shows
that Top — Z°r does not preserve monomorphisms of fairly decent
spaces; the natural map J+ Q — R is one-to-one, so monic in Top, but
not monic in #°p, The insufficiency of points for testing whether X —~ Y
is monic is the insufficiency of epics D — X from discrete D. It is easy,
using 1.6, to show that a universal epic (monic) # — X suffices, X -~ ¥
being monic if (and only if) £ -~ X — Y is.

Note: the statement in the Introduction that Top — £°P preserves
equalizers is in effect true topologically but not categorically. Being an
equalizer is clearly preserved; equalizing a diagram, not.

2. Compactness.

The first main point about compact locales is that they are spaces.
At least, this is a sound practical conclusion. To support and clarify it
we need to define compactness, and before that, to treat separation. The
second and third main points of this section of the paper are that Top —
Zop preserves products of compact spaces, and that the preservation of
finite products is a local property.

The treatment of separation is fuller than I intended when planning
this paper, because it turns out (it seems) that it is impossible to say
“Hausdorff” for locales. We call a locale A strongly Hausdorff if the
diagonal in 4 x 4 is closed. This is a very well behaved property, suffi-
cient for the main results; but it is, as the name says, stronger than
“Hausdorff” for spaces. Also it suggests the problem of a topological
characterization of strongly Hausdorff spaces, not solved here. So two
other separation properties will be introduced (besides regularity [15],
which behaves more simply). Unfortunately neither is weaker than strong
Hausdorffness for general locales; but in the compactness line, they
extend the first main point to a class of locales containing those deter-
mined by all quasi-compact T,-spaces (not necessarily primal) and the
second to a class of quasi-compact spaces containing those which are
locally Hausdorff.
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A locale is called quasi-compact when each open covering has a finite
subcovering, and regular when each open part is a join of open parts
whose closures it contains [15]. We call a locale A fit if the colocal lat-
tice S(4) is generated by the open parts; subfit if every open part is a
join of closed parts. Subfitness is not as well behaved as the other prop-
erties; we shall see that it is not hereditary nor productive. Its main
virtue is in

2.1. Quasi-compact subfit locales are primal.

Proor. It suffices to show that there is a point in every non-zero
difference of two open parts, i.e. in the meet of an open and a closed
part. The closed part B is quasi-compact. A non-empty quasi-compact
locale has a maximal open proper part 4, by Zorn’s lemma; u is prime
and defines a point. Now a linear part B of a subfit locale is subfit, so
its non-empty open parts contain non-empty closed parts and (here)
points.

It is easy to see that not all quasi-compact locales are primal; indeed,
any locale can be embedded in a quasi-compact one having just one more
point.

Another exercise: A topological space, primal or not, defines a subfit
locale if and only if every neighborhood of any point p contains a non-
empty closed subset of the closure p. So T,;-spaces are subfit. spec(Z)
is an example of a subfit space that is not T;. Its subspace on the points
(0) and (2) is not subfit, so the property is not hereditary even for primal
spaces. It is easily seen that it is productive for spaces.

“Fit” is to ‘“regular” as ‘“‘scattered’ is to ‘‘discrete”. Consider: The
elements in S(4) generated by the open parts—which we shall call the
fitted parts—are of course the meets of finite joins of open parts, i.e.
the meets of open parts. For fitness it suffices that every closed part is
fitted, since as noted for 1.3, every part is a meet of parts wvk, where »
is open and k closed. Let us display

2.2. A locale is fit if and only if none of its closed parts B has a closed
proper part O, every neighborhood of which in B is dense.

Proor. For necessity, the indicated configuration would give C a
non-zero complement in B, whose smallest dense sublocale D is non-zero
and contained in every open part containing C. On the other hand, for
any closed part C, consider the meet I of its open neighborhoods. It is

Math. Scand. — 2
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contained in the meet M, of the closed neighborhoods of C. Every
neighborhood N of C in M, is M;nN* for some neighborhood N* of C
in the original locale; so I is contained in the meet M, of the closed
neighborhoods of C' in M,. Continuing, and intersecting at limit ordinals,
we reach a closed part M, containing C in which the only closed neigh-
borhood of C is all of M. The indicated condition implies C=M_ =1.

2.3. (1) Regular locales are fit and strongly Hausdorff.

(2) A primal locale is regular if and only if its space of points is a regular
space.

(3) T'he space of points of a strongly Hausdorff locale is a Hausdorff space,
but not all Hausdorff spaces are strongly Hausdorff.

(4) For spaces, “fit” is independent of “‘strongly Hausdorff’ .

