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WEAK COMPACTNESS AND TIGHTNESS OF
SUBSETS OF M(X)

J. HOFFMANN-JORGENSEN

1. Introduction.

Let X be a completely regular Hausdorff space, then C(X) denotes
the space of all real bounded continuous functions on X, #(X) denotes
the Borel o-algebra, that is the o-algebra generated by the closed subsets
of X, and M(X) denotes the space of all bounded real measures on
(X,4%(X)), which are regular, that is

|m|(4) = sup{|m|(K) | K compact, KA} VAeZX)

whenever m € M(X), where |m| denotes the total variation of m. C+(X)
and M+(X) denote the positive parts of C(X) respectively M(X). The
bilinear form

(fim) = [x fdm

feC(X) and m e M(X), makes (O(X),M (X)) a dual pair. The weak
topology on M(X) coming from this duality is denoted w*, and the
Mackey topology on M(X) will be denoted z*. The weak topology on
C(X) arising from this duality will be denoted w.

We shall occasionally deal with the uniform topology on M(X), which
we shall denote u*, and which is the topology generated by the norm

llm]| = |m|(X) .

On C(X) we shall occasionally deal with the strict topology, denoted B,
which is the topology generated by the seminorms

o(f) = sup{a,|f(x)| | zeK,, n21}

where {K,} runs through all sequences of compact subsets of X, and
{a,} runs through all sequences of strictly positive numbers converging
to zero (for properties of the strict topology see [8]).

We shall in this paper study the structure of the locally convex linear
space (M (X),w*), in particular we shall study the w*-compact subsets
of M(X) and of M+(X). If L is a subset of M(X), then we shall say that
L is uniformly tight, if L satisfies
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(1.1) Ve > 0, 3K compact, such that |m|(X\NK) < e YmelL.

It is well known that a w*-bounded uniformly tight subset of M(X) is
relatively w*-compact. Conversely if X is either locally compact or
metrizable under a complete metric, then it is well known that every
compact subset of (M+(X),w*) is uniformly tight (see for example [19]
p- 205). A completely regular Hausdorff space X, satisfying

(1.2)  every compact subset of (M+(X),w*) is uniformly tight ,

is called a Prohorov space. Notice that the property is only demanded
for subsets of M+(X) and not for subsets of M (X). The statement above
says that every locally compact space and every space, which is metriz-
able under a complete metric, is a Prohorov space. In [19] Varadarajan
states that every metric space is a Prohorov space, but as pointed out
by Topsge in [18] Varadarajan’s proof is only valid for locally compact
metric spaces. R. O. Davies has given an example of a ¢-compact subset
of the unit square, which is not a Prohorov space (private communica-
tion).

We shall remind the reader of some topological notions. In all what
follows X is supposed to be a completely regular Hausdorff space, and
BX is the Stone-Cech compactification of X.

X is said to be complete in the sense of Cech, if X is a Gy-set in fX.
It is well known that every locally compact space is complete in the sense
of Cech, and a metrizable space is complete in the sense of Cech, if and
only if it is metrizable under a complete metric (see for example [6,
pp. 142-146 and p. 190].)

If A is a subset of X, then we shall say that X is complete at A, if
there exists a compact set B24, such that X has a countable base at
B (that is, there exist open sets {¥,} such that Bg V,, for all n>1, and
if U is an open set containing B, then for some n>1 we have V, c U).
We shall say that X is o-complete at A, if there exists subsets 4, of X,
such that X is complete at 4, for alln>1, and AcUT4,,.

X is said to be complete at compact sets, if X is complete at every com-
pact subset of itself. These spaces have also been studied by Arhangel’-
skii [1]-[2], Vaughan [20] and others under the name spaces of countable
type. In [20] it has been shown that X is complete at compact sets if
and only if X is a generalized G,-set in fX (that is, every compact subset
of X is contained in a subset of X, which is a Gy4set in fX). From this
it follows, that if X is complete in the sense of Cech, then X is complete
at every compact set. It is evident that every metrizable space is com-
plete at compact sets.
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X is said to be complete at points, if X is complete at {z} for all z € X.
In [1] and [20] these spaces are studied under the name spaces of point
countable type. In [20] it has been shown that X is complete at points
if and only if X is a point generalized Gy-set tn fX (that is, every point in
X is contained in subset of X, which is a Gy-set in $X). If X is complete
at compact sets, then X is complete at points, and evidently every space
satisfying the first countability axiom is complete at every point. In
[1] it has been shown that if X is complete at every point, then X is a
k-space (a topological space is called a k-space, if a set is closed, whenever
its intersection with every compact subset of X is closed; a topological
space is called a k*-space, if a real function f on X is continuous, when-
ever its restriction to every compact subset of X is continuous).

In section 3 and section 4 we shall see that there is a close connection
between the Prohorov property (1.2) and the completeness properties
defined above.

X is called Radonian, if every finite measure on (X,#(X)) is regular.
It is well known that every analytic space is Radonian (a topological
space is analytic, if it is a continuous image of a complete separable
metrizable space). For this result and further properties of Radonian
spaces see for example [3, section 3.3 and exercises to section 3].

X is called quasi-Radonian, if every finite measure m, on (X,%(X))
satisfies the following condition

(1.3) Ye > 0, 3K compact, such that [m|(X\K) < ¢.

Every Radonian and every o-compact space is quasi-Radonian. A count-
able union of quasi-Radonian spaces and a countable intersection of
quasi-Radonian spaces are again quasi-Radonian. A perfectly normal
quasi-Radonian space is Radonian. All these statements are trivial, and
we shall leave the verification to the reader.

