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ON THE CANONICAL COMMUTATION RELATIONS
NIELS SKOVHUS POULSEN

1. Introduction.

In this paper we study representations of the Heisenberg form of the
canonical commutation relations. The main result (Theorem 3) is a
generalization of Rellich’s theorem [12] to systems with an arbitrary
number of degrees of freedom. The Rellich condition means that the
“number operator’ exists as a self adjoint operator; so Theorem 3 is
formally similar to a result on Weyl systems which has been discussed
by several authors (see [1] for references).

The first part of the paper contains a discussion of systems with
finitely many degrees of freedom. In this case Theorem 3 is a special
case of a general result due to Nelson [8] and a similar result has been
obtained by Dixmier [4]. Using some consequences of Nelson’s theory
on analytic domination we show that Theorem 3 can be derived from
Dixmier’s theorem, and we give an example which shows that Dixmier’s
theorem is stronger than Theorem 3. This section also contains a counter-
example due to Fuglede, and we prove a result on commutativity of self
adjoint operators which is of some independent interest (Lemma 2).

As a result of our discussion we get a simple proof of the fact that the
field operators of the Fock—Cook representation satisfy the Weyl rela-
tions. This result was proved by Segal [13] by means of functional
integration.

The present paper is somewhat different from an earlier version carry-
ing the same title [10].

2. Finitely many degrees of freedom.

In this section we present some examples and we give a discussion
of the relations between the results of Dixmier [4], Nelson [8], and
Rellich [12]. For terminology and background material we refer to
these papers (see also [11]). As the starting point of our discussion we
recall the following generalization of Rellich’s theorem.
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THEOREM 1. Let Py, P,,...,Ps, Q,...,Q; be closed symmetric operators
tn a Hilbert space K. Let D be a dense linear subspace of K, contained in
the domain of the operators P;Py, Q;Q;., @;Py., and P,Q, for j,k=1,2,...,d
and such that

i) [P, Prle=[Q;,@Qxle=0 and [P;,Qilr=—1idyx
forall xe D, j,k=1,2,....,d.

ii) The operator 33_,(P,2+ Q,2)|D is essentially self adjoint.

Then the operators P,...,P4, Qy,...,Q; are all self adjoint and there
exists a family {K,} ., of closed mutually orthogonal subspaces of K with
the following properties:

1) K=3®,.rK, and each K, reduces the operators P,...,Pg, @,,.. .,
@a-

2) The system induced by P,,...,Ps @y,...,Q; in K,, y eI is uni-
tarily equivalent to the conventional Schridinger representation for d de-
grees of freedom.

REMARKS.

1) In the stated form Theorem 1 is due to Nelson (and von Neumann).
In fact, by Corollary 9.1 of [8] the operators P,,...,P4, Q,,...,Q, are
all self adjoint and the corresponding unitary groups satisfy the Weyl
relations. Then von Neumann’s theorem [9] gives the desired result.

2) Theorem 1 can be derived from Rellich’s original theorem in the
following way: As in the proof of Theorem 3 (below) we let N denote
the closure of the operator } 3¢_ (P24 @;2—1I)|D and we let D =
N3, Dyi. (Here Dy denotes the domain of N*). Then N is self adjoint
and by the spectral theorem N|D_ is decomposable in the sense of Rel-
lich [12]. By the proof of Theorem 3 (or by the proof of Corollary 9.1
in [8]) the operators P,,...,P4 @y,...,Q4 are defined on D and they
all leave D, invariant. Since the commutation relations also hold on D_
the assertion of Theorem 1 follows from Rellich’s theorem [12].