(8) Fit locales are subfit.

(6) The space of points of a fit locale is T, .

(7) A strongly Hausdorff locale need not be subfit.

(8) A locale is fit if it i3 the join of a locally finite family of fitted fit parts.

Summarizing, regular implies everything and fit implies subfit. There
are no other implications except that for spaces one has strongly T, =
T, = T, = subfit. By (8), fitness is nearly a local property. Only nearly:

(4') A strongly Hausdorff locally fit space need not be fit.

Of course, for (3) of 2.3 we shall need a space whose square in £°p
is not a space. Let us note that if X and Y are disjoint dense sub-spaces
of a Hausdorff space Z, then X x Y =Z x Z contains some of the diag-
onal, at least its smallest dense part D. Whether the diagonal is closed
or not, its closure contains no point of X x Y¥'; so X x ¥ has a non-zero
part whose closure contains no point, and thus it is not primal.

Hence

2.4. The functor Top — L°P does not preserve squares of quasi-compact
primal T,-spaces.

Proor. Let «Q be a one-point quasi-compactification of Q. (Neighbor-
hoods of the new point are complements of compact parts of Q.) It is
quasi-compact primal T, and has an open part Q whose square, by the
preceding remarks, is not a space; s0 «Q x «Q is not a space.

Proor or 2.3. (1) Fitness. Assume that each open % is the join of
open parts v; whose closures ¢, it contains. On the meet of the comple-
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ments w; of ¢;, each v; agrees with 0, so their join u agrees with 0. Also
in the colocal lattice of parts,

uv (Aw;) = Nuvw,) = 1.

So the complement of u is Aw,; and is fitted.

Strong Hausdorffness. Consider any sublocale B of 4 x 4 on which
the two coordinate projections f,g: B - 4 do not agree. For some open
u in A, we have that 7'(f)(u) and T'(g)(u) are distinct open parts of B.
We may choose notation so that the relative complement d of T'(g)()
in 7'(f)(u) is non-zero. Note that d is linear in S(B). Now, as 4 is regular,
w is a join of open parts v, whose closures c¢; it contains. Since da
T(f)(Vwv,;) is not zero and 7'(f) preserves joins, some d;=dAT(f)(v;) is not
zero. But d is disjoint from 7'(g)(%). If w, is the complement of ¢;, we have
d;<v; xw;; hence B is not contained in the closure of the diagonal.

Defer (2) and note that half of (3) is trivial. On the other hand, the
real line with the topology consisting of sets Uu(¥V nQ), U and V open
in the usual topology, is Hausdorff because the topology is stronger
than the usual one. It contains the usual Q and ] as parts. The dense
part D of the usual real line is embedded in Q and in J and thus in Q xJ
in the square of the present example. One readily verifies that D is
contained in the closure of the diagonal.

Next (4'). Tear up the real line more drastically; a deleted neighbor-
hood of a point p is a set N NQ, where N is a (deleted) neighborhood.
This is a locally metrizable space X. Now X x X is the join of four com-
plemented parts, Q x Q and three products with a discrete factor. Those
three are primal, for the product of two primal locales is primal when
one of them is discrete. (Exercise, or deduce from 2.10 below.) The closure
of the diagonal contains no off-diagonal point since X is Hausdorff, and
its intersection with the open part Q x Q is on the diagonal since Q is
regular. So X is strongly Hausdorff. But the neighborhoods of J are as
dense as ever.

For (5), given an open part u of a fit locale, its complement % is a
meet of open parts v;. Take their complements 4,. Since k <v;, we have
w2h,;; hence wu=Vh,;, so ka(Vh;)=0. If kv(Vh,) were not 1 it would be
disjoint from some non-zero part p. Then p is disjoint from &, , contained
in v;, contained in k, and so p=0. So Vh;=u.

(6). The space being T; means that every prime open part  is maxi-
mal. Suppose on the contrary there were an open proper part v greater
than u. Every open neighborhood w of the complement & of v satisfies
wvv=1, not w=u; the one-point sublocale corresponding to u is con-
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tained in w, while it is not contained in k. So k is not fitted, the locale
is not fit.

Using (6), (2) is an easy exercise. For (7), take part of the example
X for (4'), the join of discrete ] and the pointless part P of Q. Closed
partx of X contained in Q are scattered; now the open part P contains
no non-zero closed part.

