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COVERINGS OF METRIC SPACES WITH RANDOMLY
PLACED BALLS

JORGEN HOFFMANN-JORGENSEN

1. Introduction.

Let (S,d) be a metric space with metric d, {X,} a sequence of S-valued
independent random variables defined on the probability space (W, %, P},
and {a,} a sequence of positive numbers. We shall throughout this paper
assume that S s analytic (see for example [4, chapter IIL.1]).

Let 7, denote the probability law of X,,, s%x,a) the open and s(z,a)
the closed ball with center at « € S and radius @ > 0. We shall then con-
gider the randomly placed balls S,(w)=s%X,(w),a,) for we W. Let
C(w) be the set of points in §, which are covered infinitely often by the
balls S,(w), and let F(w) be the complement of C(w). That is

0(1.0) = Zc::l U:;k Sn(w) = limsupn—)oo Sn(w)
F(w) = S\C(w) .

Let A be a Borel set in S, which will be fized for the rest of this paper.
Then by the zero-one law we know that P(w| A4 g C(w)) is either 0 or 1.
The aim of this paper is to discuss the following 3 problems:

(1.1) When is 4 £C(w) a.8.?
(1.2) When is 4 2 C(w) a.8.?
(1.3) How “small” is F(w)?

The conditions which we will impose on {X,} and {a,} in order to solve
(1.1), (1.2) and (1.3) will be expressed in terms of the following quantities:

T,
tn

3
v
—

sup {7,(s°(x,a,)) | z€ 4},
inf {m,(s%x,a,)) | z€ 4}, =

3

L,

v

I

together with certain assumptions on finite dimensionality of (S,d).
Let us note the following trivial fact, which follows immediately from
Fubini’s theorem and the Borel-Cantelli lemmas:
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(1.4) Let D be the set of points x € S for which we have

D1 (8%x,a,)) = .

Then y(C(w))=y(D) and y(F(w))=y(S\ D) a.s. for all o-finite measures y
on (S,%), where & is the Borel c-algebra in S.

This shows first of all that if A &.D, then the answer to (1.1) is positive,
and secondly that if D=8, which implicitly will be the case in most of
the discussion, then F(w) is a.s. a p-null set for all g-finite measures y
on (8,4), which partly answers (1.3). If {a,} does not tend to zero, then
in most cases we have S§=C(w) a.s. This is for example the case when
inf, 7, (s%x,a)) >0, Ve € 8, Ya>0. In the sequel we shall assume that

(1.5) lim, , @, =0.

And, when it is convenient, we shall assume that {a,} decreases (notice
that under (1.5) it is always possible to rearrange {a,}, so that it becomes
decreasing).

In the literature the problem has only been considered in the case
where S is a circle of length 1, x, is the Lebesgue measure for all #, and
d is the arc length distance. In this case we have that

T,=1t,=2a, Vnl.

The problem was in this form first posed by Dvoretzky in [2], and later
treated by Kahane in [5], [6] and [7], Erdés in [3], Billard in [1] and
Orey in [9].

In [1] Billard showed that if

D1 (2a,) exp (37, 2a;) < oo

then C(w)+ 8 a.s. (See also Kahane [7, p. 89 and p. 92]). In section 3 we
shall show by essentially the same method as Billard that a similar result
holds for arbitrary analytic metric space. Billard also showed in [1]
that if

limsup,_, o {27, 2a;—logn} = oo

then C(w)=8 a.s. (See also Kahane [7, p. 89 and p. 95].) In section 4
we shall show that a similar result holds for certain finite dimensional
spaces S. The proof of this fact is derived from the important inequality
given in Lemma 6, which even in the circle case gives new results. Thirdly
Billard showed in [1] that if

limsup,,, o {271 2¢;—logn} > —oo
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then F(w) is at most countable a.s., and S. Orey has in [9] proved that
this condition implies that F(w)=0 a.s. In section 5 we shall give some
examples.

