ON THE CANONICAL COMMUTATION RELATIONS NIELS SKOVHUS POULSEN

1. Introduction.

In this paper we study representations of the Heisenberg form of the canonical commutation relations. The main result (Theorem 3) is a generalization of Rellich's theorem [12] to systems with an arbitrary number of degrees of freedom. The Rellich condition means that the "number operator" exists as a self adjoint operator; so Theorem 3 is formally similar to a result on Weyl systems which has been discussed by several authors (see [1] for references).

The first part of the paper contains a discussion of systems with finitely many degrees of freedom. In this case Theorem 3 is a special case of a general result due to Nelson [8] and a similar result has been obtained by Dixmier [4]. Using some consequences of Nelson's theory on analytic domination we show that Theorem 3 can be derived from Dixmier's theorem, and we give an example which shows that Dixmier's theorem is stronger than Theorem 3. This section also contains a counterexample due to Fuglede, and we prove a result on commutativity of self adjoint operators which is of some independent interest (Lemma 2).

As a result of our discussion we get a simple proof of the fact that the field operators of the Fock-Cook representation satisfy the Weyl relations. This result was proved by Segal [13] by means of functional integration.

The present paper is somewhat different from an earlier version carrying the same title [10].

2. Finitely many degrees of freedom.

In this section we present some examples and we give a discussion of the relations between the results of Dixmier [4], Nelson [8], and Rellich [12]. For terminology and background material we refer to these papers (see also [11]). As the starting point of our discussion we recall the following generalization of Rellich's theorem.

Received April 17, 1972.

Theorem 1. Let P_1, P_2, \ldots, P_d , Q_1, \ldots, Q_d be closed symmetric operators in a Hilbert space K. Let D be a dense linear subspace of K, contained in the domain of the operators $P_j P_k$, $Q_j Q_k$, $Q_j P_k$, and $P_j Q_k$ for $j, k = 1, 2, \ldots, d$ and such that

- i) $[P_j, P_k]x = [Q_j, Q_k]x = 0$ and $[P_j, Q_k]x = -i\delta_{jk}x$ for all $x \in D$, $j, k = 1, 2, \dots, d$.
- ii) The operator $\sum_{k=1}^{d} (P_k^2 + Q_k^2)|D$ is essentially self adjoint. Then the operators $P_1, \ldots, P_d, Q_1, \ldots, Q_d$ are all self adjoint and there exists a family $\{K_\gamma\}_{\gamma \in \Gamma}$ of closed mutually orthogonal subspaces of K with the following properties:
- 1) $K = \sum \bigoplus_{\gamma \in \Gamma} K_{\gamma}$ and each K_{γ} reduces the operators $P_1, \ldots, P_d, Q_1, \ldots, Q_d$.
- 2) The system induced by $P_1, \ldots, P_d, Q_1, \ldots, Q_d$ in K_{γ} , $\gamma \in \Gamma$ is unitarily equivalent to the conventional Schrödinger representation for d degrees of freedom.

REMARKS.

- 1) In the stated form Theorem 1 is due to Nelson (and von Neumann). In fact, by Corollary 9.1 of [8] the operators $P_1, \ldots, P_d, Q_1, \ldots, Q_d$ are all self adjoint and the corresponding unitary groups satisfy the Weyl relations. Then von Neumann's theorem [9] gives the desired result.
- 2) Theorem 1 can be derived from Rellich's original theorem in the following way: As in the proof of Theorem 3 (below) we let N denote the closure of the operator $\frac{1}{2}\sum_{k=1}^{d}(P_k^2+Q_k^2-I)|D$ and we let $D_{\infty}=\bigcap_{k=1}^{\infty}D_{N^k}$. (Here D_{N^k} denotes the domain of N^k). Then N is self adjoint and by the spectral theorem $N|D_{\infty}$ is decomposable in the sense of Rellich [12]. By the proof of Theorem 3 (or by the proof of Corollary 9.1 in [8]) the operators $P_1,\ldots,P_d,\ Q_1,\ldots,Q_d$ are defined on D_{∞} and they all leave D_{∞} invariant. Since the commutation relations also hold on D_{∞} the assertion of Theorem 1 follows from Rellich's theorem [12].
- 3) For d=1 Theorem 1 was also proved by Dixmier [4]. For d>1 Dixmier proved the assertion of Theorem 1 when hypothesis ii) is replaced by the following condition
 - iii) The restrictions to D of the operators

