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ON A PROBLEM OF BOONE

GEORGE S.SACERDOTE*

In his earlier paper, Some undecidable problems in group theory [7],
the author discussed the question of when the decision problem ( %x)p(x),
@(®) any formula of first order group theory all of whose free variables
are among the finite sequence @, can be undecidable in some finitely
presented group. The results of that paper were of the following general
type: If p(x) meets certain hypotheses, then there exist finite group

presentations my(¢) and =,(p) where s; presents a group with insolvable
word problem, such that

[(%)p@) in Gl p> [(%2)lz=1] in G,].

Boone has asked whether one could show that the problems (?%xr)p(x)
have recursively enumerable (r.e.) degree of unsolvability in all finitely
presented groups for all choices of the first order formula ¢(x).

There is a substantial amount of evidence for a positive answer to
Boone’s question. First, all of the undecidabilities constructed so far
have had r.e. degree. Secondly, many of the constructions used in the
embedding theorems for groups have the property that they reduce
complex problems to much simpler problems such as the word problem.
For example, if one could construct a countably generated group G'in which
(x)(Vy)[xy?=y%x] has a high degree of unsolvability (say ,> O’), an
attempt to embed ¢ into a finitely generated group H, either by the
Higman-Neumann-Neumann embedding [2] or the Neumann-Neumann
wreath product construction [5], would result in embedding G into a
group in which the problem in question is equivalent to the word prob-
lem. The final bit of evidence for the positive side is the Higman em-
bedding theorem which, in effect, says that the properties of being
recursively enumerable and of being finitely presented are very closely
intertwined.

This paper is devoted to showing that the answer to Boone’s problem
is “No”. Specifically, we shall construct a finitely presented group G
and a first order decision problem whose degree in @ is exactly O”.
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Let L be the first order language of group theory with individual
variables ;,%;,21,%s,. .., an individual constant 1, operation symbols -
and -1, the predicate =, and the logical symbols &, v, ~, —, V, and 3.
Given a group @, the language L¢ is obtained from L by adding a new
constant ‘g’ (name of g) for each element g of . (We will use the same
symbols to denote elements of groups and their names in the correspond-
ing languages.)

A group presentation w consists of a set S of distinct letters and a set D
of freely reduced words on the letters of § (and their inverses). The
group presented by n, G, is the quotient of the free group F on S modulo
the normal closure in F of D. If § is finite, D recursively enumerable,
or both 8 and D are finite, we call G, finitely generated, recursively pre-
sented, or finitely presented, respectively.

Given a group presentation = and a formula ¢(x) of L, all of whose
free variables are among x, the decision problem (%x)p(x) for G, is the
problem of deciding for arbitrary tuples of words u on S whether or not
the sentence @(u) holds in G,. It is clear that for finitely presented
groups (, the Turing degree of unsolvability of this problem is inde-
pendent of which finite presentation you choose for G. (See [7] for de-
tails.)

A useful construction in the theory of groups is the Higman—Neumann~—
Neumann (henceforth HNN) construction: Let G be a group, let 4 and
B be subgroups of G, and let é be an isomorphism of 4 onto B. Then @
is embedded in the group H obtained by adding a new letter ¢ to the
generators of ¢ and adding the relation ¢{-lat=4d(a), for each a in 4.
The letter ¢ is called a stable lefter for this extension of G. A ‘“normal
form” for elements of H is given by the following lemma.

Lemma (Britton). Let W be a word on the generators of H. If W=1
in H, then either W does not involve t or else W has a subword of one of the
Sfollowing two forms:

(i) t2W't, where W' is t-free and an element of A
(i) tW't-2, where W' i8 t-free and an element of B.

A word W on the generators of H having no subwords of form (i) or (ii)
above will be called ¢-reduced.

In addition, we will require the following lemma due to Graham Hig-
man.
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LemMMmA. Let G be a finitely generated free group and let K be a recur-
sively enumerable set of elements of Q. Then the HNN extension H of G
obtained by adding a stable letter t and the relations t-kt =k for each k in
K 18 embeddable in a finitely presented group.