X is called semi-Radonian, if every t-smooth finite positive measure
on (X,#(X)) is regular. A positive measure m on (X,#(X)) is called
T-smooth if
(1.4) m(F) = inf; ;m(Fy),

whenever {F; | iel} is a family of closed sets filtering down to F. The
reader can easily check the following statement: Every locally semi-
Radonian space, every locally quasi-Radonian space, every Borel subset
of a semi-Radonian space, every space, which is locally complete in the
sense of Cech, every countable union of semi-Radonian spaces, every
countable intersection of semi-Radonian spaces, and every countable
product of semi-Radonian spaces are again semi-Radonian.

Math, Scand. — 9
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The perfect kernel of X is the largest subset having no isolated points.
It is well known that the perfect kernel allways exists and is a closed
subset of X. If the perfect kernel of X is empty, that is, X does not
contain any nonempty subset without isolated points, then X is called
scattered. Every subset of a scattered set is scattered. Every locally com-
pact, countable Hausdorff space is scattered. (See for example [10,
pPp. 77-80].)

The perfect kernel of X may be constructed from outside by means
of the coherence sets, which are defined by transfinite induction:

ay(X) =

a,(X) = {xeX | # is not isolated in X},
a,1(X) = ay(a, (X)),

a,(X) = n,, <y@,(X) if p is a limit ordinal.

It is well known that there exists a unique ordinal number d(X), with the
following properties

(1.5) a(X) + a(X) if y<nsd(X),
(1‘6) ad(X)(X) = ay(X) if '}’gd(X) ’
(1.7) ayx)(X) is the perfect kernel of X ,
(1.8) a(X)ca(X) fyzan

We shall need the following easy fact:
(1.9) If U is a open subset of X, then a,(U) = U na,(X) forall y20.

2. The structure of (M(X),w¥*).

We shall in this section study the structure of (M(X),w*) as a locally
convex linear space. We shall give conditions under which the Mackey
topology is complete (see Theorem 1), and we shall show that under
fairly mild conditions the closed balanced convex hull of a w*-compact
set is w*-compact (see Theorem 2). In Theorem 3 we shall give conditions,
which assure that the different notions of compactness in (M (X),w*)
coincide.

Prorosition 1. Let X be a completely regular Hausdorff space and let
J be a bounded real Borel function on X. Let us consider the maps

Fy(m) = [xfdm, Fym) = [xfdmt,
Fym) = [xfdm=, Fym) = [xfd|m|.
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Then F,, F,, F,, and F, are Borel maps on (M(X),w*). Furthermore if f
1s lower semi-conttnuous, non megative and bounded then F,, Fyq and F,
are lower semi-continuous (F, 1s not lower semi-continuous in general, and
the statement is not true in general if f is not non negative).

Proor. Let us first notice that
Fym) = Fo(—m), F,=F,—F; Fy=F,+F;.

Hence it suffices to prove that F, is lower semi-continuous, whenever
f=1y for some open subset U of X (see for example [14, chap. I, Theo-
rem 20]). This statement however will follow immediately from the
following equality

(2.1) m+(U) = sup{fxgdm | geC(X), 05g=1y} Vme M(X).

To prove this let m € M(X), and let £¢> 0 be given. Let (X+,X-) be the
Habn decomposition of X with respect to m. Let us choose a compact
set K and an open set V, such that |m|(V\K)<e and KcUnX+g
V< U. From the complete regularity of X we can find a function
g € C(X), such that 1<g=<1;. Then we have

Jxgdm = [xgdm+ [~ gg dm
z [gg dm*—m|(V\K)
> m+(U)—2m|(V\K) = m+(U)—2e .

\

This shows that m+(U) is less than the right hand side of (2.1). Since the
converse inequality is obvious we have proved Proposition 1.

Lemma 1. Let X be a mormal, countably paracompact Hausdorff space,
and let F be a linear functional on C(X), satisfying

(2.2) if {f,} 18 a sequence in C(X), which decreases pointwise to 0, then

Then there exists a finite measure m on (X,%(X)), such that

(23) F(f) = [xfdm VfeO(X),
(2.4) |m|(4) = sup{|m|(D) | D s closed in X, Dc A} VAeHX).

Proor. Let us define the positive and the negative part of F in the
usual way

F+(f) = sup{F(g) | geC(X), g<f} VfeCHX).
F- = (—F)*.
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Then it is easily seen, that F'+ and F- are linear functionals on C+(X)
both satisfying (2.2). Also it can be shown in the usual way that F=
F+—F-, From Theorem II-7-1 p. 57 in [15] it follows that there exist
positive finite measures m’ and m'’ on (X,%4¢ (X)), where #4(X) is the
Baire o-algebra, that is the o-algebra generated by C(X), such that

F+(f) = [xfdm" VfeCHX),
F~(f) = [xfdm" V¥ feCHX).

Since X is normal and countably paracompact it follows from Theorem
5.3 in [13] that we may assume that m’ and m’’ are defined on #(X)
and that they satisfies (2.4). Putting m=m’'—m'" we have proved
Lemma 1.

THEOREM 1. Let X be a normal, countably paracompact Hausdorff space.
If X is quasi-Radonian, then the Mackey topology t*, on M(X) is complete.

REMAREKS. (a) For a long time it was not known whether every normal
space is countably paracompact (see for example chapter 5 section 2 of
[6], where other properties of countably paracompact spaces may be
found). However M. E. Rudin has recently shown in [17], that there
exists normal non-countably paracompact spaces.

(b) If the Mackey topology is complete, then it is well known, that the
closed balanced convex hull of every w*-compact subset of M(X) is
again w*-compact. Our next result states that this fact still holds without
assuming normality and countably paracompactness of X.

(c) Notice that the w*-topology is complete, if and only if X is finite
(a complete space is a Baire space, hence if (M(X),w*) is complete,
then there must exists some ball having nonempty w*-interior, but this
implies that w*=w*, which implies that X is finite). I have no idea
what the Mackey topology on M(X) looks like. It would be interesting
to have a concrete description of the Mackey topology on M(X), or
more modest to construct a complete topology on M(X), which lies
between w* and 7*.