3) For d=1 Theorem 1 was also proved by Dixmier [4]. For d>1
Dixmier proved the assertion of Theorem 1 when hypothesis ii) is re-
placed by the following condition

iii) The restrictions to D of the operators

sz + Qj2, sz + Pk27 sz + ka’ and sz + ka

are essentially self adjoint j,k=1,...,d, j+k. Actually Dixmier works
with an invariant domain but it is easily seen that this restriction is
unnecessary. The following lemma shows that Theorem 1 can be derived
from Dixmier’s theorem. This gives an affirmative answer to a question
left open by Dixmier.
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LemMa 1. Suppose the hypotheses of Theorem 1 are satisfied and let S
be a symmetric operator of the form (finite sums)

8 = 3 1 (@ P;Py+b3QQk + ¢ PiQr) + Xi, (i Py +€,Qy) -
Then S|D s essentially self adjoint.

Proor. Let N and D, be as before. As already remarked the opera-
tors P,,Q, leave D_ invariant. Therefore the set

{iP|D,. ..,iQ D, il|D}

generates a real Lie algebra of skew symmetric operators having D as
a common invariant domain. By Lemma 6.3 of [8], |N|D, |+ |I|D.|
analytically dominates |S|D,| (Here we use the notation of [8], so
|N|D,| denotes the ‘‘absolute value” of the operator N|D_), and we
have the following inequality

(%) ISz|| < const(||Nz||+||]) for all ze D .

By the spectral theorem N|D_ has a dense set of analytic vectors, so
it follows from Corollary 3.1 and Lemma 5.1 of [8] that S|D,, is essen-
tially self adjoint. Using (x) it is easily seen that S|D < (S|D)- (where
(+)~ denotes the closure). Hence (S|D, )~ = (S|D)-.

The following example shows that Dixmier’s theorem is stronger than
Theorem 1.

ExampLE 1. Let Py, P,, P;, @y, @y, @; denote the usual Schrodinger
operators in K =L%R3). Let
N, = ¥P2+Q2-1), k=1,2,3
and N=N,+ N,+ N, If {h,},-, denotes the Hermite functions we have
N, @by ®g) = Wy, @b, @)

for k=1,2,3, so
{hn1®h’na®hﬂ3 I nkg 0) k= 1,21 3}

is an orthonormal basis for K, consisting of eigenvectors for N. Each
f€ K has a unique representation of the form

f = 2 anlnnnshm@hna@hng ’
and we let

D = {feDy| 350000+ 2ma=0 Yongo+ Zmg=0 Toon; =0} -



ON THE CANONICAL COMMUTATION RELATIONS 115

Note that this condition makes sense, since
):i’.‘i=o @00l +z::=o |@ong0l +z:,=o |@oons| = const [|(NV +1)f]|

for all fe Dy. Then D is a dense linear subspace of K (D is the null-
space of a discontinuous linear functional on K), and it is easily seen
that the commutation relations hold on D. The operator N|D has def-
iciency indices (1,1), so the representation can not be identified by
means of Theorem 1. On the other hand it is easily seen that (N;+ N,)|D
is essentially self adjoint for j,k=1,2,3. Then it follows from Lemma 1
that all the Dixmier operators

sz + szs sz + Pk2’ sz + ka) sz + ka

are essentially self adjoint on D.

4) In [7] Kilpi claimed (as quoted in Putnam’s book [11, Theorem
4.11.3]) that the assertions of Theorem 1 (or of Dixmier’s theorem)
remain valid when hypothesis ii) is replaced by the weaker requirement :
iv) (P2 +@,2)|D is essentially self adjoint for £=1,2,...,d. This state-
ment is false as shown by Fuglede [6] who has kindly communicated the
following (unpublished) example to me.

ExampLE 2. Take K =L?*R3) and D =the subspace generated by the
functions:

(1,5, %5) b TT}-1 2™ €XP (— a2, + €y
with n, e N, q, € R, a,>0, and ¢, € C. For £=1,2,3 let

0

Pr = —ia—, 9y = T,
Ty
e = exp((2n)ipy), s = exp((2n)igy) .

