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ANTI-LATTICES AND PRIME SETS

CHU CHO-HO

It is well-known that a compact convex is a Bauer simplex if and
only if the continuous functions on its extreme boundary for which the
Dirichlet problem can be solved form a lattice (cf. [15, Théoréme 6.2]).
The other extreme case for simplexes was obtained by Effros and Kazdan
[11] who introduced a geometrical notion of prime simplexes and proved
that a simplex is prime if and only if the continuous functions on its
extreme boundary for which the Dirichlet problem can be solved form
an anti-lattice, in other words, if one can solve the Dirichlet problem
for the boundary data f and g, then one can never solve it for max(f,g)
unless f<gor g=<f.

In this paper, we extend the definition of prime simplexes to arbitrary
compact convex sets and obtain the same characterization of prime sets
in terms of the Dirichlet problems. We prove that every compact convex
set with dense extreme points is prime. Nevertheless, the converse is not
true in general and we shall quote from [11] an example of prime simplex
in which the extreme points are not dense. In the case of C*-algebras
without non-zero GCR ideals, we do have, ¢nter alia, that the state
spaces are prime if and only if the pure states are dense. We shall state
the duality of anti-lattices and prime sets in the settings of function
algebras and C*-algebras. A necessary and sufficient condition for the
annihilator of a closed two-sided ideal in a C*-algebra with identity to
be a prime face is given.

We also generalize the results of Alfsen, Effros and Stgrmer concerning
the closed faces of the state spaces of C*-algebras. In fact, we prove that
a closed face of the state space of a C*-algebra with identity is the an-
nihilator of a one-sided ideal if and only if it is semi-exposed, and that
it is the annihilator of a closed two-sided ideal if and only if it is semi-
exposed and the self-adjoint part of its annihilator is positively generated.

1. Preliminaries.

We shall always denote by K a compact convex set in a locally convex
(Hausdorff) space and by 0K, the extreme boundary, i.e., the set of extreme
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points, of K. The Banach space of continuous affine functions on K is
designated by 4(K). Let

AK)+ = {fe A(K): f=0}
be the closed cone in 4(K) and let
Q(K) = {max(ay,...,a,): a,€ A(K), i=1,...,n}.

Suppose F is a subset of K. The space of all restrictions to F of the con-
tinuous affine functions on K is denoted by 4(F; K). A convex subset
F of K is called a face if Ay+(1—A)z€ F with 0<A<1 entails that
y,z€F.

When Fc K and I A(K), we write

F, = {fe A(K): f(x)=0, Yz e F}
and
I'={zeK: f(x)=0, Vfel}.

A subset F of K is said to be exposed if there exists a function g in F',
with g=0 and ¢g-1(0)=F, and F is said to be semi-exposed if for each
y € K\ F, there exists a function ¢ in F, with ¢>0 and ¢(y)>0. It is
clear that a set is semi-exposed if and only if it is the intersection of
family of exposed sets. Evidently, every semi-exposed set is a face.
When K is metrizable, the notions of semi-exposed faces and exposed
faces coalesce (cf. [12]).

A closed face F of K is said to be Archimedean if F =1I*, where I is
an order ideal of 4(K) satisfying:

(1) A(K)/I is Archimedean in the quotient ordering,

(2) I is positively generated, viz., I=(InA(K)+)—(InA(K)*). Every
Archimedean face is semi-exposed (cf. [2, II, 5.17]).

Lemma 1.1 (Alfsen [1]). 4 closed face F of K is Archimedean if and
only if for any g€ Q(K) with g|F<ae A(F; K), there exists ¢ in A(K)
such that g<c and c|F=a.

Lemma 1.2 (Ellis [12]). Let F be a subset of K. Then F is semi-exposed
if and only ¢f F=(F, )t and, given fe F, and £>0, there exists ge F,
with g2 0 and f<g+e.

CoroLLARY 1.3. If F is a semi-exposed face of K, then F =(F, nA(K)*+).

Proor. Plainly, Fg(F, nA(K)*)*. Let ze(F nA(K)*)' and let
feF,. For each £¢>0, there are functions ¢ and A in F, n4(K)+ such
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that —g—e=<f=<h+e. It follows that —e=f(x)=<¢ since g(x)=h(z)=0.
As ¢ was arbitrary, f(x)=0. As fe F, was arbitrary, z € (F )t=F. The
proof is complete.