Proor or THEOREM 1. Since the z*-equicontinuous subsets of C(X)
are by the definition of t* exactly those subsets of C(X), which are con-
tained in a w-compact convex subset of C(X), it follows from Corollary
1 to Theorem 3 on p. 106 in [15] that it suffices to show the following
statement:
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(2.5) If F is a linear functional on C(X), such that F| K is w-continuous
for all w-compact convex subsets K, of C(X), then there exists
a measure m € M(X), such that F(f)=[xfdm for all fe C(X).

Let F be a linear functional on C(X) satisfying the conditions of (2.5).
We shall first show that F satisfies condition (2.2) in Lemma 1. So let
{f.} be a sequence in C(X), which decreases pointwise to 0. By Lebesgue’s
dominated convergence theorem, it follows that {f,} converges to 0
in the w-topology. Now we shall define a linear map 7', from [, into
C(X); let a=(a,) €1, then we define

Ta(x) = D ,a,f(x) for xeX.

Since {f,} is uniformly bounded, we have that Ta is a bounded continu-
ous function on X. If m € M(X), then

(Ta,m) = ;L.o=1an .randm

Since lim,,_,  [xf,dm =0, this equality shows that 7' is a continuous
map from (I;,0(ly,¢,)) into (C(X),w). If B is the closed unit ball in I,
then B is o(l;,c,)-compact and convex. Hence 7'B is w-compact and
convex and so the restriction of F to 7B is w-continuous. Since f,, € TB
for all 21 and w-lim,, , f, =0, we have that lim,_ . F(f,)=0. That is,
F satisfies the conditions of Lemma 1, so we can find a finite measure
m on (X,% (X)), which satisfies (2.3) and (2.4). Since X is quasi-Radonian,
we have that m satisfies (1.3), which in connection with (2.4) implies
that m e M (X).
This proves (2.5), and so Theorem 1 is proved.

THEOREM 2. Let X be a completely regular Hausdorff space and L a
w*-compact subset of M(X). If X is semi-Radonian, and if K is the closed
convex balanced hull of L, then K is w*-compact.

REeMARK. David Fremlin has given an example of a subset X of the
unit square, and a compact subset L of M+(X), such that the closed
convex hull of L is not compact. This shows that the condition of X
being semi-Radonian in Theorem 2 cannot be relaxed.

Proor. Let ve M(L), and let 4 € #(X). Then by Proposition 1 we
have that the maps

Fim) = m(4) and G(m) = [m|(4)
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are Borel maps on L, and since L is u*-bounded we know that F and G
are bounded functions on L. Hence we may define

n(4) = [ym(4) v(dm), ¢(4) = [L|m|(4) |v|(dm) .

Then = and c¢ are finite measures on (X,#(X)), such that |n|<c. We
shall now show that ¢ is z-smooth. So let {U;} be a family of open sets,
which filters upwards to U. Let

Gy(m) = |m|(U;) and G(m) = |m|(V)

for m € L. Then @G, is lower semi-continuous on L, and since every measure
in L is 7-smooth, we have that G; 1 G. So by r-smoothness of |v|, we
find that ¢(U;) 4 ¢(U), that is ¢ is 7-smooth, and so c¢ is regular, since we
have assumed that X is semi-Radonian. But this clearly implies that
n € M(X). Hence if we define 7' by

Tv(4) = [ym(A) v(dm) for ve M(L) and 4 € #(X),

then 7' is a map from M (L) into M(X). Now a standard argument shows
that if f is a bounded Borel function on X, then

IxfdTv = [ {[x f(@)m(dz)} v(dm) .
If f e C(X), then the function
H(m) = [xfdm for me L

belongs to C(L), and so T becomes a continuous map from (M (L), w*)
into (M (X),w*).

If B is the unit ball in M (L), then B is convex and balanced, and by
Alaoglu’s theorem B is w*-compact. Hence 7'B is convex balanced and
w*-compact, but L&TB and so K< TB, which shows that K is w*-
compact.

THEOREM 3. Let X be a completely regular Hausdorff space and L a
subset of M+(X). If there exists a continuous injective map from X into
some metrizable space, then the following four statements are equivalent:

(2.6) L s relatively w-compact in (M+(X),w*).

(2.7) L is relatively sequentially compact in (M+(X),w*).

(2.8) L 1is relatively compact in (M+(X),w*).

(2.9) The closure of L is compact and metrizable in (M+(X),w*).

ReMARKS. (a) If Y is a Hausdorff space and A4 is a subset of ¥ then
we called A4 relatively w-compact (relatively sequentially compact) if every
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ordinary sequence in A has a generalized (an ordinary) subsequence,
which converges to a point in Y. It should be noticed that the closure
of a relative w-compact set is not necessarily relatively w-compact, and
that even if 4 is relatively w-compact in itself, then A4 is not necessarily
closed in Y. The same remark applies to relatively sequentially compact
subsets of Y.

(b) A topological space, which satisfies the condition in Theorem 3,
is sometimes called submetrizable.

Proor or TarorEM 3. The only non trivial statement is that (2.6)
implies (2.9). Let Y be a metrizable space, and f an injective continuous
map from X into Y. Then the map H, defined by

H(m)(A) = m(f-1(4)) for me M+(X) and 4 € B(Y),

is a continuous injective map from M+(X) into M+(Y). From Theorem
13 p. 188 in [19] it follows that M+(Y) is metrizable. Hence Theorem
3 is a consequence of the following lemma:

Lremma 2. Let X be a completely regular Hausdorff space and A a
relatively w-compact subset of X. If X is submetrizable, then the closure of
A s compact and metrizable.