(8). Let 4 have a locally finite family of fitted fit parts ¢; with join 1.
To show that a closed part & is the meet of its neighborhoods, it suffices
to show it locally. There are finitely many nearby ¢,, each a meet of open
parts u;. Let r be the join of the other ¢’s. The near hat; are meets of
relatively open v,,, that is there are open w, with #;,A(Aw;)="hAt;.
The parts

are neighborhoods of %, and nearby, their meet equals & by colocality.
For the remaining part of (4), a non-Hausdorff closed manifold, such
as a circle with a doubled point, is an example by (8).

2.5. A compact subset of a Hausdorff space is fitted.

Proor. The complement is the join of open parts whose closures it
contains, by the usual compactness argument; so the proof of 2.3 (1)
applies.

2.6 THEOREM. Quasi-compact locally strongly Hausdorff locales are pri-
mal and fit.

Proor. Since each non-empty closed part has a point, no open proper
part contains the primal part P. So P is quasi-compact. If P were not
the whole locale, it would be disjoint from a non-zero part E. Let D be
the smallest dense part of & and B the join of P and D. B is still quasi-
compact (since no open proper part contains P) and covered by open
strongly Hausdorff parts u,,...,u,.

Let 8D be the Stone space of the Boolean algebra 7'(D). Since T'(D)
is complete, 8D is extremally disconnected and D is naturally identified
with the dense part of 8D. For each point z of 8D let ¢, be the family
of closed sets in P obtainable from neighborhoods U of z by inserting
UAD in B, closing, and intersecting with P. It has the finite intersection
property. Since disjoint (open) parts of D have disjoint closures in D,
the intersection F(x) of &, has at most » points, one in each u;. Now
partition P into 2" —1 subsets I;, the equivalence classes of the relation
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of belonging to the same u’s. A relatively closed set H of I; and a point
p of I; not in H have disjoint neighborhoods in B. For H- is disjoint
from each u,; which does not contain p. Hence p and each point of H-
have disjoint neighborhoods, whence the assertion follows by quasi-
compactness of H-AP.

Let K; be the set of all points « of fD such that F(x) meets I; (neces-
sarily in just one point). Then F induces single-valued functions
f;: K; - I;, continuous because there are enough closed neighborhoods.
Not all K; are nowhere dense (=disjoint from D in S(D)). So in some
open set V of fD some K; is dense. The restriction of f; to C=DAV has
a graph I' in D x B< B x B disjoint from the diagonal, being contained
in D x P. It is non-empty ; graphs of morphisms are isomorphic with their
domains. It is contained in the closure of the diagonal, in fact of the partial
diagonal 4 in D xD. For consider 4 and I" in §D x B. The graph of
fil K;0V contains I'; and every neighborhood of x in K;nV meets in D
every neighborhood of f;(x), so (,f;(x)) is in the closure of A. The con-
tradiction establishes primality.

P is the join of the finite family of parts I;, which are regular, hence
fit. To show that they are fitted it will suffice to show that the comple-
ments M, of the u, are fitted. M, is covered by n—1 Hausdorff open
sets, so 2.5 is the case n=2. Inductively we may assume that parts
M;nM, are fitted. M, is the join of those and M,n W, where W is the
meet of the other «’s. A point of W— M, is in every » and is Hausdorff
separated from everybody; so it and M, have disjoint neighborhoods,
and M;nW is fitted in W. Since W is open, M, is fitted and P is fit.

In particular, compact locales—quasi-compact strongly Hausdorff—
are primal. There is additional information in the proof above.

2.7. Quasi-compact locally Hausdorff spaces are primal and fit.

Proor. Locally Hausdorff spaces are primal by an elementary cal-
culation. As for fitness, the proof of 2.6 used strong Hausdorffness in
the second, third, and fourth paragraphs; given primality, the third
paragraph is not needed and the rest uses only disjoint neighborhoods of
points.

One would like to unite 2.6 and 2.7 in a common generalization. I
have nothing to suggest, but note that one cannot intersect the hypo-
theses; a quasi-compact locale with a closed Hausdorff set of points
might be a one-point quasi-compactification of almost anything.
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2.8. Regular, strongly Hausdorff, and fit locales form epireflective full
subcategories.

Proor. Evidently, having a closed diagonal is inherited by sublocales
and transmitted to products. Fitness is hereditary because it is deter-
mined by infinite meets in S(A); regularity because it is determined by
joins in T'(A4) and order in S(A4). Similarly a product of fit locales I74,
has coordinate projections f inducing completely meet-preserving I(f),
which extends 7'(f); so sub-basic closed parts are fitted, and thence all
closed parts. Regularity of products is as easy. The solution set condi-
tion holds since morphisms factor through image parts and #°p, the dual
of a variety, is co-well-powered.