In a very recent paper of L. A. Shepp [10] a necessary and sufficient
condition for covering of the circle is given. In this paper it is proved
that covering take place if and only if one of the following two condi-
tions holds:

(1.6) limsup,, {37, 2a;—logn} = oo
(1.7) PIE e eXP{Z;';l 2(a;—a,)} = .

Before we proceed we shall define the upper and lower concentration
functions, C* and C,, of a measure u on (S,4%):

C*(u,t) = sup{u(s®x,t)) | xS}, >0,
Cyu(u,t) = inf{u(s%x,t)) | z€8}, ¢>0.

Let H be the class of all continuous strictly increasing functions on

[0,00), which takes the value 0 at 0. If & € H, then we say that the meas-
ure m on (S,%) is h-Lipshitzian, if it satisfies

m(s(x,7)) £ Oh(r), VxeS, Vr >0,

where S, is the support of m. We say that the capacitarian dimension
is =&, and write Cap-dim = 4, if there exists a finite A-Lipshitzian meas-
ure m=+0 on (S,%).

If h € H, then the h-Hausdorff measure, H,, is defined by

Hy(B) = lim, ., {inf (37, h(b,))}

where the infimum is taken over all sequences of closed balls B, =
8(%,,b,) with b,<e and BcU?B,. And we write H-dim(B) <% if and
only if H,(B)=0.

2. Some measurability lemmas.

We shall in this section prove measurability of some sets and func-
tions, which will occur in the later discussion.

Lemma 1. If D belongs to the product o-algebra BRQF , then the following
sets are P-measurable (they meed not however belong to F):
R, = {w| AcDw)},
R, = {w| A2Dw)},
Ry = {w| 4 nD(w)+0},

where D(w)={xe S| (x,w)e D}.
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Proor. Obviously it suffices to show that R, is P-measurable. If p is
the projection: p(xr,w)=w, then we have

Ry =p(Dn(AxW)).

Hence from (II.2.2), (I1.9.2) and (I11.2.3) in [4] it follows that R, is
P-measurable.

LevMmA 2. Let D € BRQF, then the set
R = {(x,w) | bd(s%x,c) n A)ED(w)}

18 untversally measurable in (S x W,BQF) (that is R is y-measurable for all
finite measures y on (S x W,BQF)).

’ 124

Proor. Let R, for k=1 be the set of all points (z,w,2,2',2) in
SxWxAxAxA, satisfying

(2,w) € D, d(z,2") = k™1, d(2,2"") £ k1, d(z',2) < ¢ and d(z",2) = c.
Then obviously we have that R, € #QF QL4 R/, where & is the

’ 1"

Borel o-algebra in A. Now let p be the projection: p(x,w,2,2',2"") = (x,w,z)
and g the projection: g(z,w,z)=(x,w). Now a straightforward argument
shows that we have

R = ¢(Nz2y p(By)) -
Hence from (I1.2.2), (I1.9.2), (I1.1.7) and (II1.2.3) in [4] it follows that
R is universally measurable.
LemMmA 3. Let (W,%) and (W', F') be two measurable spaces. If E
belongs to BRF and B belongs to BRF', then the set
R = {(w,w') | E(w)sB(w')}
18 universally measurable in (W x W', FQF").
Proor. Let D be the set of points (w,w’,x) in W x W’ x 8, satisfying
(z,w) € E and (z,w’) ¢ B. Then obviously D € #FQ%F'Q®%. And since
.R = Wx Wl\p(-D) })

where p is the projection: p(w,w’,z)=(w,w’), we have as before that E
is universally measurable.
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3. The non-covering case.