Using Fuglede’s methods from [5] it can be verified that the operators

P, = py, Q1 = (¢1+85),
Py, = —qy Q5 = (ppt+r3)

are self adjoint in K, and they have the following properties:

a) D is a dense subspace contained in the domain of the operators
P,,Q, (k=1,2) and invariant under each of them.

b) [P, P, le=[Q;,Qilx =0, [P;,Qler= —idyx for all xe€ D, j,k=1,2.

c) The restrictions of P;,Q;, P+ @2 and P,2+ P,? to D are essentially
self adjoint, j,k=1,2.

d) @, and @, do not commute.
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This shows that Dixmier’s condition can not be weakened in the indicated
way.

In the proof of Theorem 3 we make use of (a very special case of)
the following “first order” criterion for commutativity of self adjoint
operators. In view of the examples constructed by Fuglede [5] and Nelson
[8, p. 606] this result is of some independent interest.

LemMMA 2. Let Ay, 4,,. . .,A; be closed symmetric operators in a Hilbert
space K. Let D be a dense linear subspace of K, contained in the domain of
A4, §,k=0,1,...,d and such that

i) [4;,Alx=0 for all x € D, j,k=0,1,...,d,
ii) Ago|D s essentially self adjoint,
iii) D4, Dy, for k=1,2,...,d.
Then Ay, A,,. .., A,z are commuting self adjoint operators and they are all
essentially self adjoint on D.

Proor. First we show the following statement:
(*) For all neN: 44D nSDypn1 and A4 x=A4," 4,2 for all
x €Dy, k=1,...,d.
By iii) (*) holds for n=1. Suppose (*) holds for n and let x € D 441,
y € D. By the induction hypothesis and the case n=1 we have

(Aoy, 4" A,x) = (Aydoy, 40" ')
= {(4,y,4,"x) = {y, 4, 4,"x) k=1,2,...,d.

Since 4,=(A4,|D)* this gives the desired result. Thus 4, leaves D =
N5, D 4 invariant for k=0,1,...,d.

By iii) and the closed graph theorem there exists a constant C such
that

|4zl = C(|l4gx||+ |jxl]) forall xe Dy, k=1,...,d.
It follows that
(Ae®+ A2+ ... +4g7)x| = const (|| 4o +[lz|)

for all xe D,. Since the commutation relations also hold on D_,
42| De| + |I|Dy| analytically dominates [(dg2+A4,2+ ...+ 442%)|D,|.
By Lemma 5.2 of [8], (42+ 4,2+ ... +A4)|D, is essentially self ad-
joint. Then by [8, Theorem 5] the A, 4,,...,4; are commuting self
adjoint operators, and 4,;|D,, is essentially self adjoint, £=0,1,...,d.
Using the graph-norm estimate it is easily seen that 4,|D. < (4,D)-
so this completes the proof.
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3. The Fock-Cook representation.

Let H be a complex Hilbert space of arbitrary dimension. Take
K,=C and K,=the symmetric part of HQH®...®H (n times) for
n=1,2,3,.... Then K=3®;> ,K, is the symmetric tensor algebra over
H (see [2] and [13]).

For z € H we let A(z) and A*(z) denote the annihilation and creation
operators constructed by Cook [2], and we let R(z) denote the closure of
the symmetric operator 2-#(A*(z) + A(z)). The main point of this section
is to give a simple proof of the following result (see [2] and [13]).

THEOREM 2. For each z € H, R(z) 33 self adjoint and the corresponding
unitary operators W(z)=exp(tR(z)) satisfy the Weyl relations

W)W (2') = exp(tIm{z,2' Y)W (') W(2)
for all z,2' € H.

ProorF. Let 2,2 € H and let D=37_, K, be the algebraic sum. Then
D is invariant under RE(z) and R(z') and they satisfy the following com-
mutation relation [2, p. 232]

[R(2),R(z')]Jx = —tIm{(z,2")x forall xeD.

By Dixmier’s theorem [4] or by Nelson’s theorem [8, Theorem 5] it suf-
fices to show that the operator (R(z)2+ R(2')?)|D is essentially self adjoint.
(Note that Dixmier’s argument also applies to the case of commuting
operators [4, p. 268].)