$$P_i^2 + Q_i^2$$
, $P_i^2 + P_k^2$, $Q_i^2 + Q_k^2$, and $P_i^2 + Q_k^2$

are essentially self adjoint j, k = 1, ..., d, $j \neq k$. Actually Dixmier works with an invariant domain but it is easily seen that this restriction is unnecessary. The following lemma shows that Theorem 1 can be derived from Dixmier's theorem. This gives an affirmative answer to a question left open by Dixmier.

Lemma 1. Suppose the hypotheses of Theorem 1 are satisfied and let S be a symmetric operator of the form (finite sums)

$$S = \sum_{j,k} (a_{jk} P_{j} P_{k} + b_{jk} Q_{j} Q_{k} + c_{jk} P_{j} Q_{k}) + \sum_{k} (d_{k} P_{k} + e_{k} Q_{k}).$$

Then S|D is essentially self adjoint.

PROOF. Let N and D_{∞} be as before. As already remarked the operators P_k,Q_k leave D_{∞} invariant. Therefore the set

$$\{iP_1|D_{\infty},\ldots,iQ_d|D_{\infty},iI|D_{\infty}\}$$

generates a real Lie algebra of skew symmetric operators having D_{∞} as a common invariant domain. By Lemma 6.3 of [8], $|N|D_{\infty}|+|I|D_{\infty}|$ analytically dominates $|S|D_{\infty}|$ (Here we use the notation of [8], so $|N|D_{\infty}|$ denotes the "absolute value" of the operator $N|D_{\infty}$), and we have the following inequality

(*)
$$||Sx|| \leq \operatorname{const}(||Nx|| + ||x||)$$
 for all $x \in D_{\infty}$.

By the spectral theorem $N|D_{\infty}$ has a dense set of analytic vectors, so it follows from Corollary 3.1 and Lemma 5.1 of [8] that $S|D_{\infty}$ is essentially self adjoint. Using (*) it is easily seen that $S|D_{\infty}\subseteq (S|D)^-$ (where $(\cdot)^-$ denotes the closure). Hence $(S|D_{\infty})^-=(S|D)^-$.

The following example shows that Dixmier's theorem is stronger than Theorem 1.

Example 1. Let P_1 , P_2 , P_3 , Q_1 , Q_2 , Q_3 denote the usual Schrödinger operators in $K = L^2(\mathbb{R}^3)$. Let

$$N_k \, = \, {\textstyle \frac{1}{2}} (P_k{}^2 + Q_k{}^2 - I), \quad k = 1, 2, 3$$

and $N = N_1 + N_2 + N_3$. If $\{h_n\}_{n \ge 0}$ denotes the Hermite functions we have

$$N_k(h_{n_1} \otimes h_{n_2} \otimes h_{n_3}) = n_k(h_{n_1} \otimes h_{n_2} \otimes h_{n_3})$$

for k = 1, 2, 3, so

$$\{h_{n_1} {\otimes} h_{n_2} {\otimes} h_{n_3} \; \big| \; \; n_k {\,\geqq\,} 0, \quad k {\,=\,} 1, 2, 3\}$$

is an orthonormal basis for K, consisting of eigenvectors for N. Each $f \in K$ has a unique representation of the form

$$f = \sum a_{n_1 n_2 n_3} h_{n_1} \otimes h_{n_2} \otimes h_{n_3} ,$$

and we let

$$D \,=\, \{f \in D_N \,\,\big|\,\, \sum_{n_1=0}^\infty a_{n_100} + \sum_{n_2=0}^\infty a_{0n_20} + \sum_{n_3=0}^\infty a_{00n_3} = 0\} \,\,.$$