THEOREM 1. Let y be a o-finite measure on (S,%), such that y(4)>0,
and let

b'n = E{y(A n Sn( ))2} = SS '}’(A n so(x:a’n))znn(dx)

Jor nz 1. If the following 3 conditions holds, then A & C(w) a.s.:

(3.1) limsup,_, T, < 1,
(3.2) Soe1 (Tp—1t,) < oo,
(3.3) me1 0nexp (37, Tj(1—¢))2} < oo

REMARKS. (a) A straighforward argument shows that b, satisfies the
following two useful inequalities:

(3.4) b,
(3.5) b,

C*(y,a,)% vnzl,

<
< p(A)T,C*(y,2a,), Vn2l.

(b) It is easily checked that the following two conditions imply condi-
tions (3.1) and (3.3):

(3.6) 21 Tp? < oo,
(3.7) Dnm1 by exp {37 Ty} < .

(¢) Condition (3.2) is often not fulfilled and a heuristic argument
indicates that if z,=n for all n21 this condition is superfluous. (If
(T, —t,) is “large” then s is unevenly distributed over 4, in which case 4
is more difficultly covered.) However, I have not been able to prove this.
But as we shall see in section 5 (Example 2) there is a way to get around
(3.2):

Suppose that H is a map from § into S, which satisfies the Lipshitz
condition:

d(H(x)’H(y)) =< d(-’”’?/), Vx,y esS.
Now we put
C'(w) = limsupn_*ws“(H(Xn(w)),an) .

Then H(A)¢ C'(w) implies 4 & C(w), since H(s%x,t)) =s%(H(x),t), Yx €S,
V¢>0. Hence one strategy would be to find a function H, which makes
7 uniformly distributed over H(A4), and which preserves (3.6) and (3.7).

(d) The reviewer has remarked, that (3.1) is a trivial consequence of
(3.2), if S contains more than one point.
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Proor or THEOREM 1. It is no loss of generality assuming that 7', <
T <1 tor all n=1, and that 4 is compact and y(4)=(S)=1. Let F,(w)
be the random set

Fo(w) = N7_; (ANSj(w)) .
Then M, (w)=y(F,(w)) is a random variable. If
Sule) = {fwe W | zeS,w)},
we find from Fubini’s theorem that
(3.8)  E(M,) = {4 TTj-x (1= P(S;@))y(d2) 2 TIj- =Ty > 0

(3.9) E(M,2) = §4§4 TTi-1 (1= P(S;()) — P(S;(y)) +
+P(8,(x) n 8;(y))) y(d) y(dy) -

Let hj(x,y)=P(8;(x) n 8;(y)), ¢;=(1—1;)~* and
P = (1—=1)%(1—2,)%. .. (1—t,)2.
Then we have

§a §a TTen (1 =264 82+ by(w,9)) y (de) y(dy)
Pn §. §a TT7-1 (1 + g5y, y))y(dw)y(dy)
= P 4 $a {14+ 371 @GP, y) THZY (1+ gibul(,y) }y(de) y(dy)

where we have used the well-known formula:
HJ=1 1+cj) = l+zj =1 ;H 1(1+ck
Since hy(z,y) =T, for all k, y(4)=1, and

b; = SA SAhj(x»?/)V(dx)?(d?/) )

E(M,?)

IA 1A

we find

E(M,2%) = p{l +E§‘=1 q; H]k_=11 (1+¢q,T%) SA SAhi(x, y)y(dx)y(dy)}
S pa{l+237-1 9505 T A+ ¢T3}
S pa{l1 4237, b,q; exp [X%e1 131}
< pa{l+(1=T)2 332, b; exp[Tha; G:Tl}
= Op,

where the constant C is finite by assumption (3.3). Inserting the inequality
(3.8) in the inequality above gives
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1—¢,\2
E(M,?) £ C(EM,)?TI}-, (1 _ 1:)

_t.
2 cnposn (37 72)

< C(EM,)? exp(2(1-T)"1 352, (T;—t;))
= O(BM,)

where the constant C’ is finite by (3.2). From the Cauchy-Schwarz in-
equality it follows that

(BEM,)? = E(M2P(M,+0),
and so we find
0 < E(M,?) £ CEMPIL,+0),

from which we conclude that

(3.10) PM,+0)=2d >0, Vnz1,

for some constant d. From the definition of F,(w) it follows that
{M,+0} s {w| F(w)+0} = {w]| A& Ui, Sj(w)}.