2.9 THEOREM. Product spaces of fit quasi-compact spaces are fit quasi-
compact and are the product locales of their factors.

Proor. Of course the product space is quasi-compact by Tychonoff’s
theorem and easily shown to be fit. That is not part of the proof. The
product locale is quasi-compact by [6], fit by 2.8, primal by 2.1. Hence
it is the product in the category of primal spaces. In Top, that is re-
flective and closed under products.

2.10 THEOREM. The product locale W x Y of two primal spaces s the
product space if W is covered by the interiors of subspaces V, for which
Vix Y 1is the product space, and also if W is a complemented sublocale
of a primal space X for which X x Y is the product space.

Proor. First, a sublocale S of a space X having a complement 7' is
a subspace. For each point is in S or 7' since SvI'=1;80 828,, T'=T,,
where S, and T, are subspaces and S,vT,=1. As SyAT,=8SAT =0 and
complements are unique, 7' is 7'y, and 8 is S;. Now suppose X x Y is a
space and consider projection f: X x ¥ — X. The locale Sx Y is the
equalizer I(f)(S). As proved in 1.4, I(f) preserves finite joins as well as
meets. So it preserves complements. Now S x Y, being complemented,
is a subspace, and as §x ¥ and 7'x Y contain the space products, they
are the space products.

If {u,} is an open covering of X, then {u;x Y} is an open covering
of X x Y since T'(f) is a morphism. Hence the hypothesis on W and {V,}
implies the conclusion since the interior of V, in W is open in ¥V, and
complemented.
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Using 2.10 to extend the compact case of 2.9, the (second) “‘comple-
ment’’ clause is stronger than the “local” clause. For one readily verifies:

(i) Each compactifiable space X has a largest closed subspace N which
is not locally compact at any point.

It is a three-line argument on the closure of the union of all such
subspaces; however, for the next exercise, note that IV is also the end of
a transfinite process of removing locally compact open sets. This descent
has the advantage of making sense in S(X).

(i) X is complemented in any and all compact spaces containing it
if and only if N is empty. (The obstruction to existence of a comple-
ment has closure N.)

(iii) Emptiness of IV is a local property of X.

Note also: For a sublocale B of a locale 4, being complemented is a
local property (by a short calculation, using ‘““complemented’” = “linear’’).
Finite product locales of locally compact spaces are spaces; locally com-
pact topological groups are localic groups.

A different sort of preservation theorem:

2.11. A directed inverse limit of quasi-compact locales s quasi-compact.

Proor. First, while it is possible in principle to combine this result
and the Tychonoff theorem for finite products of locales to get the gen-
eral product theorem, one cannot use the present proof; it depends on
the product theorem. Observe that an inverse limit of directed X,’s is
a sublocale of I7X_ which is the intersection of a directed family of
parts P,, each of which is a product; let P, be the product of the X, for
which S does not strictly succeed «, inserted in the obvious way. It
remains to show that quasi-compactness is preserved by intersecting
directed families of parts P,. It suffices to show that non-emptiness is
preserved, for if {F,} is a directed family of relatively closed non-empty
parts of AP,, then {FYAPa} is a directed family of non-empty quasi-
compact parts.

Given a downward directed family of non-empty quasi-compact parts
P, in a locale P which we may suppose quasi-compact, consider the
closed parts F such that no FnP, is empty. Zorn’s lemma applies to
them for each 8, hence as a whole; there is a minimal such part M.
Then M is not the join of two closed proper parts (each would miss some
P; and M miss their meet). Thus M is the closure of a point x € S(P).
The smallest dense part of M is not 0, so it is z. But each P;a M is dense
in M, for its closure certainly meets all P’s. So A P, contains z.

The three (equivalent) results just proved, on quasi-compactness and
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non-emptiness of intersections and inverse limits, hold by substantially
the same proof in primal spaces. Prima facie, intersecting and taking
limits are different operations there. I do not know if they have different
values, i.e. whether directed inverse limits of quasi-compact primal
locales are primal.

3. Uniformity.

The main results will require generalizing much of the first two chap-
ters of ‘“Uniform Spaces” [11]. Probably all that generalizes; in any
case, it seems better to omit much detail but sketch the development
first. We use the covering definition, and most of it is copied out below,
e.g. to avoid confusion with the more general uniform locales of D. and
S. Papert [15]. Entourages ought to work, but not in the present state of
knowledge of product locales. We need pseudometrics and shall get them
from spaces as follows. A uniform covering lies in a normal sequence,
which is a basis of a preuniformity. That has a separated reflection (omit-
ted exercise). That has a completion; the simplest way to do general
completions as an addendum to this paper is to pick them out of hyper-
completions (3.3). That is primal, an ordinary metric space (3.2). No
further preliminaries seem necessary; it is not asserted that results in [11]
not involved below can be generalized.