Note that this condition makes sense, since

$$\sum_{n_1=0}^{\infty} |a_{n_100}| + \sum_{n_2=0}^{\infty} |a_{0n_20}| + \sum_{n_3=0}^{\infty} |a_{00n_3}| \leq \text{const} \ \|(N+I)f\|$$

for all $f \in D_N$. Then D is a dense linear subspace of K (D is the null-space of a discontinuous linear functional on K), and it is easily seen that the commutation relations hold on D. The operator N|D has deficiency indices (1,1), so the representation can not be identified by means of Theorem 1. On the other hand it is easily seen that $(N_j + N_k)|D$ is essentially self adjoint for j,k=1,2,3. Then it follows from Lemma 1 that all the Dixmier operators

$$P_{j}^{2}+Q_{j}^{2},\,P_{j}^{2}+P_{k}^{2},\,Q_{j}^{2}+Q_{k}^{2},\,\,P_{j}^{2}+Q_{k}^{2}$$

are essentially self adjoint on D.

4) In [7] Kilpi claimed (as quoted in Putnam's book [11, Theorem 4.11.3]) that the assertions of Theorem 1 (or of Dixmier's theorem) remain valid when hypothesis ii) is replaced by the weaker requirement: iv) $(P_k^2 + Q_k^2)|D$ is essentially self adjoint for $k = 1, 2, \ldots, d$. This statement is false as shown by Fuglede [6] who has kindly communicated the following (unpublished) example to me.

EXAMPLE 2. Take $K = L^2(\mathbb{R}^3)$ and D = the subspace generated by the functions:

$$(x_1,x_2,x_3) \mapsto \prod\nolimits_{k=1}^3 \, {x_k}^{n_k} \exp{(-a_k x_k^{\ 2} + c_k x_k)}$$

with $n_k \in \mathbb{N}$, $a_k \in \mathbb{R}$, $a_k > 0$, and $c_k \in \mathbb{C}$. For k = 1, 2, 3 let

$$\begin{split} p_k &= -i \, \frac{\partial}{\partial x_k}, \quad q_k = x_k, \\ r_k &= \exp \left((2\pi)^{\frac{1}{2}} p_k \right), \quad s_k = \exp \left((2\pi)^{\frac{1}{2}} q_k \right). \end{split}$$

Using Fuglede's methods from [5] it can be verified that the operators

$$\begin{array}{ll} P_1 = \, p_1, & Q_1 = \, (q_1 + s_3)^- \; , \\ P_2 = \, - \, q_2, & Q_2 = \, (p_2 + r_3)^- \end{array} \label{eq:power_power}$$

are self adjoint in K, and they have the following properties:

- a) D is a dense subspace contained in the domain of the operators P_k, Q_k (k=1,2) and invariant under each of them.
- b) $[P_j, P_k]x = [Q_j, Q_k]x = 0$, $[P_j, Q_k]x = -i\delta_{jk}x$ for all $x \in D$, j, k = 1, 2.
- c) The restrictions of P_j , Q_j , $P_j^2 + Q_k^2$, and $P_1^2 + P_2^2$ to D are essentially self adjoint, j, k = 1, 2.
- d) Q_1 and Q_2 do not commute.

This shows that Dixmier's condition can not be weakened in the indicated way.

In the proof of Theorem 3 we make use of (a very special case of) the following "first order" criterion for commutativity of self adjoint operators. In view of the examples constructed by Fuglede [5] and Nelson [8, p. 606] this result is of some independent interest.

LEMMA 2. Let A_0, A_1, \ldots, A_d be closed symmetric operators in a Hilbert space K. Let D be a dense linear subspace of K, contained in the domain of A_iA_k , $j, k = 0, 1, \ldots, d$ and such that

- i) $[A_j, A_k]x = 0$ for all $x \in D$, j, k = 0, 1, ..., d,
- ii) $A_0|D$ is essentially self adjoint,
- iii) $D_{\mathcal{A}_0} \subseteq D_{\mathcal{A}_k}$ for $k = 1, 2, \dots, d$.