Since we have assumed that A is compact we find that

{w|A$Uj }"n;.r.ol{wlA$U]=l (w)} .
Since the sets in the intersection on the right hand side decrease:we have
that Ela

P(w| AEC(w)) 2 lim,,_, P(w | A$ 1 8,(w))
2 liminf, , P(Mn=t=0)
z2d>0

by (3.10). Since {w| A C(w)} either has probability zero or one by the
zero-one law we have proved Theorem 1.

CoroLLARY 1. Let b be a function in H, such that
2n=1Tyh(2a,) eXP(z;‘;l T)) < oo,
SoT2<o0 and 33 ,(T,—t,) < .

Then if Cap-dim(A4)=h we have that AL C(w) a.s

Proor. If Cap-dim (4) = h, then we know that there exists a probability
measure y on 4, such that for some constant C <« we have

y(s(z,r)) = Ch(r), Vxed, Vr>0,
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where 4, is the support of y. If we compute b, of Theorem 1 we find

by = S5 s $5 Lstz, ap(®) 1oz, ap(v) 7 (du) y(dv) 7(da)
= {4, $4,7(s%(n,a,) N °(v,a,)) p(dupy(dv) .

If d(u,v)=<2a, then n(s%u,a,)ns%v,a,))<T,, and if d(w,v)>2a, then
7(s%(u,a,)Ns%v,a,)) =0, since the two balls are disjoint. Hence we find

bn = Tn SAoY(S(u’ 2an))y(du) = CTnh(zan) ’

and so Corollary 1 follows from Theorem 1.

4. The covering case.
We shall in this section find sufficient conditions for 4 <C(w) a.s.,
that is, we want to show that P(w| 4 ¢ C(w))=0, Since we have

A$0)<Zk=1P(A$ 7= S5) 5

we shall seek a good estimate of the probability of {w|4 ¢ U7, 8;(w)}.
This estimate will not only depend on the quantities {7',} and {t,} but
also on the dimension of S, where dimension is defined as below.

If Bis a subset of S and z,,,,... are elements of S and ¢,,c,,... are
positive numbers, then we define by induction

by(B) = B,
by(B,x,,¢,) = de(So(xpcﬂ nB),
b(B, Ty, . . « 1 &y, + -5 Cx) = bd(s%wy,c,) N C),

where C=b,_,(B,%;,...,%_1,C15. - -,C;—1) and bdgy(+) means ‘“boundary
relatively in C”’.

@(B) is then defined to be the largest number of connected components
of any of b,(B,x,,...,%Cy,...,¢;) for k20, z,...2,€8 and ¢y,...,

€ (0,00) (P(A) may possibly be equal to + o).

A(B) is defined to be the least integer %, for which

bp+1(Bs®y e - Tpy1,C15e -« s Cpia) = 9

for all ,,...,2;,, €8 and all ¢y,...,¢;4, € (0,00) (if no such % exists, we
put A4(B)= ).

(S,d) is then said to have weak dimension <p, if there exist 4, € &,
such that

(4.1) S =U74,, 44,) £p and &4,) < x, Vn.
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Futhermore (8,d) is said to have strong dimension <p, if there exist
real numbers =1 and &> 0, such that

(4.2) VO0<b=<e, VzeS, IBe# with &B)=sr,
AB)<p and s(z,b)cBcs(x,20).

It should be emphasized that the dimension notions above depend
on the metric d and not only on the topology. It is not difficult to con-
vince oneself that nice regions in finite dimensional euclidian space
equipped with nice metrics have strong metric dimension equal to their
usual dimension.

Our next lemma is the crucial point for all the results in this section,
and it gives the desired estimate for P(4 ¢ U7S;).

