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ON THE POSSIBILITY OF FINDING
CERTAIN CRITERIA FOR THE TRRATIONALITY
OF A NUMBER DEFINED AS A LIMIT OF A SEQUENCE
OF RATIONAL NUMBERS

VIGGO BRUN and FINN FAYE KNUDSEN

In 1910 I (Viggo Brun) put forth the following theorem in an article
entitled “Ein Sats iiber Irrationalitat’” (See [1]).
If the sequence
@ Gy @y G A
by by by T by by

is composed of strictly increasing positive rational numbers which are
converging towards ¢, while the sequence

Ay —0Q; O3—0qy Ap11—Cy Qpio— Cpiy

bz'—bl’ ba—bz’ bn+1"'bn’ bn+2"bn+1

is composed of strictly decreasing numbers, then ¢ is irrational. Here
0,0y e oo @y, .. a0d by, by,...0,,... are supposed to be positive integers
such that b,,,>b,.

The geometrical considerations that led me to this theorem, but

which are not mentioned in [1], are the following:

A

(bys ay)

(ba: (13)

Fig. 1.
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Let x and y be coordinates in the plane. The points in the plane with
integral coordinates will be called lattice points. Let ¢ be the limit of
the given sequence. Then the lattice points (b;,@,) form a configuration
as shown in figure 1.

The characteristic feature of this configuration is that the polygon for-
med by the lattice points (b;, @;) shows its convex side towards the limit line
y=cx. If ¢ is rational, the line y =cx will contain infinitely many equi-
distant lattice points. On each side of the line there will exist a stripe
which does not contain any lattice points. This is impossible when the
configuration of latticepoints is as in fig. 1. For a non-geometrical proof
see [1]. The above theorem is simple but unfortunately not very useful
since the picture very often will look as in fig. 2.
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Fig. 2.

Here the polygon shows its concave side towards the limit line. Since
the situation in fig. 2 occurs “much more frequently’” than the situa-
tion in fig. 1, the value of my theorem is very limited.

In 1963 Al Froda published a generalization of the theorem in this
journal [2].

I myself have made many efforts to find useful generalizations. My
attempts have been to determine lattice points in the triangles

<(0’ 0)7 (bn!a’n)’ (bn+l’an+1)>

which lie closer to the origin than (b,,a,) and (b, ,4,@,.,) do. Possibly 1
will give some results in this direction in a future article.

During my work I made some temporary hypotheses. The first one
was the following:

HyproraEsis 1. Let
C=U+U+ ...+ U+ ...
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be the sum of a convergent series, where the u;’s are positive rational
numbers. If

hmn—->ooun+1/un =0
then c¢ is irrational.

This condition at least excludes all geometric series. I mentioned this
temporary hypothesis to my young friend Finn Faye Knudsen. He
recognized very quickly that the hypothesis was wrong and gave a coun-
terexample.

COUNTEREXAMPLE 1. Put

n
Uy = ———.
" (n41)!
Here the partial sums are
P23 e -1
$p=—F+—+—+ ... +—— =1-— .
o210 31 4! (n+1)! (m+1)!
Therefore
¢c=lim, s, =1
whereas

limn—-woun-i—l/un =0.
After a while I mentioned another possible hypothesis for irrationality

(which excluded counterexample 1).

HyrorrEsis 2. Let again
C = u1+u2+u3+ v e +un+ P

be the sum of a convergent series whose terms are positive rational
numbers such that

(1) 1imn—->oo”’n+l/un =0,

(2) un(un+2+un+3)_’u’?z+l >0.

Then ¢ is irrational.

When I showed this hypothesis to my friend, he proved that also
these conditions are insufficient and he gave a

COUNTEREXAMPLE 2. Put
n2n 2n 2n+l
w, = = - .
" (m+2)!  (n+1)! (n+2)!
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The rest of this paper, which is written by Finn Faye Knudsen, will
be devoted to a general theorem which shows that criteria of “this type”
can never lead to the goal. Even though this is a negative result, it gives
in my opinion a valuable contribution to the study of this fundamental
problem.

2.
Let k be a natrual number, and let £ < R* be the subset of real k-dim-
ensional space defined by z,>0, 2,>0,...,2,>0.

DeriniTIiON 1. By a criterion we shall mean a finite number of real-
valued functions, F,,F,,...,F,, and G, defined on E.

Let w,+uy+us+ ... +u,+ ... be a series with real positive terms.