The star of a part y of a locale with respect to an open covering {z,}
is the join of all x; not disjoint from y. It contains the closure of y since
the star and the other z; cover. The covering {x,} is a star-refinement
of {w,} if the star of each x; with respect to {,} is contained in some wy,.
A preunsformity is a set u of open coverings filtered by star-refinement.
A uniform neighborhood of a part y with respect to u is a part containing
the star of y with respect to some covering in u. In view of star-refine-
ments, one can interpolate ; each uniform neighborhood of y is a uniform
neighborhood of a uniform neighborhood of y. Parts y,z are far if they
have disjoint uniform neighborhoods. A preuniformity u is a uniformity
if each open part u is a join of parts y far from the complement of u.

Preuniform morphisms are those for which inverse images of uniform
coverings are uniform. (Pre-) uniform sublocales or parts are sublocales
A — B with the induced preuniformity. Morphisms inserting parts are
called embeddings. The tmage of a morphism C' — D is the smallest part
of D through which it factors.

As in spaces, so in locales, a preuniformity on a dense part 4 —~ B
has at most one extension. For the extension u, it is not quite true (even
in metric spaces) that an open covering of B uniform on A4 is uniform.
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But if {V;} and {U,} are open coverings of B, if {V;,} is a star-refinement
of {U;}, and the trace of {V;} on A4 is uniform, then {U,} is uniform.
For when U, contains the star of V; it contains the closure and hence the
largest open part of B whose trace on A4 is V;; every open covering ex-
tending {V;} refines {U,}.

3.1. If e: A —> B is a dense uniform embedding, C is a uniform locale,
and f: B — C is a locale morphism for which fe is uniform, then f is uniform.
If fe is a uniform embedding, so is f.

Proor. T'(f) preserves stars and star-refinements. For ¥~ star-refining
% on C, the covering f~1(%) is refined by all open extensions of fe-1(¥"),
and one of them is uniform. If fe is an embedding, then for ¥~ star-refi-
ning % on B, some f-1(#") is an open extension of the trace of ¥  on 4,
and refines %.

One defines convergent and Cauchy filters and (mere) completeness in
the obvious way. A (pre-) uniform locale is (pre-) metric if its uniform
coverings have a countable basis.

3.2. A complete metric locale is primal.

Proor. As in 2.1, it suffices to produce one point in any non-empty
complete part. (Open parts contain stars of parts, hence closures.)
A descending sequence of elements of coverings from a countable basis
is a Cauchy filter base and yields a point.

The hyperspace HS(A) of a uniform locale 4 is the uniform space
whose points are the non-zero closed parts of A and whose entourages
have a basis indexed by the uniform coverings % of 4; the pair (z,y)
is in the #th entourage if the star of each with respect to % (its %-star)
contains the other. This is indeed a uniformity; if we admitted non-
closed parts it would be preuniform and HS(A4) the separated reflection.
Incidentally, HS is a covariant functor. (Of course HS(f)(z) is the
closure of the image.) 4 is hypercomplete if HS(A) is complete.

3.3 TaEOREM. The hypercomplete uniform locales form a reflective full
subcategory.

We shall prove this by constructing the reflection HA, so as to get
also
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3.4. The reflection map r 4 from a uniform locale A to tts hypercompletion
HA s a dense embedding. HS(r,) s a completion.

Consider arbitrary filters in S(A4), defined as subsets § which are non-
empty dual ideals (le @, G2 F e Fisin &, FAF' is in §). The foot of g
is a filter defined by a filter base @ indexed by the uniform coverings % ;
the Zth element (%) of @ is the meet of the #-stars of the elements of .
Since %-stars contain ¥ -stars when ¥~ refines %, @ is a filter base and
the foot is well defined. It is its own foot, for the meet as % varies of
the ¥ -star of ®(%) is between @(¥") and D(¥ *). More fully, & is a foot
if and only if each element of ¥ is a uniform neighborhood of an element
of & and for each % for some F for all F’, the #-star of F’' contains F.
(The latter condition defines stable filters [11]; stable filters are those
which contain their feet.)

LeMMA. The feet of a uniform locale, partially ordered by inclusion,
form a local lattice.