LeMmMA 6. If A(4d)=p< oo, D(4)=r<oc and A s contained in the ball
8(xy,a), then

Plw| AU 8;(w))SC,p, exp{ =371 8} S0 v

where C,,=r(er)? and v, =37 ,7,(s%xy, @+ ay)).

Proor. If p=0, then 4 has exactly r=®(4) elements say z,,...,z,.
Then

P(wl A$U?=1 S}(w)) s v=1 (wl Ty ¢ j=1 )
v=1 Hj=1 (1 (8 v,aj)))

rexp{~ 37, 1;}

Croexp{—237.14;}.

Hence Lemma 6 holds for p=0. We shall now prove Lemma 6 by induc-
tion in p. So suppose that Lemma 6 holds for p—1=0, and that 4
satisfies the conditions of Lemma 6. Since ®(A4)=r we know that A
has at most r connected components. Let 4,,...,4, be the connected
components of 4 (possibly with repetitions), then we have

(4.3) $ j=1 Sj) s Zi=1 Ak$ J=1 Sf) .
We shall now estimate the terms on the right hand side. If w € W and
A, & Ui, 85(w),

A A

then either 4,n8;(w)=0, Vj=1,...,n, or by connectedness of 4, we
have that

(4.4) Uz 8j(w) n 4, + UZ; ol (Si(w) n 4y) .

Math. Scand. 32 — 12
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This implies that for some 1<qg<n we have that
by(4;, X (w),a,) = bdA,,( (W) n 4,) ¢ U 71, jag Si(w) -

And since b,(4,z,¢)2b,(4;,%,¢) for all x €S and all ¢>0, we find that
(4.4) implies that

by(4, X (w),a,) & U;"-l, j+q Si(w) -
Hence we find

P(4,¢UrS,) < P(4,n8,=0,Vj,15j<n)+
+zg=1 P(bl(AsXq’aq) $ U;.ﬂl.j*q S:f) .

If x is a point in 4, then by independence of X,,...,X, , we have that

P4,n8;=0,Vj,15j=n) £ [T}, P® ¢S
< exp{—237.1t},

and so we find

(4.5) P(4,£UTS;) < exp{- Zj”=1 ti}+
+ 37 P(by(d, Xpad £ U, 1,0 S;) -

If R, is the set of points (z,,...,%,) € 8", which satisfies
bl(A,xq’a’q) $ U;:l,j*q So(xpa’j) ’

then R, is universally measurable in S™. Hence from Fubini’s theorem
and independence of X,,...,X,, we have that

P(bl(A)Xq,a’q) $ U‘;‘gl. j*q S’) =P((X1, oo ,.X.n) € .Rq)
=\ P(by(4,2,a) £ UL oo’ S,) J(dz)
=Ss°(:to,a+aq)P( (4,%,a, $ =1, j+q 8;) my(dz) ,

since 4 cs%x,,a) implies that b,(4,x,a,)=0 for x ¢ s%z,,a+ a,). From
the definition of @ and A4 it follows immediately that

D(4) =1, YzelS, YVc20,
A(A4)—1 = p-1, VzeSs, Vc20.

So by induction hypothesis we find

P(bl(A’Xq’aq)SE ;=1pj=l=q Sf)
< C,p16exp{— 371 t;}m,(s%(z, @ +ag)) D525 vak
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Since e“<e and eC,, ;2 1, we find by inserting in (4.5), that

P4, £Vt 8;) = eCrpy exP{—Z?=1 t;}(1 +2£.—=5 v,FH) .

Inserting this in (4.3) gives

P(ALULS)) = reCyyy exp{— 21 b5} hoova* -

But reC,,_, =C,, and so Lemma 6 is proved.

COROLLARY 2. If @(A)=r< oo and A(A)=p < oo, then we have
PAcU? 8)) < r(p+1)(er)? exp{plogn—37_, 4;}.