DeriNtTiON 2. We shall say that the series u; +uy+us+ ... +u, + ...
satisfies the criterion (Fy,F,,. .., F,, @) if there exists a natural number
N with the property that for all = N we have:

(1) Fy(ty%pi1rUpizse - -sUpsr—1) > 0, 15i<m,
(2) lim,_, o G(p, Uy 15 - o Upyg—g) =0

DerFiniTION 3. We shall say that a criterion (F,,F,,...,F,,@G) is an
trrationality criterion if the following is true.

Whenever u; + %, +u3+ . . . +u%, + . .. is a convergent series whose terms
are positive rattonal numbers and satisfies the criterion (F,,F,,...,&),
its sum ¢ is an irrational number.

DrriNiTION 4. A criterion (Fy,F,,...,F,,G) will be said to be of
continuous type if all the functions F,,F,,...,F,, and G are continuous
functions.

We shall now prove that there exists no irrationality criterion of continu-
ous type or more precisely:

THEOREM. Let (F,F,,...,F,, @) be a criterion of continuous type and
suppose that a series u;+u,+uz+...+u,+ ... with rational positive
terms satisfies the criterion. Also suppose ¢=3u, < oo. Then we can find
another convergent series of positive rational terms vy +vy+ ... +v,+ ...
which also satisfies the criterion and whose sum is rational.
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The method of proof will be to change the terms in the original series
u; by sufficiently small positive rational numbers ;. Then define v;=
u;+06;. We will divide the proof into several parts.

LemMMA 1. Let F be a real-valued continuous function on E and let

Uy, U, - - -, Uy, . . . De a sequence of positive real numbers such that
(1) zu‘i < 00,
(2) F(wy,%pyiqs- - - sUpipe—1) >0 for all n>N.
Then there is a sequence &,&,,. . .,&,,. . . of positive real numbers such that
(3) le‘i < OO,
(4) for all sequences 6;,0,,. . .,0,,... with 0<3,= ¢, we have

F(un+6n’un+1+6n+1" . "un+k-l+6n+k—1) >0 fOT n>N .

Proor. We can choose the first NV &’s quite arbitrarily. For all n>N
we can choose a neighbourhood V, of the point (u,,%, 1. .., %,.15-1)
in K such that

F(Uw’vn+1’ cc ',vn+k—l) >0

for all points (v,,...,v,,4—1) in V,. The set V, certainly contains a
closed box of type:

{Ops- - >0pap—1) 5 OS|uy—0; <&} .

If we put

’ 3 - —f
¢, = min(g,"*tl g k2 g n)

n

and define ¢, =2-"min(l,¢',), the sequence ¢,,¢,,¢s,...,&,,... has the
required property.

LemMA 2. Let G be a real-valued continuous function on E and let

Uy gy o oy Uy, . .. be @ sequence of positive real numbers such that
(1) Ju;<oo
(2) 1imn—>oo G(un’un+1’ e ”u’n-i-k—l) =0.

Then there is a sequence of positive real numbers ey, ée,,. . ., &,,. .. Such that
(4) for all sequences d,,0,,. . .,0,,... with 0<6;<¢; we have

limn»coG(un'Fan’ ree ’un+k—l+6n+k—1) =0.
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Proor. Let V¥, be a neighbourhood of the point (u,,...,u, ;_;) in £
such that
lG('u’n" . ’un+k—1) _G(vn" . 7vn+k-—1)| < 2™,

Again ¥V, contains a box
{(vn’ s ’vn+k—1) ; 0= lui _vil s 81’"} >

and we see that the sequence ¢,,¢,,...,¢,,... has the required property
if we choose

&, = 27" min(l,¢g, %+l g nk+2 g 7)].

n

LeMMA 3. Let ¢,85,¢5,. . .,&,,... be a sequence of positive real numbers
such that 3 e;=¢e < co. Then given any number f, with 0< f <&, we can find
a sequence 8y,0,. . .,0,,... of positive rational numbers such that

(1) 0 é 61: < )

(2) Xé;=8.

Proor. Let &';=¢;¢/f and let s, be the partial sum,

8y = 2ia1i -
Inductively we define a sequence kg, k,,...,k,,... of rational numbers
as follows:
ky =0
k, = some rational number in the interval

<ma’x (kn—1’8n+1 - 8n+1)’8n> .

If we define 8, =k, —%,,_, fof n=1,2,... we have (1) and (2).
This completes the proof of the theorem.
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