Proor. If a filter @ contains g, each I'(%) is a subpart of @(%) and
the foot of & contains the foot of §. Then consider any set of feet g,
of A, and their filter join #g&,. The foot V&, of #&,; contains all ¥, and is
contained in any foot containing all §¥,; thus the feet form a complete
lattice TTHA with join v.

It is easy to see that the intersection of two feet is a foot. Consider
any n(V;), compared with V(Fn@;). Unavoidably the first of these
contains the second. Conversely, consider any part B belonging to the
first foot. For some uniform covering %, B contains the meet of the
%-stars of the elements of #®,. Also B contains the ¥ -star of an ele-
ment C of &, for some uniform covering ¥~ which we may take finer
than %. For each element £ =GA...AG, of #@,, the ¥ -star o of CvE
is contained in the join of B and the ¥ -star of E; hence B contains their
meet X as E varies, by colocality of S(4). But CvE is A(CvG)),
2e V(Fn@,), and the lemma holds.

Now putting THA =T(HA), we have a locale HA. Map & € T(HA) to
the join o of all ve T(4) whose complements in S(4) belong to .
This preserves finite meets since 7'(4) is local. If v has its complement k
in V;, then for some uniform covering %,k contains the meet of the %-
stars of the elements K of #g;. So v is contained in the join of their
complements, and since the X’s contain finite intersections we have
v =Vo(&;). Thus g is a morphism and defines a map r,: 4 —~ HA. Visibly
r4 i8 dense, that is F+0 = oF +0.

For u € T(4), let u* be the foot of uniform neighborhoods of the com-
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plement of «. Then p(u*) is u since A4 is uniform (not preuniform). Thus
o is surjective; 7, is an embedding. Incidentally, one easily sees that u*
is the biggest foot whose trace on embedded A4 is u. For each uniform
covering % ={u;} of A, consider %*={u*;}. It covers HA since p is a
morphism. Since g is a morphism and u* is the join of p~'(u), the opera-
tion * preserves refinement and star-refinement and the #* form a basis
of a preuniformity. For each foot & € T(HA), each = € § is a uniform
neighborhood of z € §, and one can interpolate closed y € . Let v be
the complement of y. Then v*=%. In S(HA), v* is far from the com-
plement of &. The join of these v* is plainly all of . So we have a uniform
locale HA, and r, is a uniform embedding.

HS takes all embeddings 4 — B to embeddings; for any uniform cover-
ing % of A, refined by the trace of ¥~ covering B, elements of HS(A)
which are ¥ -near are #-near. Here, HS(A4) is dense in HS(HA); a
closed part K of HA is the complement of a foot ¥, and #*-near K in
HS(HA) one finds the complement J of the foot of uniform neighbor-
hoods of a closed part F € &, by choosing a star-refinement ¥~ of % and
such an F that for all F’ € ¢, the ¥ -star of F' contains F. This J is the
closure HS(r,)(F) of F in HA (which is the complementary form of a
previous remark about open parts).

HS(HA) is complete. It suffices (fortunately for the notation) to show
that Cauchy filters & in HS(4) converge in HS(HA); and it is routine
to check convergence to the complement of the foot consisting of all
parts P of 4 such that for some I € §, P is a uniform neighborhood of
the join of all closed parts ¢ € I. It is a foot because J is Cauchy.

It remains to show that r, is a reflection map. For that, it suffices
to show that H is functorial; for if A was already hypercomplete, r, is
an embedding for which the completion map HS(r,) is bijective, whence
T(r,) and r, are invertible. Accordingly, given f: 4 — B, define Hf by
means of T'(Hf) as follows. Any foot & of B has a filter base of open
parts U; apply 7(f) to them. The resulting filter base need not be a
foot base, but it defines a filter f~1(®) which has a foot T(Hf)(®).

Checking, for the largest foot 1 of B, f~(1)=1=T(Hf) (1). For two
feet &,9 of B, T(f) intersects open filter bases, and f-! preserves n
since interiors are well defined. Taking the feet of filters also preserves
N since S(A4) is colocal. (That sounds backwards, as colocality is good
behavior of finite joins; but a filter meet FNF' is a filter of joins FvF'.
Probably the locality of open parts and colocality of all parts are very
little needed for this proof, because of the uniform-neighborhood spacing
in a foot.) So T'(Hf) preserves finite meets.
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For joins, we need to observe that the filters entering in the construc-
tion are not arbitrary. They are spaced filters &, i.e. each element of &
is a uniform neighborhood of an element of §. For a foot is spaced; f-!
preserves spacing when f is a uniform morphism; and spaced filters are
closed under #. Now the foot of a spaced filter § contains ¥, and is the
least foot containing § (since footing is monotone). Therefore footing
preserves infinite joins (of spaced filters). So does f-1, and T(Hf) is a
morphism of local lattices.