Proor. With the notation of Lemma 6 we have that v,<n for all
n21. Hence Corollary 1 is an immediate consequence of Lemma 6.

THEOREM 2. If A has weak dimension =p, and if we have that

(4.6) limsup, o {3)-1 t;—plogn} = oo,
then A< C(w) a.s.

Proor. Let A, € &, such that 4(4,)<p, ®(4,)<o and 4=UP4,.
Then by Corollary 2 we have

P4, g U s)

< Lyy exp(plog(n+1)— 374" 1))
S Ly, exp(plog(m+n)—3T5" 1),

where L,,, is a constant independent of n. Letting n — o through a.
suitable subsequence we find

P(4, U2, 8;) < liminf, , P4, & Umr 8y = 0

j=m J=m

for all £=1 and all m 2 1. But this shows that 4 cC(w) a.s.

ProPOSITION 1. Let h be a function from (0,00) into stself and let H, be
the Hausdorff measure on S associated with h. Suppose that

(4.7) H-dim(4) < &,
and that there exist constants L,, >0 and by> 0, such that
(4.8) PBEUZ,. 1 8)) £ Lhb), Vmzl,

Jor all closed balls B with center in A and radius b=b,. Then we have
that A < C(w) a.s.
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Proor. By (4.7) there exists to every given ¢>0 a sequence of closed
balls {B,} with centers in 4 and radii {b,} all less than b,, such that

cUp,B, and 32,Ah(,) <

v=1
From (4.8) we find that
P(A $ m+1 J sz=1 P(B $ ;=m+1 )
< L,>% kb,
= L,c.

Since ¢ >0 is arbitrary we find that ACU°° —m+19;(w) a.s., for all m>1.
Hence Proposition 1 is proved.

Now let us introduce some assumptions on § and {r,}: Suppose that
f is a function from (0,00) into itself such that

(4.9) f(s+1t) £ M(f(8)+f(?), V8,220,

{4.10) f(0+) =0,

(4.11) 7, (s%(,t)) < f(t), Vxe 4, Vt>0, Va1,
(4.12) 8 has strong metric dimension = p.

Let @ and r be the constants appearing in the definition of strong metric
dimension (4.2) and put

Up = Z}LI% Uy = z;;lf(aj) .
Let B be a closed ball with center x, € A and radius b £ a. Then by (4.12)
there exists a set B'e %, such that B B’ cs(xy,2b), A(B')<p and
“@(B’)<r. So by Lemma 6 we find
BEUMIR, 8)) = PB' U, S))
= 7‘(37’)”{2 =0 ’U;&m} €Xp (um_um+n) »
‘where

= S (20, 20+ ) S 2Uf (6) + M (01— V)

q=m+1
‘using (4.9) and (4.11). Since

Z;';O 'v{tm (Z’+ 1)(vnm + l)p

<
< 3(p+ 1)(1+ 20 M2Pn2f ()P + MP(Vp 41— Vp)?) 5

‘we find that
(4’13) P(B$ U.;:-m+1 Sj') = Lm(l + npf(b)p + (Un+m - m)p) BXP( _un+m)

for all »,m =1 and all closed balls B of radius less than a.



COVERINGS OF METRIC SPACES WITH RANDOMLY PLACED BALLS 181

In order to get the best possible result we should minimize the right
hand side of (4.13) inn=1, for m= 1 and 0 <b £ a fixed. If the right hand
side is bounded as n — oo through a subsequence it seems reasonable to
believe that n=co minimizes (4.13). If the right hand side of (4.13) tends
to + oo as » — oo, we should choose n with more care. Let us now split
the discussion in 3 cases:

CasE 1. Suppose that we have

(4.14) limsup,_, {3}, t;—plogn} > —oo.