For the remainder of this paper, the letters 1, j, k, m, n will be used as
variables ranging over the integers or the natural numbers. W, will
denote the ¢th (¢ = 0) recursively enumerable set of natural numbers in
some (fixed) enumeration. Let #, be the group presentation

{a,b,¢,Cqy. . .}
Cil oMo 00 O3 € = 0T O o O g
allnin Z, |j| in W),
where «, is an abbreviation for a~*ba*. Let y(x,,,,2;) be the formula
of L
Ay @Yy =21 & Yo =Tgys & 21 =2,757,] .

Lemma 1. In G, the decision problem
(F1)(Fey)(Fg) (Y 9)[A2) [ (2, @, @) & =22y~ 2y~ 22y 225°] > 1y = y2y]

has degree O"'.

Proor. Let P denote the above problem. G, has recursively enumer-
able word problem. Thus each atomic formula of L is a recursively
enumerable predicate of elements of G, . Therefore, by the Tarski-
Kuratowski algorithm, P < ;0" for G, .

The converse reducibility will be proved in five steps. Let

—_ n N n n
Brj = 0" 0541051205,3 -

(i) The subgroup C generated by the g, ;, for n+ 0 is freely generated
by the 8, ;. Observe that each g, ; has length 4n in the free group

K = <06,-, j= ...,—'1,0,1,2,...>

and that no more than inf{|m|,|n|} «-factors are cancelled from either
factor in the product B, 8, (6= +1) unless k=j, e= —1 and m=n.
Thus the set of elements g, ;, n+0 is Nielsen reduced and freely gener-
ates C.

(i) An immediate consequence is that (f, is an HNN extension of
(a,b) with stable letters ¢,,c,,. ...

Math, Scand. — 8
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(iii) If ub=>bu for some w in G, , then w=>5" for some integer y. If u
is c-free, the result is clear. Suppose that « involves ¢’s. We may assume
that u is c-reduced. Since w~'6-'ub=1 in @, , u~b~lu must contain a
subword of the form c—¢dc*, e= + 1 and d an element of C, by Britton’s
lemma. Since u is c-reduced, we may assume that u is of the form Ace’
where A is c-free and A-16-'4 is the required element d of C. But
A-15-14 has exponent sum —1 on b and all elements of C have even
exponent sum on b; this contradiction forces us to conclude that ub = bu.

(iv) If wa=aw for some w in G, , then for some integer y, w=a”. The
proof is similar to that for (iii); no element of C' can be of the form
A-1a-14, because all elements of C' have exponent sum zero on a.

(v) Any element d of G, satisfying

(2)y(z,a,b) & d = 2b~12b~12b—12b—2
must be of the form g, ; for some n and j. Thus

{t| {c;,a,b) satisfies
(YY) 32)[9(2, 25, 75) & y =227 2ay 20y 22,® — 21y =y, ]}
= {i | W= N}

which has degree O”. Thus problem P has degree O" in G, .

Let s and ¢ be new letters, and let o;=s~s?. Thus the set {o; | ¢ in N}
freely generates a free subgroup of {s,t). Let =, present the amalgamated
free product of G, and ¢s,t) where the amalgamated subgroup is given
by ¢;=o0;.

7!1 = <a,b,s,t,cl,02,. .oy Ci_lﬂn,j i=/3n,j’ c,i=0'i, i~in N ’
|jl in Wy, » in Z)
= {a,b,8,t; 0;71,;0,=PBn;,tin N, |j|in W;, nin Z}.

@, is finitely generated and recursively presented, and G, is embedded
in @,,.
71

Lemma 2. Let w be an element of G, . If ua=au or ub=>bu, then u is
in G, . In particular w=a” or w=">0" for some integer y.