One calculates readily: (Hf)r,=rgf. By 3.1, Hf is uniform. Since
maps are determined on dense parts, H is a functor, and 3.3 and 3.4 hold.

3.5. A uniform space ts the primal part of a hypercomplete uniform
locale if and only if it 1s complete.

Proor. Indeed, the primal part of the hypercompletion of X is the
completion; complete because the points form a closed set in HS (HX),
and X dense because it is dense in all of HX.

3.6. THEOREM. A uniform locale is closed wherever it is embedded if and
only if it is hypercomplete.

Proor. Since ‘“wherever it is embedded” is a part of a hypercomplete
locale H, it suffices to identify the closed with the hypercomplete parts
of H. Obviously for closed I in H, HS(I) is a principal ideal in HS(H)
and is complete. Any part P is a dense part of some I. If P is a proper
part of I, then there is a part uak =0 in I disjoint from P,% open and k
closed. Since u is a join of closed parts we get a non-zero closed part x
of I disjoint from P. But, P being dense, one can approximate x with
closed parts of P, showing that HS(P) is not complete.

3.7. CoroLLARY. The hypercompletion of a uniform locale 4 is the only
hypercomplete locale in which A is densely embedded.

Now we have pseudometrics; each uniform covering of a uniform lo-
cale is realized by a map into a (complete) metric space. Consequently
the construction of locally fine coreflections [11] carries over. We also
have the result that fully normal (subfit) locales are paracompact.
(Without subfitness, the open coverings form a preuniformity x and
they all have locally finite open refinements. However, “paracompact’’
like “compact’” should imply ‘“separated”. In a subfit fully normal
locale, u is a uniformity.) Without settling how separation axioms should
be attached to the concepts, we can formulate:
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3.8. The paracompact regular locales are the fully normal subfit locales
and are uniformizable.

The proof is really unchanged from spaces, but the reader may wel-
come a sketch. Paracompact regular 4 is normal. For given disjoint
closed parts j,k, their complements have open coverings whose elements
u; have closures not meeting both j and k. Well-order a locally finite
refinement {v,}, and build up disjoint open J,K. Arrived at «, if v,
meets (say) j, add to J it minus the closed union of the locally finite
family of closures of v,’s previously put in K.

Then any open covering % may be assumed locally finite, and it has
an open closure-refinement ¥~ which has a locally finite refinement #".
The closures z, of elements of #° form a locally finite refinement of
U = {u;}, and so do the joins y; of all z, contained in u;. By Urysohn’s
lemma [15] there are locale maps f;: A - [0,1] equal to 1 on y; and 0
outside u;, and the rest is clear.

3.9. THEOREM. A wuniform locale is hypercomplete if and only if it is
paracompact and its locally fine coreflection is fine.

Proor. Locally fine coreflection 4 by construction preserves the under-
lying locale and takes uniform embeddings to uniform embeddings. So
if 4 is not hypercomplete, then r, is a dense proper embedding and so is
A(r4); so AA is not hypercomplete. Therefore it is a dense proper part of
HJA. Asin 3.6, there is a non-zero closed part x of HAA disjoint from A4.
The complement of z is a join of open parts whose closures it contains.
There is an open covering of A4 which is not refined by the trace of any
open covering of HA4, so certainly not uniform; thus A does not satisfy
the indicated conditions.

If 4 is hypercomplete, the functor H extends the uniform map A4 — 4,
which is localically invertible, over HAA4; in locales, A is a retract of
HAA, thus closed, as well as dense. So A4 is hypercomplete. Suppose
some open covering % of A4 were not uniform. Just as in spaces [11],
form the filter NV of all parts s which are uniform neighborhoods of closed
parts in whose complement the trace of % is uniform. As in spaces, N
is stable; since one can interpolate neighborhoods, it is a foot. Since 7, ,
is invertible, every foot has the form v*, the uniform neighborhoods of
a closed part k. Here &+ 0 since % is not uniform. Hence k (being linear
in 8(4)) is not disjoint from every element u of %, nor even from all
closed parts y of w far from its complement. But this is absurd; the trace
of % on w is trivially uniform, and by definition the complement of y
belongs to N.
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3.10 CoroLLARY. The paracompact regular locales form a reflective full
subcategory.

