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CHARACTERIZATIONS OF CONJUGATE
LOCALLY CONVEX SPACES!

ROBERT H. LOHMAN

1. Introduction.

Various characterizations of conjugate Banach spaces have been given
by Dixmier [2], Ruston [7] and Singer [9]-[13]. Krishnamurthy [3] and
Lohman [4] have considered conjugate locally convex topological vector
spaces (l.c. spaces). The work of the latter authors is an extension to
l.c. spaces of the initial work by Dixmier. In this paper we give addi-
tional characterizations of both conjugate l.c. spaces and conjugate
Banach spaces. Theorem 1 is a general criterion for V-semi-reflexivity
and is similar to the Smulian-like criterion given in [4, Theorem 2].
Theorem 2 is a natural extension to l.c. spaces of a result of De Vito
[1, Corollary 2], where the criterion for conjugacy is given in terms of
linear functionals attaining their suprema on a certain weak closure of
bounded sets. De Vito’s theorem is itself an extension of the deep result
of R. C. James in which weak compactness is characterized in terms of
linear functionals attaining their suprema. Theorem 3 is a partial ex-
tension to l.c. spaces of a result of Ruston [7, Theorem 4]. Theorem 4 is
a Petunin-like characterization (see [5, Theorem 1]) of conjugate Banach
spaces.

2. Definitions and Notations.

We use the notation set forth in [8]. E, or simply E denotes a vector
space E endowed with a locally convex Hausdorff vector topology z.
E' denotes the dual of E. V always denotes a linear subspace of E’ and
we assume (K, V) is the natural pairing. Notations for the various topo-
logies (weak, strong, Mackey, etc.) which arise from (%, V) are as in [8].
In addition, the topology B*(Z, V) on E denotes the topology of uniform
convergence on f(V,E)-bounded sets.

If 4 is a subset of E,, A, represents the set A with the topology =,
and the latter topology is denoted by z|A4. V' denotes the dual of V,.

1 These results are part of the author’s doctoral dissertation written at The University
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The linear mapping ¢: E — V', defined by ¢(f)(x)=f(x) for all fe V
and all z € E is called the canonical embedding. When V = £’, the canon-
ical embedding is denoted by ¢,. X is said to be V-semi-reflexive in case
@ is a surjection. We say Z is V-reflexive in case ¢ is a topological iso-
morphism of £, onto V.

V is minimal in case V is closed in E,, dense in E,’ and no proper
linear subspace of V has both preceding properties.

As in [4] we say V is t-p.c. if for each t-equicontinuous subset B of
E' there is a f(E’,E)-bounded set F such that B is contained in the
o(E',E)-closure of VNnF.

If £ is a Banach space, S; denotes the unit ball of K.

3. Conjugate Locally Convex Spaces.

Let V be (&', E)-closed, total, o(V, E)-separable and such that V, is
barrelled. In [4], Lohman proved that E is V-semi-reflexive if and only
if each decreasing sequence of nonempty o(#, V)-bounded, o(#, V)-closed
convex sets has a nonempty intersection. If we remove the separability
condition on V, it is possible that the Smulian-like intersection property
holds and yet E may fail to be V-semi-reflexive (see [4, example 3]).
We can, however, remove the separability condition in order to obtain
a more general criterion for V-semi-reflexivity, provided we consider
families of sets which are directed by inclusion.

TaEOREM 1. Let V be B(E’, E)-closed, total and such that V is barrelled.
Then E is V-semi-reflexive if and only if each family of nonempty o(E,V)-
bounded, o(E, V)-closed convex subsets of E which is directed by inclusion
has a nonempty intersection.

Proor. Assume that E is V-semi-reflexive. Then ¢ is a topological
isomorphism of E gy, onto V. Let B be an absolute convex o(&, V)-
bounded set in E. If B denotes the o(Z, V)-closure of B, ¢(B) is the bi-
polar (for the pairing (V,V’)) of the o(V’, V)-bounded set ¢(B). By the
barrelledness of V, ¢(B) is o(V’, V)-compact. Thus B is o(¥, V)-compact.
The intersection property now follows easily.