Let {2,},s be an orthonormal basis for H and let P,=R(z,), @,=
R(—12,) for « € I. Then

[PouPﬂ]x = [Qa’Qﬂ]x = 0’
[P, Qplx = —1d,5%

for all z€ D, «,f € I. We assume that {z,} is chosen such that z and 2’
belong to a two-dimensional subspace span {z,,%:}. Since the mapping
z — R(2)|D is real linear Lemma 1 shows that it suffices to verify that
the operator (P,2+4@,%+ P42+ @,%)|D is essentially self adjoint.

Let A denote the set of all functions «+» n, from the index set I into
the set of non-negative integers such that n,=0 except for finitely
many «’s. Let z, denote the vacuum vector (1,0,0,...) € K and define

%, = [laer (n,!)tA*(2,) "2, forned.

Then the vectors z,, n € 4 play the role of the Hermite functions in the
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Schrodinger representation and {x, | » € 4} is an orthonormal basis for
K (see [2, p. 228]). The operators N,=A4%*(z,)4(z,) are self adjoint and
we have

Naxn = %(Paz'l‘Qaz_I)xn = N,

for all x € I, n € A. In particular, the operator (N, + N,)|D is essentially
self adjoint.

REMARKS.

a) It also follows from the Dixmier—Nelson theorem that the restric-
tion of R(z) to the subspace D,=spanf{z, | » € A} is essentially self
adjoint (but note that {x,} depends on 2).

b) Instead of using Lemma 1 one can prove directly that each x € D
is an analytic vector for the operator R(z)?+ R(z’)? (see [10]).

DEriNiTION. A family {P,,Q,}, obtained by restricting R(:) to an
orthonormal basis {z,},.; of H is called a restricted Fock—Cook represen-
tation over H.

It is well-known that any two restricted Fock—-Cook representations
over H are unitarily equivalent. In fact, if U is a unitary operator in H
there exists a unitary operator I'(U) in K such that (by [2] and [13])

(O)RE)I(U)* = R(Uz) forall ze H.

4. The general Rellich theorem.

TaEOREM 3. Let {P,,Q,},.; be a family of closed symmetric operators
in a Hilbert space K. Let D be a dense linear subspace of K, contained in
the domain of the operators PPy, Q,Q5, P,Qs and Q.P, for all «,fel
and such that
1) [P,, Pgle=[Q,,@slx=0 and [P,,Qglx= —1d,5x for all x e D, «,f € I,
ii) Ne=3, 3 (P2+Q,2—I)x exists for all x € D, and the symmetric oper-

ator N (defined by this formula) is essentially self adjoint on D.
Then the operators P,,Q,, «€l are all self adjoint and the family
{P,,Q.}aecx 18 unitarily equivalent to a direct sum of restricted Fock-Cook
representations over 13(I).

Proor. Let % denote the family of all finite subsets of the index set I.
& is partially ordered by inclusion. For « € I we let

N, = ¥P2+Q.2-1)
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and for F € & we let Np=3, xN,. Then hypothesis ii) means that the
generalized sequence {N x| F € #} is convergent for each € D. (In
case I is countable it suffices to assume that the usual partial sums con-
verge.) Since each N is symmetric on D it is clear that the limit N’z =
lim N gz, x € D is a symmetric linear operator N’ on D. We let N denote
the (self adjoint) closure of N’ and we let D =M%_; Dya. As usual we
introduce

A, =2%P

o

a—iQa)> Aa+ = 2_*(Pa+iQa) .
Then for x € D we have

<Nax:x> = <Aa+Aax’x> = “Amx“2 20,
and hence

1Pl + [|Que]®

2(N x,x)+ (x,x)
2(Nz,x) +(2,x) = ||Na|*+ 2[] .

IIA

If « € Dy there exists a sequence {z,}<D such that z, -~z and Nz, —
Nz. Replacing = by (z,—x,,) in the inequality above and using the fact
that the operators P, and @, are closed it follows that x € Dp nDy ,
Px, > Px and Q,x, - @,x for all « €I. In particular, P, and @, are
defined on D, and we want to show that they leave this subspace in-
variant. First some preliminary observations.