Proo¥. Evidently the uniformizable locales are closed under taking
parts. They are also closed under products; whatever the detailed struc-
ture of T'(IT4,) may be, the coordinate insertions of 7'(4;) give a sub-
basis, and the product preuniformity is a uniformity. Hence the uni-
formizable locales are epireflective. The category is equivalent to the
category of fine uniform locales. The hypercompletion HA of a fine A4
must be fine because the map to the fine locale ‘“homeomorphic” with
HA (localically isomorphic) factors through it. Hence HA is a para-
compact reflection.

Having checked first the uniformizable reflection, we can amplify; the
forgetful functor from uniform locales to locales has an adjoint, taking
each locale 4 to its uniformizable reflection with the fine uniformity.
In particular, the forgetful functor preserves products.

3.11. For locales or uniform locales, in a product of spaces the points
are dense.

Proor. In basic open sets there are points.

In either setting, the spatial product is the primal part of the locale
product since coreflectors preserve products. Therefore:

3.12. THEOREM. T'he product locale of paracompact spaces X, is the
locale wnderlying the hypercompletion of their product space (for amy
hypercomplete uniformities on the X,).

Proor. The product space P is dense in the product locale IT by 3.11,
and embedded as the primal part. Since II is hypercomplete (with
respect to the uniformities), 3.7 determines uniform I7 as the hypercom-
pletion of P, and the underlying locale is the product locale.

In particular, Top - Z°P preserves the product of the X, if and only
if it is hypercomplete. It is known [11, Exercise VII.8] that this is a
stringent condition. It holds for the product of a compact by a para-
compact space, and for a countable product of completely metrizable
spaces. From 2.6, one can step down (in finite products) to complemented
parts and to locally preserved products. Note that this feeds back into
the problem of hypercomplete product spaces; so far, it doesn’t seem
to feed back anything new.
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A countable product locale of metrizable spaces X, is a metrizable
locale, embeddable in the product of any metric completions y, of the
X,;. At least in the separable case, it is the intersection of all such I7Y,,
or to clarify “intersection”, the locale IIX; is the intersection of the
spaces ITZ; over Gy-sets Z, containing X, in some fixed completions Y.
This follows from 2.10 and Exercise VIIL.8 (d) of [11].

3.13. The product locale II of uncountably many separable metrizable
absolute Gy’'s X, is the paracompact reflection P+ of their product space P.

Proor. That is, every morphism from P to a paracompact space ex-
tends over /7 (uniquely, since P is dense). For P+ is the hypercompletion
of P in its fine uniformity. Every disjoint family of open subsets of P
is countable [2], so every normal covering of P has a countable normal
subcovering %. Now % lies in a normal sequence of countable coverings
(rather evidently here; true in general locales, by the same proof as in
spaces [7]). So % is realized by a mapping f into a separable metric space.
But f factors across a countable partial product of the X ’s [3]. That is
the partial product locale; so f, and %, extend over II,% in the fine
uniformity x on I1. Since I is paracompact, it is hypercomplete in .
By 3.7, the proof is complete.

The real line R is an injective paracompact locale. One can almost say:

(3.14) R ¢s an injective cogenerator of the paracompact locales, and this
follows from the results on rings now tdentifiable as Hom (A4,R) in [9] and
the results on euclidean uniform coverings in [7], which generalize because
the proofs are order-theoretic.

This almost-assertion is numbered because it converts into a routine
exercise when we recall from [7]: “provided there are no measurable cardinal
numbers”’.

The fact that proofs from [7] generalize is no accident; that paper was
originally about objects in a category 5 now visible as the hypercom-
plete uniform locales. Ginsburg and I could not find the paratopology,
and therefore specialized back to spaces. The locally fine coreflection was
an attempt to find “topology”. Note that in 5, it does. In general a
uniform locale 4 is locally fine if and only if HA is fine.

Should there be measurable cardinals, R would not cogenerate all
paracompact locales 4, in the original sense of “cogenerate’”: A has no
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proper image over which all morphisms from 4 to R factor [8]. Its
injectiveness (with respect to equalizers in this category, i.e. closed
parts) does not require such an excursion. That is just the Tietze—
Urysohn extension theorem, which holds for normal locales (defined in
[15], in the obvious way) by the same proof as in spaces. The cogenerating
is Shirota’s theorem, done order-theoretically in [7]. One need not do
that either, since every uniform covering of a locale is realized by a map
into a (metric) space. The crucial thing from [9] is an embedding theorem
for several kinds of ringed quasi-spaces (so interpretable; stated as a
dual embedding for rings). The case needed here spins off 3.13; the em-
bedding is into P+, the space used in [9] is P.

Comme je n’ai rien d’une troisiéme démonstration différente afin de
tripler la délectation [5], c’est tout.
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