A face F of K is said to be split if there exists a face G of K, disjoint
from F, such that each z in K has a unique decomposition x = Ay + (1 — 1)z,
where y € F, 2 € G and 0£21=1. The collection of all sets FnoK, where
F is a closed split face of K, satisfies the axioms of closed sets for a topo-
logy, weaker than the induced topology on 0K, which is called the facial
topology of oK. Moreover, 0K is compact in the facial topology. Alfsen
and Andersen [3] have shown that each function a: 0K — R continuous
in the facial topology can be extended uniquely to a continuous affine
function on K. Thus the facially continuous functions on 9K can be
identified with a subspace Z of A(K), termed the centre of A(K). The
centre Z consists of all functions f in 4(K) such that for every g € A(K),
there exists h € 4(K) satisfying h(z)=f(z)g(x) for each z in 0K (cf. [4]).
Every closed split face is Archimedean. For the details of Archimedean
and split faces, see [1], [3] and [23].

A compact convex set K is a simplex if and only if the space A(K)
has the so-called Riesz interpolation property, i.e., for any f,g,h,k € A(K),
if f,g<h,k, then there is a function a in A(K) such that f,g<a<h,k.
A compact simplex K is called a Bauer simplex if 0K is closed.

The Dirichlet problem for a family of continuous functions on 0K is
to determine which functions can be extended to continuous affine func-
tions on K. It turns out that the solvability of the Dirichlet problem
characterizes the Bauer simplexes among the compact convex sets, more
explicitly, a compact convex set is a Bauer simplex if and only if the
Dirichlet problem for each continuous function on 0K is solvable (cf.
[15, Théoréme 6.2]). Another characterization of Bauer simplexes is due
to Alfsen and Andersen [3] who proved that a compact convex set K
is a Bauer simplex if and only if the facial topology and the relative
topology coincide on 0K. Thus the centre of A(K) is A(K) itself when-
ever K is a Bauer simplex.

Let £ be a normed linear space partially ordered by a cone. A positive
linear functional f on £ is called a state if ||f||=1. The state space S(E)
is the set of all states, together with the relative weak topology w(E’, E).
The extreme points of S(X) are called the pure states.

2. Anti-lattices and prime sets.

Let K be a compact convex set in a locally convex space. Then K is
said to be prime if the following condition is satisfied:
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If K=co(FUQ@) for any two semi-exposed faces F and G, then either
K=F or K=G(.

Plainly, the discs and n-gons (» 2 5) in the plane are prime.

A partially ordered linear space E is called an anti-lattice if for any
two elements # and y in E, the lattice infimum xAy exists in £ implies
that either xAy =z or Ay =y. Because of the equality xvy= — (—zA —y),
we see that if xvy exists in an anti-lattice, then necessarily zvy=x or
zvy=y. Thus an antilattice is a partially ordered linear space in which
only the trivial lattice infima and suprema exist and the terminology
for it is justified. Anti-lattices exist in profusion. For instance, the
linear spaces of all real harmonic functions defined on the Euclidean
spaces E” (n=2) with the usual pointwise ordering are anti-lattices.
This is a direct consequence of a result of Picard (cf. [16, Theorem 1.11])
which states that a real harmonic function on E* is neither bounded
above nor bounded below unless it is a constant. Another example of
anti-lattice is the space of real polynomials on [0,1] with the usual
pointwise ordering, which has the Riesz interpolation property and
which is not a lattice. For a thorough discussion of anti-lattices, we refer
to [13].

We shall call A(K) a quasi-anti-lattice if the following condition is
satisfied :

For any f and g in A(K), fag exists in A(K) and (fag)(z)=f(x)rg(x)
for each z in 0K imply that either f<g or g<f.

THEOREM 2.1. Let K be a compact convex set in a locally convex space.
Then the following statements are equivalent:

(1) K is prime.

(2) A(K) ¢s a quasi-aniti-lattice.

(3) If f.g € C(0K) are any boundary data for which the Dirichlet problem
tn solvable, then it 18 not solvable for the data max (f,g) unless f<g or g<f.