For the converse, assume that the stated intersection property holds.
Given a closed, bounded absolute convex subset 4 of E we let A denote
the o(E, V)-closure of A. Then A is o(Z, V)-totally bounded. Let {x,} be
a net in 4 which is Cauchy for ¢(E, V). Denote the o(E, V)-closed convex
hull of {z,;: fza} by B,. Then {B,} is a family of nonempty o(E,V)-
bounded, o(Z, V)-closed convex subsets of £ which is directed by in-
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clusion. By hypothesis, there exists x €, B,. Now ze 4 and it is
routine to show that x, - relative to o(Z,V). Consequently, A4 is
also o(B,V)-complete. It follows that A is o(E,V)-compact. By [3,
Theorem 1], V is minimal so that E is V-semi-reflexive.

Let E be a real, separable Banach space and let ¥ be a closed, total
subspace of positive characteristic (as in [2, Definition 2]) in E’. In 1968
De Vito [1, Corollary 2] proved the following extension of the famous
theorem of R.C.James: E is canonically isomorphic to the strong
dual of V if and only if each member of V attains its supremum on the
o(E, V)-closure of Sg. The next result is a natural extension of De Vito’s
theorem to l.c. spaces.

TaEOREM 2. Let E_ be a real, complete, barrelled and separable 1.c. space.
Assume that V s a total linear subspace of E' such that Vg is barrelled,
complete and 7-p.c. Then

(a) p(V,E)=P(E",E)|V

(b) T=B(E, V)=B*(, V)

(¢) E gz, v is quasi-complete

(d) E, is V-reflexive if and only if each member of V attains its supre-
mum on the o(E, V)-closure of each t-bounded subset of E.

Proor. First, note that V is closed in E,'. Since V is total and z-p.c.,
the canonical embedding ¢: E, — V' is one-one and relatively open.

(a) Let 4 be a o(Z, V)-bounded subset of E. Then ¢(4) is pointwise
bounded on V,. By the uniform boundedness theorem, ¢(4) is (V' V)-
bounded. Since ¢: E, -~ V' is relatively open, 4 is r-bounded. It follows
that a subset A of F is (%, V)-bounded if and only if 4 is z-bounded.
This implies §(V,E)=p(E',E)| V.

(b) Let B be a f(V,E)-bounded subset of V. Then by (a), B is (&', E)-
bounded. By the quasi-barrelledness of ,, B, is a T-neighborhood of 0.
Consequently, g*(#, V)< 7. On the other hand, let B be a z7-equicontinu-
ous subset of E’. Since V is 7-p.c., there exists a §(£', E)-bounded set ¥
such that B< VnF, where this closure is taken with respect to o(Z’, E).
Therefore, (VnF),=(VnF),<B,. By (a), VnF is p(V,E)-bounded so
that (VnF), is a B*(E, V)-neighborhood of 0. Thus v<pg*(X, V) which
yields v=g*(#, V). Since E, is barrelled, we have *(&,V)<p(E,V)<r,
whence all three topologies are equal.

(c) We have (E,z ) =V. By (a) and (b), K4z, p) is both complete
and separable. Also, Vjp y) is complete. By another result of De Vito
[1, Theorem 1], E g ) is quasi-complete.
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(d) If E,is V-reflexive, then E is V-semi-reflexive. Consequently, V is
minimal [4, Lemma 2]. Therefore, the 7-bounded sets are relatively
a(H,V)-compact. Hence the necessity easily follows.

In order to prove sufficiency, assume that each member of ¥V attains
its supremum on the o(Z, V)-closure of each t-bounded subset of Z.
Since 7=p(H, V), ¢ is a topological isomorphism of £, into V,'. Thus it
suffices to show ¢ is onto. That is, it suffices to show V is minimal. Let
A be a z-bounded set in E and let A denote the o(E, V)-closure of A.
By (c), 4 is ©(H, V)-complete. Therefore, by the extension to l.c. spaces
of the theorem of James as stated in [6], 4 is o(E, V)-compact. Hence
V is minimal.