Proor. Let Y be a metrizable space, and f an injective continuous
map from X into Y. First we shall prove

(2.10) F(el(4)) = el(f(A)) .

Let y € cl(f(A4)), since Y is metrizable there exists a sequence {r,}< 4,
such that lim,_,  f(x,)=y. Since A4 is relatively w-compact, we know
that {x,} has at least one limit point, say . Then clearly = € c1(4) and
f(x)=y. That is cl(f(4)) = f(cl(4)), and since the converse inequality is
trivial we have proved (2.10).

Next we shall prove that f is a homeomorphism from cl(4) onto
cl(f(A4)). To see this it suffices to show

(2.11) If {z,}3° < cl(4) and lim,_, . f(z,) = f(x,), then lim, , x,

= .

Suppose that this is not true for some sequence {x,}<cl(4). Then by
regularity of X, there exists an open neighborhood Y of x, and integers
N <My<...<M;<..., such that z, ¢ cl(U) for any j= 1. If F=cl(U),
then cl(4)\ Fccl(A\F), since F is closed. Hence by (2.10) we have

fx,) e f(l(A)\F) c cl(f(ANF)).
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That is, there exists z;€ AN\F, such that d( f(xni), f(z;))<j* for all
Jj=1, where d is a metric for Y. From this it follows that lim;_,  f(z;)=
f(x,). Since f is injective and continuous, we have that z, is the only
possible limit point for {z;}. On the other hand z; ¢ U for any j= 1, and
80 {z;} can have no limit points at all. But this contradicts the assump-
tion that A is relatively w-compact.

That is (2.14) holds and f is a homeomorphism from cl(4) onto
cl(f(4)). Now f(A4) is obviously relatively w-compact in Y, and since
Y is metrizable this actually implies that f(4) is relatively compact in
Y, and so cl(f(4)) is compact and metrizable. But cl(4) is homeo-
morphic to ¢l(f(4)) and so Lemma 2 is proved.

3. Closure properties for Prohorov spaces.

It is well known that complete metric spaces and locally compact
spaces are Prohorov spaces. We shall in this section show that every
space, which is locally complete in the sense of Cech, is a Prohorov
space, a result, which contains the results mentioned above. Furthermore
we shall study operations which preserve the Prohorov property. First
we shall show a characterization of spaces, which are complete in the
sense of Cech, a result of interest in itself.

ProrosiTiON 2. Let X be a completely regular Hausdorff space. Then
X is complete in the sense of Cech, if and only if there exist families {¥,}
satisfying
(3.1) ¥, 18 an open covering of X for each nz1,

(3.2) if (Vi | 12j=Sk(n)}c ¥, for all n2 1, then the set

4 = ﬂfzo=1 Uj"cinl) Vin

18 relatively compact in X.

Proor. Let us first prove the “if”” part. So let {¥,} be a sequence of
families satisfying (3.1) and (3.2). We shall now prove that {¥,} has the
following completeness property:

(3.3) If {F,} is a decreasing sequence of nonempty closed sets, such
that for all n=1 we have F,< W, for some W, €¥,, then the
set F =N} F, is nonempty and compact.

Since F is closed it follows from (3.2) that F is compact, so we are only
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left with proving that F+d. Now let x, € F,. Then by (3.1) we can
find V;, € ¥, such that z, € V;, for all n=1. Now put

Vo= W,oulU5 Vi -

Then z;€ V;,cV, for all j<n and x;e F;cF,cW,cV, for all jzn.
That is, the sequence {x;} is contained in the set N7V, which is rela-
tively compact by (3.2). Hence {r;} has a limit point, which of course
must belong to F.

Next we shall show that the countability assumption in (3.3) can be
removed :

(3.4) Let & be a family of closed sets, which has the finite intersec-
tion property. If there exists W, e ¥, and F, € # for each n,
such that F,c W, for all n>1, then H=N{F | FeZ} is com-
pact and nonempty.

Since H is closed we deduce from (3.2) that H is compact. Let F, be
chosen according to (3.4) and let Hy=N}"F,. Then H, is compact and
nonempty by (3.3). If G4,...,G, € #, then by (3.6) we have that

Hon (516 + 0.
So by compactness of H, we find that

H = (\{H,nF| FeF} + 0,
which proves (3.4).

From Theorem 2 on p. 143 in [6] and (3.4) it follows that X is complete
in the sense of Cech.

Now let us prove the “only if”’ part. So let X be complete in the sense
of Cech. Then X is a G4-set in fX. Let U, be open sets in X, such that
X=NPU,. If e X and n=1, then we choose a neighborhood U, (z),
in BX of z, such that

z e Uye) cc(Uyx) € U,.

Let V,(x)=U,(x)nX and ¥,={V,(x) | xeX}. Then it is easily checked
that {¥,} satisfies (3.1) and (3.2), and so Proposition 2 is proved.

THEOREM 4. Let X be a completely regular Hausdorff space and D a
closed subset of X, which is locally complete in the sense of Cech. If L is a
w*-compact subset of M+(X) and &>0, then there exists a compact set
K< D, such that m(D\ K)<e for all m € L.
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Remark. This theorem generalizes a result of X. Fernique (see [7,
Lemma 6.5.b]). As pointed out to me by F. Topsge, Theorem 4 follows
from Corollary 4 and (3.9).

Proor or THEOREM 4. For each x € D we can choose a neighborhood
U(z) of x in D and a set C(x)< D, such that U(x)cC(x) and C(z) is
complete in the sense of Cech. By regularity of X we can choose an open
neighborhood V(z) of #, in D, such that V(z)ccl(V(x)) c U(x).