(4) If f,g € C(0K) are any boundary data for which the Dirichlet problem
18 solvable, then it is not solvable for the data min (f,g) unless f<g or g<f.

Proor. The equivalence of (2), (3) and (4) can be easily verified.
(1) = (2). Suppose the lattice infimum fag of f and g in A(K) exists
and suppose (fag)(x)=f(x)Aag(x) for each z in 0K. Let

F={zck: fx)=(frg)2)} and G = {zeK: gla)=(frg)a)}.

Then F and G are exposed faces and 0K =0Fuod@. It follows that
K =co(FuUG) and hence K=F or K=@, in other words, either f<g or
g=sf.



ANTI-LATTICES AND PRIME SETS 155

(2) = (1). We assume ad absurdum that there are two proper semi-
exposed faces F and @ of K such that K =co(FUG). Then 0K =0FudQ
and we can find non-negative f and g in A(K) such that f(F)=¢(G)=0
with f£g and g£f. Evidently, fag exists and is equal to 0. Moreover,
for each z in 0K, (fag)(x)=0=f(x)rg(x) since 0K =0FU0G and f(F)=
g9(@G)=0. Therefore f<g or g=f which contradicts the definitions of f
and ¢. So we conclude that K is prime.

In order to seek an equivalent condition for 4(K) being an anti-
lattice, we introduce the following definition.

A compact convex set K is said to be ¢-stable if the following condi-
tion is satisfied:

For any f and ¢ in 4(K), if the lattice infimum fag exists in A{K),
then (fag)(®)=f(x)rg(x) for each x in oK.

The following theorem is immediate from Theorem 2.1.

THEOREM 2.2. Let K be a compact convex set in a locally convex space.
Then the following statements are equivalent:

(1) A(K) is an anti-lattice.

(2) K is prime and £-stable.

Taylor [24] has shown that simplexes are £-stable and hence the preced-
ing theorem generalizes a result of Effros and Kazdan [11, Theorem 2.7]
asserting the duality of prime simplexes and anti-lattices. We now ex-
tend Taylor’s result to those compact convex sets with Archimedean
extreme points.

Lemuma 2.3. Let K be a compact convex set and let x € 0K be Archimedean.
Suppose the lattice supremum fvg exists for f and g in A(K). Then (fvg)(zx)=
f(@)vg(x).

Proor. Certainly, f(z)vg(x) = (fvg)(x). Suppose f(z)vg(x) <« < (fvg)(x)
for some real number «. By Lemma 1.1, there exists an & in 4(K) such
that max(f,g) £k and h(x)=«. It follows that fvg <k and in particular,
o < (fvg)(x) < h(x)=o which is absurd. Therefore f(x)vg(x)=(fvg)(x).

Asimow [5] has proved that each extreme point of the state space of
a function algebra is split and from Lemma 2.3, this state space is €-
stable. Thus we have a good many examples of f-stable sets which are
not simplexes. We shall give an example of a prime state space of a func-
tion algebra in section 3.
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CoROLLARY 2.4. Let K be a compact convex set in which every extreme
point 18 Archimedean. Then K is £-stable and the following statements are
equivalent :

(1) K s prime.

(2) A(K) 18 an anti-lattice.

Effros and Kazdan [11] have shown that the state space arising from
the solutions to Laplace’s equation is prime if and only if its extreme
boundary is not closed. Nevertheless, this is not the case in general. For
example, the state space K of

A = {feC[0,1]: f(r ') = (1—=n"Y)f(0)+n"If(1), n=2,3,...}
is a simplex and the extreme boundary can be identified with
[0,1]\{n"1: n=2}

which is not closed (cf. [10, p. 388]) and yet K is not prime. In fact, 4
can be represented as the space 4(K) and 4 is not an anti-lattice for if
we consider the function f in A defined by

flx) =1 if 0sx=1%,
= 8lx—%|—1 if }=sx=1,

then fvO0 exists in 4 while f£0 and 0% f.

However, if we consider a stronger condition, namely, the density condi-
tion, then it turns out to be a sufficient condition for being a prime set.
This settles the question, communicated to me by D. A. Edwards in a
conversation, whether a simplex with dense extreme points is prime.