Then by putting (n+m)? outside a parenthesis in the right hand side of
(4.13) we find that

PBEUR,.1 8))
< Lyp((n4m)2 +f(0)P +(vp 4/ (n+m))?) exp(p log (n+m) —Up ) -
Since lim,_, a; =0 it follows from (4.10) that for n — o
(Vnim/(m+m))P = ((n+m)=2 372" f(a;))? -0, Vmz1.

So by letting n - co through a suitable chosen subsequence we find
from (4.14)
P(Bgu;.;mﬁl Sj) = Lm,f(b)p .

So we have an inequality of type (4.8) with h=f>.

Case 2. Let R and T be two increasing functions from [1,00) into
(0,00), such that

(4.15) U, = R(n)—ec, Vn 21,
(4.16) R(t) = Rt—1)—c¢, YVt = 2,
(4.17) Vpam—Up = ¢, T(n), Yo,m = 1,

where ¢ and ¢,, are positive constants. Notice that (4.15) and (4.16)
holds whenever R(n)=wu, (for ¢c=2), and (4.17) holds whenever {f(a;)}
decreases and 7'(n)zw, (for ¢,=1, Ym=1). Since u,,,=u,=R(n)—c,
and T'(n)27(1)>0, V=1, we find that

(4.18) P(B¢U:, .18 £ L, exp(—R(n))(T(n)?+n>f(b)?) .

J=m+1 =
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If, in this inequality, we take n=[f(b)~'], where [z] is the integer part of
z for all x>0, then
n < f)1 < n+l.

So from (4.16) and the monotonicity of R and T we find by inserting in
(4.18)
PBEUi i1 8)) = L exp(—R(f(B)™))T(£(5))

J=m+1
which is an inequality of type (4.8).
Case 3. Suppose that R and 7' are increasing functions from [1,o0)
into (0,c0) satisfying (4.15), (4.16) and (4.17). Suppose in addition that

T satisfies
(4.19) T@?) < LT@), Vizl,

for some constant L 2 0. Then it is easily checked that for some constant
L’ >0 we have
T@) = L'(logt)?

where g=(logL/(log2). That is, 7 grows at most as a power of logt.
Let us in this case use (4.18) for

n = [T(f(b)=)/f(b)] .
Then for b sufficiently small we have that
T(n) = T(T(f0))/f®)) < T(F6)*) < LT(f®)™)

since T'(t)<t¢ for ¢ sufficiently large and lim,  ,f(b)"'=oc by (4.10).
Hence by inserting in (4.18) we have

P(BEUR .11 8)) < Ly exp{— B(T(f(b)™)/f(®))}T(f(B))
which is an inequality of type (4.8).

Summarizing the discussion above we have proved the following theo-
rems:

THEOREM 3. Suppose that f is a function from (0, 0) into stself such that
(4.9), (4.10) and (4.11) holds. Let
g(6) = f&p, t>0.
If 8 has strong metric dimension <p, H-dim(4)<g and
limsup,_, {371 ¢;—plogn} > —oo,
then A< C(w) a.s.



COVERINGS OF METRIC SPACES WITH RANDOMLY PLACED BALLS 183

THEOREM 4. Suppose that f is a function from (0, co) into itself satisfying
(4.9), (4.10) and (4.11), and suppose that R and T are increasing functions
from [1,00) énto (0,00) satisfying (4.15), (4.16) and (4.17). Let us define

h(t) = T(ft)~) exp{-B(f(t)*)}, ?>0.
If S has strong metric dimension <p and H-dim(A4) <h then A< C(w) a.s.

THEOREM 5. Suppose that f is a function from (0, 00) tnto stself satisfying
(4.9), (4.10) and (4.11), and suppose that R and T are increasing functions
from [1,00) énto (0,00) satisfying (4.15), (4.16), (4.17) and (4.19). Let us
define

k(t) = T(f®)~) exp{~B(T(f&))If®»)}, ¢>0.

If S has strong metric dimension <p and H-dim(4) <k then A < C(w) a.s.