Since {V(x) | xeD} is an open covering of D, a standard argument
shows that there exists a finite subset {x,,...,7,}< D, such that

(3.5) m(D\|J?-, V(z;)) < 4¢ ¥melL.

Let D;=cl(V(x;)), then D; is closed in C(x;), and so D; is complete in
the sense of Cech So by Proposmon 4 there exist famlhes {¥,7} satis-
fying (3.1) and (3.2) relatively in D;. From (3.1) one deduces exactly as
above, that for each n>1 and j=1 there exists

Vijm)e¥i Yk=1,...,kjn),
such that
(3.6) m(D;\ |t Vi(Gon) < p221e Vmel.
Now let
Ky = (M, USSP VitGm)  for 1j<p,

K = Ui K

Then by (3.2) K is compact, and if m € L, then we find from (3.5) and
(3.6) that

m(D\K) £ m(D\JL, Dy) + 35, m(D;\ K;)

<
< fe+ 2P, 2 m(D; \Uk(] P Vidm) < &.

Hence Theorem 4 is proved.

CoroLLARY 1. If X 18 a completely regular Hausdorff space, which is
locally complete in the sense of Cech, then X is a Prohorov space.

Remark. If X is metrizable and locally complete, in the sense of
Cech, then X is actually metrizable under a complete metric. Hence
the result of Corollary 1 does not give anything new in the category of
metrizable spaces.
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THEOREM 5. Let X be a completely regular Hausdorff space, and let X,,
be a Prohorov space and f, a continuous map from X into X, , such that

3.7 N_,f,"UK,) ts compact in X, whenever K, is compact in X,
for all n>1.

Then X is a Prohorov space.

Proor. Let L be a w*-compact subset of M +(X), and let ¢ > 0 be given.
Let

F,(m)(A) = m(f,”*(4)) for me M(X) and 4 € #(X,).

Then F, is a continuous map from (M(X),w*) into (M(X,),w*). Hence
F,(L) is a w*-compact subset of M+(X,,). Since X,, is a Prohorov space

there exists a compact subset K, of X, , such that

m(X\f, Y(K,)) < e2™ Vmel.

Now let C=N;_, f.,"Y(K,), then C is compact by the assumption (3.7),
and

m(X\C) 2 >3 m(X\f, Y(K,) <& VmelL.

Hence L is uniformly tight, and so Theorem 5 is proved.

COROLLARY 2. Let X be a completely reqular Hausdorff space and X,,
a subset of X for n=1,2,... . If X, is a Prohorov space for each n 2 1, then
sots Ny, X,.

CoROLLARY 3. Let X be a completely regular Hausdorff space and
{U; | tel} an open covering of X. If U, is a Prohorov space for all i € I,
then so is X.

CorOLLARY 4. Let X be a completely regular Hausdorff space, F a
closed subset of X and G a Gy subset of X. If X 18 a Prohorov space, then
so s F'nG. In particular every open, every closed and every Gy-set in a
Prohorov space are again Prohorov spaces.

COROLLARY 5. Any countable product of Prohorov spaces is again a
Prohorov space.

THEOREM 6. Let X be completely regular Hausdorff space, which locally
8 a Prohorov space. Then X is a Prohorov space.

Proor. Let L be a w*-compact subset of M+(X), and let >0 be
given. By assumption there exists an open set U(z) and a Prohorov
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subspace A(x) of X, such that x € U(x) < A(x) for all z € X. Since X is
completely regular there exists a closed set D(x), such that

z € int(D(z)) € D(x) < A(x) .

Since A(z) is a Prohorov space and D(x) is a closed subset of A(x), we
have that D(z) is a Prohorov space. Now a standard compactness argu-
ment shows that there exists points #,,...,%; € X, such that

(3.8) m(X\ U}, D;) < 3¢ VmelL.
From Theorem 9.1 p. 43 in [18], it followst that if D is closed, then

(3.9) The map m — m|% (D) maps relatively compact subsets of M+(X)
onto relatively compact subsets of M+(D).

Hence for each 1;<j<k we can find a compact subset K, of D(x;), such
that

m(D(x;)\K;) < (2k)"%e VmelL.

If K=K,u...UK,, then from the inequality above and (3.15) we find
that
mX\NK)<e VYmel,

which proves Theorem 6.

I am indebted to F. Topsee for pointing (3.9) out to me, which sim-
plified my original proof considerably.

THEOREM 7. Let X be a complete regular Hausdorff space, F a family
of continuous functions on X and {D,} an increasing sequence of closed
subsets of X, such that

(3.10) if f and g belong to F, then max(f,g) € &,

(3.11) if f is map from X into the positive real line, such that f coincides
on each D, with a function from F, then f is continuous,

(3'12) X = U;Oglpn’

(3.13) Vo1, Vxe X\D,, 3fe &, suchthat f>0, f(y)=0 for all ye D,,
and f(x)=1.

If L is a w*-compact subset of M+(X) and ¢ > 0, then there exists an integer
n=1, such that
(3.14) m(X\D,) <e VmelL.
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Furthermore, if D, 18 a Prohorov space for all n21, then X is a Prohorov
space.

Proor. Suppose that (3.14) does not hold, then we can find m, € L,
such that
(3.15) m,(X\D,) 2¢e Vnzxl.

Let xe X\ D,, then we can find f», € %, such that f», 20, f (y)=0
for all y € D, and f”(x) = 1. Let us put

Va@) = {ye X | fr(y)>1}.

Then ¥V ,(x) is an open neighborhood of z, for all x € X\ D,,. Hence by
T-smoothness of m,, there exists {x;,}< X\ D,, such that

mu(|J721 V(zg0)) = m(XND,) 2 ¢.
Hence we can find k(n) = 1, such that

mn(Uﬁ(jl) V(z;,) > 3.

hn = max {fnxl,n’ fna‘g'n’ MRS fnxk(n)m} *

Then &, € # by (3.10), and from the construction of A, it follows im-
mediately that

Now let us put

(3.16) D, c {xeX | hy(x)=0} Vn=<p,
(3.17) 0 = h,(x) Vnx1, VeeX,
(3.18) Mmu(@ | hy(x)>3) > 1 Vn2l.