ProposiTION 2.5. Let K be a compact convex set in which the extreme
points are dense. Then K is prime.

Proor. We prove that A(K) is a quasi-anti-lattice. Suppose fag ex-
ists in A(K) for f and g in A(K) and suppose (fag)(x)=f(x)ag(x) for
each z in 0K. From the density of 0K and the continuity of fag, we see
that fag is the pointwise minimum of f and g. It follows from the affine-
ness of f and g that either f<g or g <f. Therefore 4(K) is a quasi-anti-
lattice and K is prime by Theorem 2.1.

ReMARK. For examples of compact convex sets with dense extreme
boundaries, see [20], [21] and [8, 11.2.4].
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It is evident that the converse of the above result is not true in general,
for instance, the discs are prime while their extreme boundaries are not
dense. Even in the case of simplexes, the converse of Proposition 2.5 is
false. The following example is due to Effros and Kazdan [11, section 5].

ExampLE. Let 2 be the open unit disc in the complex plane endowed
with the usual topology %. Define a bundle of functions 3 on 2 by

UelU\ Hy,

where 5, is the family of harmonic functions in U. Then (2,5¢,%) is
a harmonic space satisfying the axiom of domination (for definitions, see
[6, section 1] and [7, section 1]). Let

C, = {r,e°: r, = 2~ 4 2-+) (< <4 exp(—n3)}

for n=1,2,..., and let

o =2\(Jr-10, v {0}).

Let 4(w) be the functions continuous on @ and harmonic in @ and let
S4(w) be the state space of A(w). Then SA(w) is a prime simplex since
the Choquet boundary for A(w) is not closed [11, Theorem 3.9] and it is
clear that 6SA4(w)< @ is not dense in 0S4 (w).

We now exhibit some simple properties of prime sets.

ProrosiTioN 2.6. Let K be a compact convex sel. Then the statements
below are related as follows: (1) = (2) <= (3) <> (4) = (5) = (6) <= (7).

(1) K s prime.

(2) Any two nonempty facially open sets in 0K intersect.

(3) Every nonempty facially open set is dense in oK.

(4) Every facially open set in 0K is connected.

(5) The centre of A(K) consists of constant functions.

(6) The facial topology for 0K is connected.

(7) The centre Z of A(K) does not admit nontrivial idempotents, that is,

JF€Z with f=f2% only if f=0 or f=1.

Proor. Straightforward topological arguments.
Remark. Since the centre of A(K) is A(K) itself whenever K is a

Bauer simplex, we conclude that a Bauer simplex is never prime unless
it degenerates to a point.
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ProrosiTiON 2.7. Let K be a nonvoid compact convex set tn the Eu-
clidean space E™. Then there are prime faces F.,...,F,, of K such that
K=co(Fy,...,Fp).

Proor. We prove by induction on the dimension n. The case n=1 is
trivial, since K is either a point or a closed interval. In general, if K is
not prime, then K =co (¥, UF,) for some proper exposed faces F'; and F,.
Since F;=KnlinF, (=1,2), where linF, is the linear span of F;, the
dimensions of F; (¢=1,2) are less than that of K and hence we can use
the induction hypothesis to conclude the proof.

Now suppose K is a compact convex set and 0 € 0K. Let
44(K) = {fe A(K): f(0)=0}

and let Cy(0K) be the continuous functions on 0K vanishing at 0. We
say K is 0-prime if the following condition is satisfied:

If K=co(FUQ)for any two semi-exposed faces F' and G with 0 € F'InG,
then either K=F or K=0(.

Analogously, we have the following results.

ProrosiTioN 2.8. Let K be a compact convex set with 0 € 0K. Then the
Jollowing statements are equivalent:
(1) K s O-prime.
(2) 44(K) is a quasi-anti-lattice.
(3) If f,g9 € Cy(0K) are any boundary data for which the Dirichlet problem
1s solvable, then it is not solvable for the data max (f,g) unless f<g or

g=f.

ProposITION 2.9. Let K be a compact convex set with 0 € 0K. Then Ay(K)
is an anti-lattice if and only if K is O-prime and €-stable.