Then A_0, A_1, \ldots, A_d are commuting self adjoint operators and they are all essentially self adjoint on D.

PROOF. First we show the following statement:

(*) For all $n \in \mathbb{N}$: $A_k D_{A_0^n} \subseteq D_{A_0^{n-1}}$ and $A_k A_0^{n-1} x = A_0^{n-1} A_k x$ for all $x \in D_{A_0^n}$, $k = 1, \ldots, d$.

By iii) (*) holds for n=1. Suppose (*) holds for n and let $x \in D_{A_0^{n+1}}$, $y \in D$. By the induction hypothesis and the case n=1 we have

$$\langle A_0 y, A_0^{n-1} A_k x \rangle = \langle A_k A_0 y, A_0^{n-1} x \rangle$$

$$= \langle A_k y, A_0^n x \rangle = \langle y, A_k A_0^n x \rangle \quad k = 1, 2, \dots, d.$$

Since $A_0 = (A_0|D)^*$ this gives the desired result. Thus A_k leaves $D_\infty = \bigcap_{n=1}^\infty D_{A_0^n}$ invariant for $k = 0, 1, \ldots, d$.

By iii) and the closed graph theorem there exists a constant C such that

$$||A_k x|| \le C(||A_0 x|| + ||x||)$$
 for all $x \in D_{A_0}$, $k = 1, ..., d$.

It follows that

$$||(A_0^2 + A_1^2 + \ldots + A_d^2)x|| \le \operatorname{const}(||A_0^2x|| + ||x||)$$

for all $x\in D_{\infty}$. Since the commutation relations also hold on D_{∞} , $|A_0^2|D_{\infty}|+|I|D_{\infty}|$ analytically dominates $|(A_0^2+A_1^2+\ldots+A_d^2)|D_{\infty}|$. By Lemma 5.2 of [8], $(A_0^2+A_1^2+\ldots+A_d^2)|D_{\infty}$ is essentially self adjoint. Then by [8, Theorem 5] the A_0,A_1,\ldots,A_d are commuting self adjoint operators, and $A_k|D_{\infty}$ is essentially self adjoint, $k=0,1,\ldots,d$. Using the graph-norm estimate it is easily seen that $A_k|D_{\infty}\subseteq (A_k|D)^-$ so this completes the proof.

3. The Fock-Cook representation.

Let H be a complex Hilbert space of arbitrary dimension. Take $K_0 = \mathbb{C}$ and $K_n =$ the symmetric part of $H \otimes H \otimes \ldots \otimes H$ (n times) for $n = 1, 2, 3, \ldots$. Then $K = \sum \bigoplus_{n=0}^{\infty} K_n$ is the symmetric tensor algebra over H (see [2] and [13]).

For $z \in H$ we let A(z) and $A^*(z)$ denote the annihilation and creation operators constructed by Cook [2], and we let R(z) denote the closure of the symmetric operator $2^{-\frac{1}{2}}(A^*(z) + A(z))$. The main point of this section is to give a simple proof of the following result (see [2] and [13]).

THEOREM 2. For each $z \in H$, R(z) is self adjoint and the corresponding unitary operators $W(z) = \exp(iR(z))$ satisfy the Weyl relations

$$W(z)W(z') = \exp(i\operatorname{Im}\langle z, z'\rangle)W(z')W(z)$$

for all $z, z' \in H$.

PROOF. Let $z, z' \in H$ and let $D = \sum_{n=0}^{\infty} K_n$ be the algebraic sum. Then D is invariant under R(z) and R(z') and they satisfy the following commutation relation [2, p. 232]

$$[R(z), R(z')]x = -i \operatorname{Im} \langle z, z' \rangle x$$
 for all $x \in D$.

By Dixmier's theorem [4] or by Nelson's theorem [8, Theorem 5] it suffices to show that the operator $(R(z)^2 + R(z')^2)|D$ is essentially self adjoint. (Note that Dixmier's argument also applies to the case of commuting operators [4, p. 268].)