If f,=sup{h,,h,y,...}, then from (3.16) it follows that
fol@) = max {h,(x), by, 141(),...,ky(x)} if xzeD,, pzn.

Hence f, is finite on X, and from (3.11) it follows that f, is continuous
on X for all n=1. Let us now put

Vn = {xEX | fn(x)<%} .

Then V, is open and increases with n. From (3.16) we deduce that
D,cV,. That is V, 4 X. Since L is w*-compact a standard argument
shows that for some integer k=1 we have that

m(X\V,) < 3 Vmel.
In particular we find that

my(z | fr@)23) < de.
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But this contradicts (3.18), since f;, < 4,. Hence our basic assumption is
false and so (3.14) holds. The last part is an immediate consequence of
(3.9) and (3.14). Hence Theorem 7 is proved.

CorOLLARY 6. Let X be a completely regular k*-space. Let {D,} be a
sequence of closed subsets of X, which are all Prohorov spaces, and which
increases wpwards to X. If every compact subset of X is contained in some
D,, then X ts a Prohorov space.

CoRrROLLARY 7. Let E be a locally convex space, which is an inductive
limit of a sequence {E,} of closed subspaces of E, such that E, + E. If E,,
18 a Prohorov space for all n 21, then E is a Prohorov space.

Proor. Let & be the class of all functions from E into the real line,
which are continuous, positively homogeneous, non negative and sublinear,
and let us put D,=E,. It is then easily checked that (3.10), (3.11),
(3.12) and (3.13) are satisfied.

REMARK. (a) Notice that if X and {D,} satisfies (3.10)-(3.13) in
Theorem 7, then every compact set in X is contained in some D, (let L
be set of Dirac measures concentrated at x for  belonging to a compact
subset of X).

(b) The category of completely regular Hausdorff spaces, which are
locally complete in that sense of Cech, is also invariant under the opera-
tions defined in Theorems 5 and 6 and in Corollaries 2, 3, 4 and 5. So
none of these operations can take us out of the category of spaces,
which are locally complete in the sense of Cech.

(c¢) In example 1 and example 2 below we shall see that the operation
defined in Theorem 7 allows us to show that there do exist Prohorov
spaces, which are not locally complete in the sense of Cech. However
Proposition 3 shows that Theorem 7 and its corollaries do not give
anything new in the category of spaces, which are complete at points.

ProrosiTiON 3. Let X be a ;:ompletely regular Hausdorff space, and let
{D,} be an increasing sequence of closed subsets of X, which increases up-
wards to X, and which satisfies

(3.19) every compact subset of X is contained in some D, .

Then X is not complete at any point in N, cl(X \ D,).
Now suppose furthermore that X is complete at points. Then we have:

(3.20) X = (Jn-1int(D,) .



WEAK COMPACTNESS AND TIGHTNESS OF SUBSETS OF M(X) 143

(3.21) If D,, is metrizable for all n=1, then so is X.

(3.22) If D, is locally complete in the sense of Cech for all n=1, then so
is X.

(3.23) If D, is locally compact for all n=1, then so is X.
(3.24) If D, is metrizable under a complete metric for all n > 1, then so is X.

(3.25) If D,, is a Prohorov space for all n=1, then so is X.

Proor. Let x € N,_,cl(X\ D,) and suppose that X is complete at z.
Let K be a compact subset of X, such that x € K and X has a countable
base {V,} at K. Since V,\D,+0 we can choose points z, € V,\D,.
By Lemma 7.5 in [18] we have that 4={x, | n=1} is relatively com-
pact and A4 D, for any n= 1, but this contradicts (3.19). That is X is
not complete at x.

If X is complete at points, then from the argument above it follows
that

(Yo=1c(X\D,) = 0.

And since int(D,)=X\cl(X\D,), we see that (3.20) holds.

(3.21) follows easily from (3.20) and the metrization theorem of
Nagata—Smirnov (see for example chapter II, § 21, section XVII, p. 236
in [10]).

(3.22) and (3.23) are obvious.

(3.24) follows from (3.21) and (3.22).

(3.24) follows from (3.20) and Corollary 2.

ExampLE 1. There exists a Prohorov space, which is a k-space, but
which is not complete at any point.

Let Z be a metrizable, locally convex, linear, Hausdorff space and let
E’ be the dual of E. Let & be the topology on E’ of uniform convergence
on precompact subsets of E. If {V,} is a neighborhood base at 0 in E,
and V,° is the polar of V,, then it is well known that V,°t E’, V,° is
n-compact, and every m-compact subset of £’ is contained in some V,°.

By a theorem of Banach and Dieudonné (see for example [9, (1) p.
272]) we have that (£’,n) is a k-space. Hence (E',z) is a Prohorov space
by Corollary 6. If E is infinite dimensional then V,° has no interior
points for any #, and so by Proposition 3 we have that E’ is not complete
at some point z, € £’. By translation we find that (E',z) is not complete
at any point.
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ExamPLE 2. There exists a Prohorov space, which 1s not a k*-space.

Grothendieck has shown that there exist separable, locally convex,
linear Frechet spaces {E,} and a closed linear subspace H of the direct
sum G=3PE,, such that the quotient G/H is not complete. (See for
example § 31,6 in [9].)