Ruston, [7, Theorem 4] has shown that a Banach space E is topo-
logically isomorphic to the strong dual of a Banach space if and only if
there exists a continuous projection of E’’ onto £ which annihilates a
weak*-closed linear subspace of E’’. Recall from [4] that a l.c. space F
is an MSD space in case F' is S(F'’,F')-closed in F'', F is quasi M-bar-
relled and F is semi-distinguished. We can now state a partial generaliza-
tion of Ruston’s result.

THEOREM 3. Let E_ be a quasi-barrelled 1.c. space. If E_ is topologically
isomorphic to the strong dual of an MSD space, then there exists a
B(E",E'")-continuous projection of E'' onto E which annihilates a weak*-
closed linear subspace of E'.

Proor. By hypothesis, E, is a Mackey space and is topologically
isomorphic to the strong dual of an MSD space. By [3, Theorem 6],
there exists a minimal subspace V of E’ such that E, is V-reflexive.
Let ¢: E;— V' and ¢,: E; — Ey" denote the canonical embeddings.
@ is a topological isomorphism and g, is continuous. Let R: B, — V'
be the continuous linear mapping defined by R(f)=f|V for all fe E".
Define P: B, — E;" by

P(f) = (poop~toR)(f) for all fe B .

Then, using the same argument as in [7, Theorem 4], it is easily verified
that P is a continuous projection of EZ’’ onto E which annihilates a
weak*-closed linear subspace of E”.

4. Conjugate Banach Spaces.

We now restrict our considerations to Banach spaces, where the char-
acterizations of conjugate spaces become sharper. In the Banach space
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setting, we say K is V-reflexive if and only if ¢ is an isometric isomor-
phism of £ onto V’'. Petunin [5, Theorem 1] has shown that a Banach
space is reflexive if and only if its unit ball is closed in every Hausdorff
locally convex topology that is comparable with the norm topology.
Our next result is a Petunin like criterion for V-reflexivity.

THEOREM 4. If E is a Banach space and V is a total subspace of E', then
E is V-reflexive if and only if Sg is closed in every Hausdorff locally convex
topology on E that is comparable with the topology o(H,V).

Proor. If £ is V-reflexive, then S is o(&, V)-compact (by [9, Theo-
rem 2]) and therefore o(Z, V)-closed. Thus if v is any Hausdorff topology
on E comparable with o(Z, V), then S is 7-closed.

Suppose, on the other hand, that Sg is closed in every Hausdorff
locally convex topology on E that is comparable with o(Z, V). Then Sg
is o(#, V)-closed so that ¢ is an isometry (by [11, lemma 2]). Assume E
is not: V-reflexive. Then ¢(Z) is a proper subspace of V’. Let « € £ such
that |lx||=1 and consider the open set

U= {feV: |f—o@)l<1}

of V'. Since (p( )%= V', there exists f, € U such that f, ¢ ¢(#). Conse-
quently, ||fo—@(®)||<1. Let f be a norm-preserving linear extension of
Jo—o(=) to B’ and let g=F+@o(x). Then [lg —py(z)| <1 and g ¢ py(¥)

Let Z denote the one dimensional linear subspace generated by g and
let W=VnZy=Vn(kerg)=kerf,. If N=Z,, then Z=ZL=N° and,
since W <N, we have N°< WO, Therefore

1 > inf{h—g,@)|: heN°, xeE, |z|=1}
2 inf{|h—qy@)||: he W, ek, |x|=1}.

The latter number, call it 7, is the characteristic [2, Theorem 9] of W.
If v=0(E, W), then Sy is not t-closed because 1>r. Clearly t<o(#,V).
W is o(V,E)-dense in V because f, ¢ p(X). Since V is o(E’, E)-dense in
E', Wis o(E',E)-dense in E’, implying 7 is Hausdorff. The contradiction
shows £ is V-reflexive.