Let $\{z_{\alpha}\}_{{\alpha}\in I}$ be an orthonormal basis for H and let $P_{\alpha}=R(z_{\alpha}),\ Q_{\alpha}=R(-iz_{\alpha})$ for $\alpha\in I$. Then

$$\begin{split} [P_{\alpha},P_{\beta}]x &= [Q_{\alpha},Q_{\beta}]x = 0\,,\\ [P_{\alpha},Q_{\beta}]x &= -i\delta_{\alpha\beta}x \end{split}$$

for all $x \in D$, $\alpha, \beta \in I$. We assume that $\{z_{\alpha}\}$ is chosen such that z and z' belong to a two-dimensional subspace span $\{z_{\alpha}, z_{\beta}\}$. Since the mapping $z \to R(z)|D$ is real linear Lemma 1 shows that it suffices to verify that the operator $(P_{\alpha}^{\ 2} + Q_{\alpha}^{\ 2} + P_{\beta}^{\ 2} + Q_{\beta}^{\ 2})|D$ is essentially self adjoint.

Let Δ denote the set of all functions $\alpha \mapsto n_{\alpha}$ from the index set I into the set of non-negative integers such that $n_{\alpha}=0$ except for finitely many α 's. Let x_0 denote the vacuum vector $(1,0,0,\ldots) \in K$ and define

$$x_n = \prod_{\alpha \in I} (n_\alpha!)^{-\frac{1}{2}} A^*(z_\alpha)^{n_\alpha} x_0 \quad \text{for } n \in \Delta$$
.

Then the vectors x_n , $n \in \Delta$ play the role of the Hermite functions in the

Schrödinger representation and $\{x_n \mid n \in \Delta\}$ is an orthonormal basis for K (see [2, p. 228]). The operators $N_{\alpha} = A^*(z_{\alpha})A(z_{\alpha})$ are self adjoint and we have

$$N_{\alpha}x_{n} = \frac{1}{2}(P_{\alpha}^{2} + Q_{\alpha}^{2} - I)x_{n} = n_{\alpha}x_{n}$$

for all $\alpha \in I$, $n \in \Delta$. In particular, the operator $(N_{\alpha} + N_{\beta})|D$ is essentially self adjoint.

REMARKS.

- a) It also follows from the Dixmier-Nelson theorem that the restriction of R(z) to the subspace $D_0 = \operatorname{span}\{x_n \mid n \in \Delta\}$ is essentially self adjoint (but note that $\{x_n\}$ depends on z).
- b) Instead of using Lemma 1 one can prove directly that each $x \in D$ is an analytic vector for the operator $R(z)^2 + R(z')^2$ (see [10]).

DEFINITION. A family $\{P_{\alpha}, Q_{\alpha}\}_{\alpha \in I}$ obtained by restricting $R(\cdot)$ to an orthonormal basis $\{z_{\alpha}\}_{\alpha \in I}$ of H is called a restricted Fock-Cook representation over H.

It is well-known that any two restricted Fock-Cook representations over H are unitarily equivalent. In fact, if U is a unitary operator in H there exists a unitary operator $\Gamma(U)$ in K such that (by [2] and [13])

$$\Gamma(U)R(z)\Gamma(U)^* = R(Uz)$$
 for all $z \in H$.

4. The general Rellich theorem.

THEOREM 3. Let $\{P_{\alpha},Q_{\alpha}\}_{\alpha\in I}$ be a family of closed symmetric operators in a Hilbert space K. Let D be a dense linear subspace of K, contained in the domain of the operators $P_{\alpha}P_{\beta}$, $Q_{\alpha}Q_{\beta}$, $P_{\alpha}Q_{\beta}$ and $Q_{\alpha}P_{\beta}$ for all $\alpha,\beta\in I$ and such that

- i) $[P_{\alpha}, P_{\beta}]x = [Q_{\alpha}, Q_{\beta}]x = 0$ and $[P_{\alpha}, Q_{\beta}]x = -i\delta_{\alpha\beta}x$ for all $x \in D$, $\alpha, \beta \in I$,
- ii) $Nx = \sum_{\alpha \in I} \frac{1}{2} (P_{\alpha}^2 + Q_{\alpha}^2 I)x$ exists for all $x \in D$, and the symmetric operator N (defined by this formula) is essentially self adjoint on D.