For z,y € D it follows from hypothesis i) that

(N, Py) = (P2, Ngy)+<2,i0,,Q59> -

(Nz,Py) = (P, Ny)+{2,1Q,9) ,

and this equality remains valid for all z,y € Dy. If y € Dy, we get

<Nx’Pay> = <x>PaNy+1:Qay>

for all z € Dy. Since N is self adjoint this shows that P,y € Dy and

Hence also

NPay = Pa'Ny+iQay ¢
Similarly, @, maps Dy, into Dy and
NQy = QNy—iPy for yeDys.

If & is a non-negative integer we define (ad N)*(P,) and (ad N)¥(Q,) as
follows:

I

(adN)¥P,) = P, for k even

1Q, for k odd
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and
(ad NY¥(Q,) = @, for k even

= —¢P, forkodd.
Then if S=P, or S=¢, we have
N@dNY(S)y = (adN)¥(S)Ny+ (ad N)¥+1(S)y

for all y € Dy,, £k=0,1,2,....

It is now easy to show the following statement (S denotes P, or @,
xel)
(*) For all n € N: S maps Dyny1 into Dy, and for y € Dyyy: we have

NSy = Sh_o(f)(ad N)K(S)Nnky .

The proof is by induction and since it is similar to the proof of (*) in
Lemma 2 we omit the details.

It follows that all the operators P,, @, « € I leave D_, invariant, and
it is easily seen that the commutation relations remain valid on D, .

Using (*) (for n=1) we get that NpNe=NNgx forallx e D, F € F.
Also it follows from (*) and previous arguments that the domain of N2
is contained in the domain of Nj. If we let 4,=N? we get from
Lemma 2 that N | D, is essentially self adjoint and its closure commutes
with N (i.e., their spectral projections commute).

In particular, we can apply Theorem 1 to each finite subsystem
{P,,Q.}.er- It follows that the operators P,, @,, x € I are all self ad-
joint and the corresponding unitary groups U (t)=exp (itP,) and V (¢) =
exp (1Q),) satisfy the Weyl relations

U 8)Ug(t) = Ugt)U,l8),  Vals)Vlt) = Vy(t)Vols),
U, (8)Vy(t) = exp(id,,58) V(1)UL (3)

for all s,teR, «,f€ 1.

Let {2,},; be an orthonormal basis for I/*() and take H,=
span{z, | « € I}. Then the unitary groups {U,,V,} give rise to a Weyl
gystem over H, in the usual way (see e.g. [1]), and the conclusion of
Theorem 3 follows from [3] (see also [1, p. 79]). Alternatively, by a
simple extension of Theorem 5.2 in [15] we have

¢V = gtr.-lime*NF |

uniformly on compact ¢-intervals, so the desired conclusion follows
from [1, Theorem 1].
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RemaARk. The crucial point of the proof in [3] is the construction of a
“vacuum vector”’. In the present case this can be done quite easily.
Since this construction can be used to give a proof of Theorem 3 Whlch
is independent of Theorem 1 we indicate the details:

Let N —S;'jldE(l) where A,=info(N) =0 and choose z, € K such that
llzoll =1 and xy=E([4),4,+ 4])x,. Then clearly x,e D, and using (*)
(for n=1) we have NA xq=A_ (N —I)z, for all « € I. Using our informa-
tion from Lemma 2 we get (by spectral theory)

;Lo!]Aaxonz é (NAaxO’Aax0>
(N =D)xg, N0 = (Ag— 34 20]* -

i

Hence 4,x,=0 for all x €1, so Nxy=0 and 4y=0. Let {%,,},.r be an
orthonormal basis for {x | Nz =0} and define the corresponding ‘‘Her-
mite functions’ (see the proof of Theorem 2)

ny = 1« () A, )%, for ned.

Then it is not difficult to complete the proof of Theorem 3 (see also [14]).
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