Let H° be the polar of H. Then H° is a linear subspace of the dual
space G’ of G. Let m be the topology on G’ of uniform convergence on
precompact subset of G. If E’, is the dual of E, equipped with the
topology of uniform convergence on precompact subsets of E,, then it
is well known that G is homeomorphic to [T E, . From Example 1,
Corollary 4 and Corollary 5 it follows that (H°,x) is a Prohorov space,
since H° is m-closed.

From the fact that G/H is not complete and that H° is linearly iso-
morphic to the dual of G/H, one easily deduces that there exists a linear
functional F from H° into the real line, such that F is not continuous
in the m-topology, but F|K is a continuous map from (K,n) into the
real line for all compact subsets K of (H°,z). That is (H°,n) is not a
k*-space.

4. The Prohorov property for some restricted classes of compact sets in
M+(X).
THEOREM 8. Let X be a completely regular Hausdorff space and L a
u*-bounded subset of (M(X),w*), then L is uniformly tight, if and only if
L is equicontinuous in the strict topology, f.

Proor. If {K,} are compact sets, such that |m|(X \ K,)=2-2* for all
melL,and al nx1, K,=0cK,c...cK,<..., then
“xfdml S D1 Ik, Ifl1dm| =1 VmelL,

for all fe C(X) such that ||f|lg, <2" for all n=1. That is L is p-equi-
continuous.

Conversely if L is f-equicontinuous, then we can find an increasing
sequence {K,} of compact subsets of X, and an increasing sequence of
positive real numbers {a,}, such that lim, , a,=oc, and

|[xfdm| <1 VmelL,

for all fe C(X), such that ||f| g, <a, for all n21. In exactly the same
way as in the proof of Theorem 3 in [8] it follows that

Im|(X\K,) £ 2a,—-1 Vn21l, VmelL.
Which shows that L is uniformly tight.
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LemMA 3. Let X be a completely regular Hausdorff space and K a com-
pact subset of X. If X is o-complete at K, and if U is an open neighborhood
of K, then there exist compact sets {K,}, such that

(4.1) KeUL. K, sU,
(4.2) K,cK,c...cK,c ...,
(4.3) X has countable base at K, for alln=1.

Proor. Let {C,} be chosen such that K <U7C, and X has countable
at C,, for all n2 1. By regularity of X we can find an open set V, and a
closed set F,, such that K< V,c F, < U. Continuing in this way we can
construct open sets ¥, and closed sets F; for each k=1, such that

KecVigwsFa,csVichF,cU Vkzl.

Let F=NTF,, and K’',=FnC,, then (4.1) is obviously satisfied.

Let » be fixed for a moment, and let {U,} be a decreasing neighbor-
hood base at C,,. We shall then prove that {U,nV,} is a neighborhood
base at K’,. Suppose that W is an open neighborhood of K’,, then

Us, (FenCNW) = 0.

So by compactness of C, there exists an integer p>1, such that F n
C,< W. Hence C, is contained in the open set WuU(X \ F,), and so we
can find an integer k2 p, such that C,c U, c WU(X \ F,). Then

K,=C,nFgcUnV,c WUu(V,\F,)=W
since F< V, < F,. But this shows that {U,nV,} is a neighborhood base
of K',.

Let us now put K, = U;LIK ';, then it is easily seen that {K,} satisfies
(4.1), (4.2) and (4.3).

Lemma 4. Let X be a completely regular Hausdorff space, which is o-com-
plete at every compact set. Let m € M+(X) and let U be an open subset of
X, then for every e>0, there exists a compact set C<U, such that
m(UNC)<e and X has countable base at C.

Proor. Let K< U be a compact set such that m(U\ K)<e. Let {K,}
be chosen according to Lemma 3, then

lim, , ,m(UN\K,) = m(U\|JTK,) £ m(U\K) <.
Hence we may take C'= K, for n sufficiently large.

Math. Scand. — 10
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THEOREM 9. Let X be a completely regular Hausdorff space, which is
o-complete at every compact set, L a compact scattered subset of (M+(X),w*),
@D an upper semi-continuous function from L into the real line, and f a
lower semi-continuous, bounded function from X into the positive real line
[0, 00), such that
(4.4) [xfdm = ®(m) VmelL.

If £>0, then there exists a compact set K< U={xe X | f(x)>0}, such
that
(4.5) [gfdm = ®(m)—e Vmel.

REMARK. (a) It is not obvious that a uniformly tight and compact
subset of (M+(X),w*) satisfying (4.4) will satisfy (4.5) for a compact set
K< U. But we shall see later that this is actually so (see Proposition 4).

(b) Notice that Theorem 9 does not hold, if we only assume that
cl(L) is compact and scattered.

Proor or THEOREM 9. Since L is scattered we have by (1.7) that
ayr(L)=0. And since L is compact it follows from (1.5) that d(L) is
not a limit ordinal, hence we can define dy(L) to be the predecessor of
d(L), that is d(L)=dy(L)+ 1.

Now we shall prove Theorem 9 by transfinite induction in dy(L). If
do(L) =0, then L is discrete and compact, that is, L is finite. But in this
case the theorem is obviously true.

Now suppose that the theorem holds whenever L is compact scattered
and dy(L) <z, and f and @ are arbitrary. Suppose that L, f and @ satisfy
the conditions of Theorem 9 and assume dy(L)=a.

Then a,(L) is a nonempty discrete compact set. That is a,(L) is finite.
Let m;,m,,...,m, be the elements of a,(L), then by Lemma 4 there
exists a compact set K U, such that X has countable base at K and

I fdm; > d(my)—e VIZjsp.
Let {V,} be a decreasing neighborhood base at K with V,=X. Then
M, ={melL]| [y fdm—D(m)> —ic}

is an open subset of L containing @ (L). Since every compact scattered
space is zero dimensional we can find an open closed subset M°, of L,
such that

a(l)yc M°, c M, Vn2l.