 Then the operators $P_{...}Q_{...} \alpha \in I$ are all self adjoint and the family

Then the operators $P_{\alpha}, Q_{\alpha}, \alpha \in I$ are all self adjoint and the family $\{P_{\alpha}, Q_{\alpha}\}_{\alpha \in I}$ is unitarily equivalent to a direct sum of restricted Fock-Cook representations over $l^{2}(I)$.

PROOF. Let \mathscr{F} denote the family of all finite subsets of the index set I. \mathscr{F} is partially ordered by inclusion. For $\alpha \in I$ we let

$$N_{\alpha} = \frac{1}{2}(P_{\alpha}^{2} + Q_{\alpha}^{2} - I)$$

and for $F \in \mathscr{F}$ we let $N_F = \sum_{\alpha \in F} N_\alpha$. Then hypothesis ii) means that the generalized sequence $\{N_F x \mid F \in \mathscr{F}\}$ is convergent for each $x \in D$. (In case I is countable it suffices to assume that the usual partial sums converge.) Since each N_F is symmetric on D it is clear that the limit $N'x = \lim N_F x$, $x \in D$ is a symmetric linear operator N' on D. We let N denote the (self adjoint) closure of N' and we let $D_\infty = \bigcap_{n=1}^\infty D_{N^n}$. As usual we introduce

$$A_{\alpha} \, = \, 2^{-\frac{1}{2}} (P_{\alpha} - i Q_{\alpha}), \quad A_{\alpha}{}^{+} \, = \, 2^{-\frac{1}{2}} (P_{\alpha} + i Q_{\alpha}) \; . \label{eq:A_alpha}$$

Then for $x \in D$ we have

$$\langle N_{\alpha}x, x \rangle = \langle A_{\alpha}^{+}A_{\alpha}x, x \rangle = ||A_{\alpha}x||^{2} \geq 0$$

and hence

$$\begin{split} ||P_{\scriptscriptstyle \alpha}x||^2 + ||Q_{\scriptscriptstyle \alpha}x||^2 &= \ 2\langle N_{\scriptscriptstyle \alpha}x,x\rangle + \langle x,x\rangle \\ &\leq \ 2\langle Nx,x\rangle + \langle x,x\rangle \ \leq \ ||Nx||^2 + 2||x||^2 \ . \end{split}$$

If $x \in D_N$ there exists a sequence $\{x_n\} \subseteq D$ such that $x_n \to x$ and $Nx_n \to Nx$. Replacing x by $(x_n - x_m)$ in the inequality above and using the fact that the operators P_α and Q_α are closed it follows that $x \in D_{P_\alpha} \cap D_{Q_\alpha}$, $P_\alpha x_n \to P_\alpha x$ and $Q_\alpha x_n \to Q_\alpha x$ for all $\alpha \in I$. In particular, P_α and Q_α are defined on D_∞ and we want to show that they leave this subspace invariant. First some preliminary observations.

For $x, y \in D$ it follows from hypothesis i) that

$$\langle N_{\beta}x, P_{\alpha}y \rangle = \langle P_{\alpha}x, N_{\beta}y \rangle + \langle x, i\delta_{\alpha\beta}Q_{\beta}y \rangle.$$

Hence also

$$\langle Nx, P_{\alpha}y \rangle = \langle P_{\alpha}x, Ny \rangle + \langle x, iQ_{\alpha}y \rangle$$
,

and this equality remains valid for all $x, y \in D_N$. If $y \in D_{N^2}$ we get

$$\langle Nx, P_{\alpha}y \rangle = \langle x, P_{\alpha}Ny + iQ_{\alpha}y \rangle$$

for all $x \in D_N$. Since N is self adjoint this shows that $P_{\alpha}y \in D_N$ and

$$NP_{\alpha}y = P_{\alpha}Ny + iQ_{\alpha}y$$
.