ExampLE. Let 2 be the open unit disc in the complex plane and let
H, = {fe Cr(Q2) : fis harmonic in 2 and f(0)=0}.

Let K be the positive part of the closed unit ball in the dual space of H,,.
Then K is w*-compact and convex and, H, is isometrically order-iso-
morphic to 4y(K) through the natural evaluation map. Using the mean
value property and the Poisson representatvion of the harmonic functions,
one can show that H, is an anti-lattice.
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3. Function algebras.

Let X be a compact Hausdorff space and C(X) the algebra of all
complex-valued continuous functions on X. Recall that a function alge-
bra on X is a closed subalgebra of C(X) which separates the points of X
and contains the constants.

Let A be a function algebra on X and let K be its state space. Then
A(K) coincides naturally with the uniform closure of red since red
separates the points of K and contains the constants. We have stated
Asimow’s result [5] that every extreme point of K is split. Thus, apply-
ing Corollary 2.4, we obtain the following result.

ProprosiTioN 3.1. Let A be a function algebra and K the state space.
Then re A is an anti-lattice if and only if K is prime.

ExampLE. Let o/ be the disc algebra and let

A = {fes: f(O)=f(1)}.

Then A4 is a function algebra of which the state space K is prime. In fact,
by identifying re A with the space 4(K), we can show that re 4 is an anti-
lattice. Suppose there is an % in re A such that wA0 exists in re A. Then

(uA0)(@)=u(p)A0 for each p in 0K because K is £-stable. Note that the
Choquet boundary for 4 is

{zeC: |2|=1}\{1}

and can be identified with 0K through the usual evaluation map
(cf. [19, p. 54]). It follows from the continuity of uA0 that (uA0)(1)=
%(1)A0. Hence we have (uA0)(0)=(uA0)(1)=u(1)A0=u(0)A0. By the
mean value property, this is possible only when % <0 or 0 £ u. Therefore
red is an anti-lattice.

It is straightforward to show that if re 4 is an anti-lattice, then so is
re A. However, we have been unable to determine whether the converse
is true or not.

4. C*-algebras.

Let 4 be a C*-algebra with identity and let 4., be the real linear space
of self-adjoint elements of A4, partially ordered by the cone A+=
{a*a : a € A}. Let S(A) be the state space of 4. Then A, is isometrically
order-isomorphic to the space A(S(4)) via the map a |~ d, where @ is
defined by d@(p)=p(a) for each p in S(4).



160 CHU CHO-HO

By the annihilator in S(A) of a subset M of A we mean the set
M° = {peS): pla)=0, Yae M},
and if Fc8(4), we let
F,={acA: pa)=0, VpeF}.

Notice that FynA,,=F, if we identify 4,, with 4A(S(4)).
We first investigate the nature of semi-exposed faces in the state space
of a C*-algebra.

ProrosITION 4.1. Let A be a C*-algebra with identity. Then the following
statements are equivalent:

(1) F s a semi-exposed face in S(A4).

(2) F=N° for some left ideal N in A.

Proor. (1) = (2). Since F is semi-exposed, we have from Corollary 1.3
F = (Fynd+)° = (Fy)°.
Let Np={ae A: a*a e Fy}. Then the inequalities

(a+b)*(@+b) < 2(a*a+b*b)
and
(ba)*(ba) < [blPa*a

show that N is a left ideal (cf. [18, Lemma 1.1]).

We prove that FonA+c Npc F,. First, let a € FynA+. Then there is
a A> 0 such that a? < 4a. So 0 < p(a*a)=p(a?) £ Ap(a)=0 for each p in F.
Hence a*a € F, and a € Np. Now suppose b € Ny. Then

1p(®)> = p(1)p(b*b) = 0
for each p in F. So b e F,. It follows that (FonA4+)°2Nz°2(F,)° and
hence F'=Nz°.
(2) = (1). Let N be a left ideal in 4 and let p € S(4) \ N°. Then there
is an element @ in N such that p(a)+0. So we have p(a*a)> 0 for other-

wise the Cauchy-Schwarz inequality would give p(a)=0. Since N is a
left ideal, a*a € NnA+ and so

(a*a)" € A(S(4)), (a*a)"(N°) =0, (a*a)(p)> 0.
This shows that N° is semi-exposed.
ProrosiTiON 4.2. Let A be a C*-algebra with identity and let F < S(A)

be a semi-exposed face such that Fyndg, ts positively generated. Then F i3
the annihilator of a closed two-sided ideal.
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Proor. We have FynA+c N,< F|, where
Np=1{acd: a*aeFy}

is a closed left ideal. From this and from the fact that FynA,, is posi-
tively generated, we obtain Fyn4,, < Ny. It follows that Fyc N and
80 Fy=Np is a left ideal. Similarly, Fy=Npg* is a right ideal. Therefore
F=(F,) is the annihilator of a closed two-sided ideal.