Since M;=L and {M,} is decreasing we can assume that M°, =L and
{M°,} is decreasing.
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Let L,=M°,\M°,,,. Then L, is an open closed subset of L, and so
from (1.9) we find that

e, (L) =al)nL,=0.
Hence dy(L,) <n, and if m € L, , then we have
.rX ].andm g ¢(m)—’%8 .

But this shows that we can use our induction hypothesis for the tripel
(L, 1y, f, D — %e). That is, there exists a compact set K,<V,nU, such
that

Iz, fdm z ®(m)—e, VmelL,, Vnz1.

It is of course no loss of generality to assume that K< K, for all n>1.
Hence by Lemma 7.5 in [18] we have that C=U;_, K, is compact and

Cc U. We shall now show that C satisfies (4.5). If m € L, for some n>1,
then

fefdm 2 g, fdm 2 O(m)—¢.
If me L\UPL,, then me M°, for all n=1, and so
f,,-nfdm > P(m)—e Vnzx1,

since M°, < M, . From this inequality and the fact that V, y K we find
that

Jefdm 2 [gfdm = lim, . [y, fdm 2 D(m)—¢.

Hence the induction step is completed and Theorem 9 is proved.

CorOLLARY 8. Let X be a completely reqular Hausdorff space, which is
a-complete at every compact set. If L is compact scattered subset of
(M+(X), w*), then L is uniformly tight.

Compare with the result of LeCam [12].

CoROLLARY 9. Let X be a completely regular Hausdorff space, which is
a-complete at every compact set. If L is a compact, countable subset of
(M+(X),w*), then L is uniformly tight.

CoroLLARY 10. Let X be a completely regular Hausdorff space, which is
complete at every compact set. Let L be a compact subset of (M+(X),w*).

Then L is uniformly tight, if and only if the perfect kernel of L is uniformly
tight.
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Proor. Let P be the perfect kernel of L and suppose that P is uni-
formly tight, and let £¢> 0 be given. Then we can find a compact subset
K of X, such that m(X \ K) < }¢ for all m € P. Since X is complete at
K, we may assume that X has countable base at K. Let {V,} be a de-
creasing neighborhood base at K, such that V,=X, and let

M, = {meL| m(X\V,)<ie}.

Then M,, is an open neighborhood of P, so by normality of L there exists
an open set M°, in L, such that M°, =X and that

Pc M, cc(M,)c M,.

Let L,=cl(M°,)\M°,,,. Then L, is a compact subset of L\ P, in
particular we find that L, is compact and scattered. Since

Jxly, dm 2 m(X)—4¢ VmelL,,

we find from Theorem 9 that there exist compact sets K,<V,, such
that
m(K,) =2 m(X)—e VmelL,.

It is no loss of generality assuming that K < K,,. Hence by Lemma 7.5
in [18] we have that C=U;_, K, is compact. If m € L, for some n>1,
then

m(X\C) £ m(X\K,) £ e.

If me L\U;_,L,, then since M° =L, we have that m € M°, for all
n=1, and so
m(X\V,) <3 Vnzxl.

Since ¥V, | K, we find that
m(X\C) £ m(X\K) = lim, , ,m(X\V,) Se¢.
That is L is uniformly tight, and so Corollary 9 is proved.

ProrosiTioN 4. Let X be o completely regular Hausdorff space and L
a compact subset of (M+(X),w*). Let @ be an upper semi-continuous function
from L into the real line and f a lower semi-continuous function from X
into the positive real line [0, c0), such that

(4.6) Ixfdm =z d(m) VmelL.

Then for every &> 0 there exists a closed set F< U= {xeX | f(x)> 0} such
that
(4.7) [pfdm =2 ®(m)—e Vmel.
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If L is in addition uniformly tight, then F may be taken to be compact.

Proor. Let us define ¥~ to be the class of open subsets ¥ of X, such
that cl(V)c U. For each V € ¥ we define

My, = {meL| [pfdm>D(m)—¢c}.

Then M, is an open subset of L. If V' and V'’ belongs to ¥~, then
V'uV" belongs to ¥ and M, UM,.c My, .. That is {M, | Ve??}
is filtering upwards.
If m € L, then by regularity of m, there exists a compact set K< U,
such that
fgefdm > O(m)—e¢.

Since X is regular, there exists ¥ € ¥7, such that K< V, that is m € M,
and so M, %L, hence by compactness of L, there exists ¥V € ¥”, such
that L=M,. That is, F=cl(V) satisfies (4.7), and so the first part of
Proposition 4 is proved. The last part of Proposition 4 is an easy con-
sequence of the first part.

THEOREM 10. Let X be a completely regular semi-Radonian space and
let v be a regular finite Borel measure on (M(X),w*). Let M be a Borel
subset of (M(X),w*) and ¢>0. Then there exists a w*-closed, u*-bounded,
uniformly tight set L= M, such that |v|(M \L)<e.

Proor. Let K< M be a wu*-bounded, w*-compact set such that
[v|(M \ K) <¢, which exists since |v| is regular and o-additive.
The proof of Theorem 2 shows, that the set function

8(4) = [g|m|(4) |v|(dm)

exists for all 4 € #(X), and that s is a finite regular measure on
(X,4%(X)). Hence there exist compact sets C,, such that

8(X\C,) £ &2~ VYnzl.
Let
Kn = {mEKI Iml(X\Cn)éz_n} .

Then K, is w*-closed by Proposition 1, and we have

(KN Ky) = [rag,dv] £ 2" [ [m|(X\Cy) |v|(dm)
= 2n3(X\.C,) < 2" .

Let L=N;_,K,. Then L is w*-bounded, w*-closed and uniformly tight.
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Furthermore L K< M and
PIENL) = 35, WI(KENK,) < e.
Hence |v|(M \ L) < 2¢ and so Theorem 10 is proved.
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