Proor. Neither a nor b is in the amalgamated subgroup. Consequently,
if » has free product length more than 1, ua # au and ub + bu because the
words w~ta~lua and u~-1b-1ub have length more than 1. The second con-
clusion follows from Lemma 1 (iii) and (iv).

CoroLLARY 3. The problem P above has degree 0" in G, .
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Let D be the normal subgroup of {a,b,s,t) generated by the elements
Ving=0; " Pn;0iPny; Where ¢ is in N, n is in Z and |j| is in W,. D is
recursively enumerable. Therefore, by Higman’s lemma, there exists a
finitely presented group H in which the group

(a,b,8,t,u; w 'y, =Vipns ¥'sin D)
is embedded.

Let {ay,...,a,; ry,...r,)=mn, be a presentation for H. We will use the
letters a, b, s, t, and u to denote the images of these elements in H.

Let @, b, 5, ¢, and P be new letters. Let 7;,; be obtained from y,, ;
by replacing each letter in the latter by the corresponding letter with
a bar. We will now carry out a modified version of the Higman embed-
ding of @, into a finitely presented group. (See the appendix to [8] for
a detailed account of the construction.)

Let
mg = {ay,...,2,,8,0,58,P; r1,...,7,Pins ¢ in N, nin Z,
|7l in W;, d-te~lde for d one of a,,...,a,, and e one of
a,b,5,1,p) .

Thus m; presents the direct product H x (@nl*@)). The subgroups A
and B of G generated respectively by {a,b,s,t,u"taw, u"ow, u"tsu, utu}
and {a@,bb,cc,dd,wau, u"'bu,ulsu,u"%u} are isomorphic. Let m:, be
the presentation

{ay,...a,aq, b,3,t,p,v; relations of my, v-lav=aa,. .., v luluv=u"Yu) .

Since the relations y,, ; of 7, follow from the other relations, we may
omit them, and obtain a presentation m; presenting G, isomorphic to
@,,. 75 is a finite presentation and G, is isomorphic to the subgroup
of G, generated by a, b, 5, .

LeMMA 4. If w is an element of G, and Gw=wa or bw=wb, then either
wP=pw or w is an element of G,,. In the latter case, w must be a power of
@ or of b.

Proor. We argue the case for b only, as the case for @ is similar. If
w is v-free the conclusion is obtained at once. If w involves v, we may
assume that w is v-reduced and does not begin with any of the letters
ay,...,a,. Since w-b-lwb=1in @, , this word must contain a subword
of the form v—¢dv* where d is in the appropriate Britton subgroup 4 or
B. Suppose that w is of the form Mvw’, where M is v-free and M-1bM
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is the d in question. We may assume that M does not involve 7 or a
generator of H. Therefore M is a word on the letters of G, . But neither
A or B contains an element of the form M-16M, for such a word M
because BNG, ={1}. Therefore wb =+ bw.

Let y*(x,, 2,5, %3,2,) be the following formula of L:

(V9)[32)(Fy)FY)[¥1%2 =221 & Yoz =23Yy & Y12, +2, &
Yo F Y & 2=y, 7Yy, & Y =27 22,7 2,7 220%] » 2y =y2y] .

THEOREM 5. The decision problem (%ax;)( %xy)( tag)( x,)p* (21, %9, X3, 2,)
has degree O"" in G, .

PrOOF. y* is a universal formula of L (to be precise the prenex nor-
mal form of y* is universal). The matrix of y* involves both atomic
formulas of L and their negations. Since atomic formulas are recursively
enumerable predicates in G, , the decision problem which we have con-
structed can have degree no higher than O" by the Tarski-Kuratowski
algorithm.

To see the converse reducibility, note that

{i| {0.,@,b,p) satisfies y*} = {i | W;=N},

a set which is maximal in O”.

2.
The following conjecture is suggested by theorem 5:

Let D be an arithmetical degree of unsolvability. Then there exists a first
order decision problem P and a finitely presented group G such that P has
degree D in Q.
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