Similarly, Q_{α} maps D_{N^2} into D_N and

$$NQ_{\alpha}y = Q_{\alpha}Ny - iP_{\alpha}y$$
 for $y \in D_{N^2}$.

If k is a non-negative integer we define $(\operatorname{ad} N)^k(P_\alpha)$ and $(\operatorname{ad} N)^k(Q_\alpha)$ as follows:

$$(\operatorname{ad} N)^k(P_{\alpha}) = P_{\alpha}$$
 for k even
= iQ_{α} for k odd

and

$$\begin{split} (\operatorname{ad} N)^k(Q_{\scriptscriptstyle\alpha}) \; &= \; Q_{\scriptscriptstyle\alpha} & \quad \text{for k even} \\ &= \; -iP_{\scriptscriptstyle\alpha} & \quad \text{for k odd }. \end{split}$$

Then if $S = P_{\alpha}$ or $S = Q_{\alpha}$ we have

$$N(\operatorname{ad} N)^k(S)y = (\operatorname{ad} N)^k(S)Ny + (\operatorname{ad} N)^{k+1}(S)y$$

for all $y \in D_{N^2}$, $k = 0, 1, 2, \ldots$

It is now easy to show the following statement (S denotes P_{α} or Q_{α} , $\alpha \in I$)

(*) For all $n \in \mathbb{N}$: S maps $D_{N^{n+1}}$ into D_{N^n} and for $y \in D_{N^{n+1}}$ we have

$$N^n Sy = \sum_{k=0}^n \binom{n}{k} (\operatorname{ad} N)^k (S) N^{n-k} y$$
.

The proof is by induction and since it is similar to the proof of (*) in Lemma 2 we omit the details.

It follows that all the operators P_{α} , Q_{α} $\alpha \in I$ leave D_{∞} invariant, and it is easily seen that the commutation relations remain valid on D_{∞} .

Using (*) (for n=1) we get that $N_FNx=NN_Fx$ for all $x\in D_\infty$, $F\in \mathscr{F}$. Also it follows from (*) and previous arguments that the domain of N^2 is contained in the domain of N_F . If we let $A_0=N^2$ we get from Lemma 2 that $N_F|D_\infty$ is essentially self adjoint and its closure commutes with N (i.e., their spectral projections commute).

In particular, we can apply Theorem 1 to each finite subsystem $\{P_{\alpha},Q_{\alpha}\}_{\alpha\in F}$. It follows that the operators P_{α} , Q_{α} , $\alpha\in I$ are all self adjoint and the corresponding unitary groups $U_{\alpha}(t)=\exp{(itP_{\alpha})}$ and $V_{\alpha}(t)=\exp{(itQ_{\alpha})}$ satisfy the Weyl relations

$$\begin{split} U_{\alpha}(s)U_{\beta}(t) &= U_{\beta}(t)U_{\alpha}(s), \qquad V_{\alpha}(s)V_{\beta}(t) = V_{\beta}(t)V_{\alpha}(s) \;, \\ U_{\alpha}(s)V_{\beta}(t) &= \exp{(i\delta_{\alpha\beta}st)}V_{\beta}(t)U_{\alpha}(s) \end{split}$$

for all $s, t \in \mathbb{R}, \ \alpha, \beta \in I$.

Let $\{z_{\alpha}\}_{\alpha\in I}$ be an orthonormal basis for $l^2(I)$ and take $H_0=\operatorname{span}\{z_{\alpha}\mid \alpha\in I\}$. Then the unitary groups $\{U_{\alpha},V_{\alpha}\}$ give rise to a Weyl system over H_0 in the usual way (see e.g. [1]), and the conclusion of Theorem 3 follows from [3] (see also [1, p. 79]). Alternatively, by a simple extension of Theorem 5.2 in [15] we have

$$e^{itN} = \operatorname{str.-lim} e^{itN_F}$$
,

uniformly on compact t-intervals, so the desired conclusion follows from [1, Theorem 1].