The following characterization of reflexive Banach spaces is an im-
mediate consequence of the preceding theorem.

CoroLLARY 1. A Banach space E is reflexive if and only if Sy 1s closed
wn every Hausdorff locally convex topology on E that is comparable to the
weak topology of E.



206 ROBERT H. LOHMAN

Recall that a subspace W of E’ is called duxial in case its characteristic
equals one.

COROLLARY 2. Let E be a Banach space and V be a total subspace of E'.
E is V-reflexive if and only if each total subspace of V is duxial.

Proor. Assume E is V-reflexive and let W be a total closed sub-
space of V. Then Sy is o(&, W)-closed, implying W is duxial.

On the other hand, assume each total subspace of V is duxial. Let t
be a Hausdorff locally convex topology comparable with o(E.V). V is
itself total so that V is duxial. Therefore Sg is o(#, V)-closed. Hence
we may assume t<o(E, V). Letting W=E, W is total and therefore
duxial subspace of E’. Consequently, Sy is o(X, W)-closed and hence
7-closed.

CoroLLARY 3. 4 Banach space E is reflexive if and only if each total
subspace of E' is duxial.

The following internal characterizations of conjugate Banach spaces
are stated in terms of the existence of a Hausdroff locally convex topo-
logy for which 'Sy must satisfy some well known compactness condi-
tions. Unfortunately, an analogous statement fails to hold for the
Smulian compactness condition (see Remark after Theorem 5).

THEOREM 5. Let E be a separable Banach space. The following are
equivalent:

(a) E is isometrically isomorphic (respectively, topologically isomorphic)
to the strong dual of a Banach space.

(b) Sg ts compact (respectively, relatively compact) for some Hausdorff
locally convex topology on E.

(c) Sg is sequentially compact (respectively, relatively sequentially com-
pact) for some Hausdorff locally convex topology on E.

(d) Sg 28 countably compact (respectively, relatively, countably compact)
for some Hausdorff locally convex topology on E.

Proor. It is well-known that (a) and (b) are equivalent (see [7, Theo-
rems 1 and 2] and [13, Proposition 1]). Likewise, the fact that (a) im-
plies (c) is known (see [11, Theorem 4]). Clearly (c) implies (d).

We now show that (d) implies (a). Assume Sy is relatively countably
compact for the Hausdorff locally convex topology t. Let U be a convex,
circled and 7z-open neighborhood of 0. Assume U does not absorb Sg.
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Then there exists a sequence {z,} in Sy such that z, ¢ nU for every n.
By hypothesis, {z,} has a z-cluster point x. Let m be a positive integer
such that z e mU. Since z, € x+ U = (m+ 1)U for infinitely many n, we
have a contradiction. It follows that U absorbs Sy, implying that 7 is
weaker than the norm topology. If V=E', then V is a total subspace
of E and Sy is relatively o(Z, V)-countably compact. It follows from
[4, Theorem 1] that E is topologically isomorphic to the strong dual
of V under the canonical embedding. If the stronger condition holds,
namely S is 7-countably compact, then ¢ is also an isometry.

ReMARK. In view of Theorem 5, it is natural to ask if there is an
internal characterization of conjugacy in terms of a Smulian intersection
property for Sg. That is, one might conjecture that a separable Banach
space F is isometrically isomorphic to the strong dual of a Banach space
if and only if there exists a Hausdorff locally convex topology = on £
such that each decreasing sequence of nonempty, z-bounded, t-closed
convex subsets of Sz has a nonempty intersection. This, however, is not
the case. For example, it is well-known that E =c, is not topologically
isomorphic to the strong dual of a Banach space. Let = be the strongest
locally convex topology on K. Suppose & is any family of nonempty,
7-bounded, 7-closed convex subsets of £ directed by inclusion. If 4 € &,
then A is contained in a finite dimensional subspace of E. Since 4 is
7-closed, 4 is v-compact. Therefore, N 4 x4 +0.
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