The following familiar result shows that the positively generating con-
dition in Proposition 4.2 can not be dropped.

ProPoSITION 4.3. Let N be a closed left ideal in a C*-algebra with identsty.
Then the following statements are equivalent:

(1) N is a two-stded ideal.

(2) (N°)gNAs, ts positively generated.

(3) N=(N°).

(4) N=N*.

Proor. The implications (3) => (4) = (1) are obvious.
- (1) = (2) since N is a two-sided ideal, N=(N°), and (N°)ynAg =
NnA,, is positively generated (cf. [22, Theorem 2, Lemma 2.3]).

(2) = (3). Since N is a closed left ideal, we have N°=(NnA+)°, be-
cause for any p in (Nn4+)° and for any a in N, we have a*ae Nn4+
and [p(a)|® = p(1)p(a*a)=0. Moreover,

Nnd+ = ((Nnd+)°)yn A+
[9, Theorem 2.5]. It follows that
Nnd+= (N°)ynAd+.
Now condition (2) yields N =(N°),.
A face F of S(4) is called snvariant if p, € F whenever p € F, where
p4(b) = pla*a)~'p(a*ba) (p(a*a)+0).
The equivalence of (1), (2), (4) and (5) of the following proposition

was proved in [3, Proposition 7.1].

ProrositioN 4.4. Let A be a C*-algebra with identity and let F be a
closed face of S(A). Then the following statements are equivalent:

(1) F ¢s invariant.

(2) F is Archimedean.

(3) F is semi-exposed and FynA,, is positively generated.

Math. Scand. — 11
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(4) F is the annihilator of a closed two-sided ideal.
(5) F is a split face.

Proor. (2) = (3). Cf. [2, 11.5.17].
(3) = (4). Proposition 4.2.

We should remark here that the property of a closed face F of a com-
pact convex set K being semi-exposed and F, < A(K) being positively
generated does not necessarily imply that F is Archimedean, although
this is the case in the setting of C*-algebras.

The following example is due to Ng Kung-Fu (cf. [12, Example b]).

Let

K = {(«,f)eR?*: (6 =124+ (f—-1)*<1}U {(«,f) eR?: 0=, <1}

and let
F={«0eK: 02x=1}.

Then F=(F,)* and F, is positively generated while A(K)/F, is not
Archimedean ordered.

We now set up a necessary and sufficient condition for the annihilator
of a closed two-sided ideal to be a prime face.

THEOREM 4.5. Let A be a C*-algebra with identity and let I be a closed
two-sided tdeal. Then the following statements are equivalent:
(1) I° is a prime face.
(2) If NnMcI where N and M are left ideals such that (NnM)° =
co(N°UM®), then either NI or Mc 1.

Proor. (1) = (2). Suppose NNnM < I, where N and M are left ideals
satisfying (NnM)°=co(N°UM°®). Then
I° = co((N°nI°) U (M°nI°%)

with N°nI° and M°nI° being semi-exposed faces in 7°. As I° is prime,
we have either [°=N°nI° or I°=M°nI° It follows that either N g
(Nl or M (M°),c1.

(2) = (1). Suppose I°=co(FU(@), where F and G are semi-exposed
faces of I°. Since I° is split, F' and G are semi-exposed in S(4). Further-
more, I =(I°)y=FynG,. Let

Np={acd:a*aecF,} and My={acd: a*acG,}
be the aforecited left ideals. Then F =Nz °, G=M,° and
InNA+=FynGynA+c NpnMgyg<c FonGy=1.
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Hence I=NyznMg and
(NpnMg)° = I° = co(FUG) = co(Np°uUMy°) .