REMARK. The crucial point of the proof in [3] is the construction of a "vacuum vector". In the present case this can be done quite easily. Since this construction can be used to give a proof of Theorem 3 which is independent of Theorem 1 we indicate the details:

Let $N = \int_{\lambda_0}^{\infty} \lambda dE(\lambda)$ where $\lambda_0 = \inf \sigma(N) \ge 0$ and choose $x_0 \in K$ such that $||x_0|| = 1$ and $x_0 = E([\lambda_0, \lambda_0 + \frac{1}{2}])x_0$. Then clearly $x_0 \in D_{\infty}$ and using (*) (for n = 1) we have $NA_{\alpha}x_0 = A_{\alpha}(N - I)x_0$ for all $\alpha \in I$. Using our information from Lemma 2 we get (by spectral theory)

$$\begin{split} \lambda_0 ||A_{\alpha}x_0||^2 & \leq \langle NA_{\alpha}x_0, A_{\alpha}x_0 \rangle \\ & = \langle (N-I)x_0, N_{\alpha}x_0 \rangle \leq (\lambda_0 - \frac{1}{2})||A_{\alpha}x_0||^2 \;. \end{split}$$

Hence $A_{\alpha}x_0=0$ for all $\alpha \in I$, so $Nx_0=0$ and $\lambda_0=0$. Let $\{x_{0,\gamma}\}_{\gamma \in I}$ be an orthonormal basis for $\{x \mid Nx=0\}$ and define the corresponding "Hermite functions" (see the proof of Theorem 2)

$$x_{n,\gamma} = \prod_{\alpha} (n_{\alpha}!)^{-\frac{1}{2}} (A_{\alpha}^{+})^{n_{\alpha}} x_{0,\gamma} \quad \text{for } n \in \Delta .$$

Then it is not difficult to complete the proof of Theorem 3 (see also [14]).

REFERENCES

- J. M. Chaiken, Finite-Particle Representations and States of the Canonical Commutation Relations, Ann. Physics, 42 (1967), 23-80.
- J. Cook, The mathematics of second quantization, Trans. Amer. Math. Soc. 74 (1953), 222-245.
- G. F. Dell'Antonio and S. Doplicher, Total Number of Particles and Fock Representation, J. Mathematical Phys. 8 (1967), 663-666.
- 4. J. Dixmier, Sur la relation i(PQ-QP)=I, Compositio Math. 13 (1958), 263-269.
- 5. B. Fuglede, On the relation PQ-QP=-iI, Math. Scand. 20 (1967), 79-88.
- 6. B. Fuglede, On the commutation relations in quantum mechanics, Preprint.
- Y. Kilpi, Zur Theorie der quantenmechanischen Vertauschungsrelationen, Ann. Acad. Sci. Fenn. Ser. A I. 315 (1962).
- 8. E. Nelson, Analytic Vectors, Ann. of Math. 70 (1959), 572-615.
- J. von Neumann, Die Eindeutigkeit der Schrödingerschen Operatoren, Math. Ann. 104 (1931), 570-578.
- N. S. Poulsen, On the canonical commutation relations, Preprint series 1967/68 No. 16, Matematisk Institut, Aarhus Universitet.
- C. R. Putnam, Commutation properties of Hilbert space operators, (Ergebnisse Math. Grenzgebiete, N.F. 36), Springer-Verlag, Berlin · Göttingen · Heidelberg 1967.
- F. Rellich, Der Eindeutigkeitssatz für die Lösungen der quantenmechanischen Vertauschungsrelationen, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, 11A (1946), 107-115.

- I. Segal, Tensor algebras over Hilbert spaces I, Trans. Amer. Math. Soc. 81 (1956), 106– 134.
- 14. H. G. Tillmann, Zur Eindeutigkeit der Lösungen der quantenmechanischen Vertanschungsrelationen, Acta Sci. Math. (Szeged) 24 (1963), 258-270.
- H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887-919.

DEPARTMENT OF MATHEMATICS, M.I.T. CAMBRIDGE, MASSACHUSETTS, U.S.A. and

MATEMATISK INSTITUT AARHUS UNIVERSITET, DENMARK