Thus by assumption, either Np<I or My<I. This entails either I°<
Ny°=F or I°c M;°=@. Therefore either I°=F or I°=G which con-
cludes the proof.

Recall that a two-sided ideal I in a C*-algebra is said to be prime if
either I, I or I,c I whenever I,I,<1 for any two-sided ideals I, and
I, in A. We call A a prime C*-algebra if the ideal (0) is prime.

If I and J are any closed two-sided ideals in A4, then we have IJ =
Ind (cf. [8, 1.9.12]) and (InJ)°=co(I°uJ®) [22, Theorem 5].

CoroLLARY 4.6. If I is a closed two-sided ideal such that I° is prime,
then I is a prime ideal.

We have been unable to resolve whether the converse holds though
we can prove it in some particular circumstance (cf. Theorem 4.9).

The following lemma is known and we give a proof for the sake of
completeness.

Lemwma 4.7. Let 8 be the algebraic centre of a C*-algebra A with identity
and let Z be the centre of A(S(A)). Then =27 +1iZ.

Proor. Since 8§ =(8nd,,)+i(ZnAy,), it suffices to show that Zn
A, =Z.

Notice that if @ and b are any two positive elements commuting with
each other, then ab is positive as well. Using Kadison’s technique in the
proof of [17, Lemma 3.2], one can show that if ze §n4,,, then p(az)=
p(a)p(z) for each pure state p and each element a in 4. From this it
follows that §ndg,<Z. -

Now let a € Z. Define a hull-kernel continuous real function f on the
primitive ideal space Prim(4) by

ferm,) = pa)

where 7, is the irreducible representation induced by the pure state p
(cf. [8,2.5.4], [3, Theorem 7.6]). The Dauns-Hofmann Theorem (cf. [3,
Theorem 7.6]) gives a—f(kerm,) € kern, for each pure state p. Take
be A. Then ab—f(kern,)b and ba—f(kers,)b belong to kerz, for each
pure state p. It follows that

ab - ba € npeaS(A) kernp

and hence ab=ba. As b was arbitrary, a is central. The proof is complete.
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ProPOSITION 4.8. Suppose the state space of a C*-algebra A with iden-
tity is prime. Then the centre of A consists of scalar multiples of the identity.

Proor. From Lemma 4.7 and Proposition 2.6.

A C*-algebra is called an NGCR algebra if it does not contain any
nonzero CCR ideal or what is equivalent, if it does not contain any non-
zero GCR ideal (cf. [8, 4.2, 4.3]).

Tomiyama and Takesaki [25, Theorem 2] have proved that a C*-alge-
bra with identity is a prime NGCR algebra if and only if the pure states
are dense in the state space.

THEOREM 4.9. Let A be an NGCR algebra with identity. Then the follow-
ing statements are equivalent:

(1) A is a prime algebra.

(2) 08(4) is w*-dense in S(A4).

(3) 8(4) is a prime set.

(4) Ago=A(S(4)) is a quasi-anti-lattice.

Proor. (1) = (2). Cf. [25, Theorem 2], [8, 11.2.4] and [14, p. 231-232].
(2) = (3). Proposition 2.5.
(3) = (1). Corollary 4.6.
(3)<=> (4). Theorem 2.1.

We mention an example. Let H be a separable infinite dimensional
Hilbert space and let Z(H) (resp. £C(H)) be the algebra of bounded
operators (resp. compact operators) on H. Then Z(H)/#C(H) is a prime
NGCR algebra with identity which is not separable and not isomorphic
to a von Neumann algebra (cf. [8, 4.7.22]).

I am much indebted to Dr. A.J. Ellis for introducing me to Effros and
Kazdan’s paper from which the idea of prime sets stems, and for his valu-
able suggestions and comments.

AppED IN PROOF. The converse of Corollary 4.6 has been proved by
the author in a paper, Prime faces in C*-algebras (submitted to Bull.
London Math. Soc.). In fact, the following conditions are equivalent
for a C*-algebra A with identity: (1) 4 is a prime algebra. (2) S(4) is
a prime compact convex. (3) 4, is an antilattice. Also, one can show
that S(4) is £-stable.
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