5. Examples.

ExampLE 1. We shall consider a metric space (S,d) of strong metrie
dimension p=1, such that there exists a probability measure = on §
with the property
(6.1) n(s%x,r)) = r?, Vre(0,c),

where ¢ is a positive number. (S could for example be a p-dimensional
sphere or a p-dimensional torus.) Let us consider the case with x,, = and

a b Up
n = {7—»+ n logn}

where a € [0,00) and b € (— o0, +oc). Then we have that

b
n logn

a
Tn =1, = ;;+

for n sufficiently large. If
f@) =1, R(t) = alogt+bloglogt, 7T(t) = logt,

then (4.9), (4.10), (4.11), (4.15), (4.16), (4.17) and (4.19) are all fulfilled.
So if k is the function

k(t) = T(f&))? exp{~ B(T(f())/f®)}
= Kt*?(logt—1)»-2-? (loglogt-1)-?,

we have by Theorem 5:

(5.2) If H-dim(d4) < k, then A < C(w) a.s.
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From (5.1) it follows that H-dim (S)=», so if we in addition assume
that S has o-finite p-dimensional Hausdorff measure (an assumption
that almost follows from (5.1)), then we have:

(6.3) In either of the following 3 cases we have that S = C(w) for a.a.
we W:
1) a>1,
2a=1,p=1 and b >0,
B)a=1,p22 and b= p-1.

Now let & be the function
h(t) = to? (log¢-1)-(1+b+9
where ¢>0. Then we have
h2a,)T, exp(3]., T)

=< h((2n‘1(a + b))llp)n—l(a +b) exp (K, +a logn +b loglogn)
< KynY(logn)-1-*

where K, and K, are positive constants. Hence by Corollary 1 we have:
(6.4) If Cap-dim(A4) = h, then we have that A &£ C(w) a.s.
From (5.1) it follows that Cap-dim (S)=¢?, hence we find:

(8.5) In either of the following 2 cases we have that S+ C(w) for a.a.
weW:
Ne<l,
(2)ea=1, and b< —1.

ExampLE 2. Let S be the real line with its usual metric and =, ==,
where 7 is a probability measure on S with density function ¢ and distrib-
ution function @, which is strictly increasing on (— o0, ).

(6.6) If there exists p>0 such that
D1 @2 €XP(p D71 @) < o,
and if there exist 0 <q=<4p such that on some open interval (a,b)
we have p(x)<q for all € (a,b), then S+C(w) a.8.

Notice that the first condition is particularly satisfied if a, =O0(n"1),
and the second condition is particularly satisfied if limg_, ., f(z)=0.
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Let p and g be as in (5.6); then we define the function H by

H(z) = 2+ q¢~1D(a) for zZa
a+q1d(x) for asz<b
=x~b+a+q1dBb) for x2b.

Then H is a strictly increasing absolutely continuous map from R onto
R such that H'(x)<1 a.e. Hence we have

|Hx)-H(y)| < |lx—yl, VaxyeR.
Let o' = H(a) and b’'=H(b); then o’ <b’ and if o' Sw<y<b’ then
P(z<H(X,)Sy) = Pgx—a)SP(X,)<qly—a),

since H(X,) € [z,y] implies X, € [a,b]. Now &(X,) is uniformly distri-
buted over [0,1] and

0 < D(a) = g(a’—a) £ qx—a) < qy—a) S qb'—a)=D(b) < 1.
Hence we find
P(H(Xn) € [x,?/]) = q(y—x), Va'§$§y§b' .

Let #' =noH (the image measure of = under H), and 4 =(a’’,b’’) where
a' <a' <b" <b'. Then

7'(8%x,t)) = 2q¢, Vxed, VO<t=d,

where d=min(a’"’ —a',b’'—b").
We can now use Theorem 1 with y=the Lebesgue measure on the
sequence Y, =H(X,). If » is chosen so large that a, <d, then

T, = = 2qa,, 0*(7’(111,) = 2a, .
Hence (3.1) and (3.2) are satisfied, and using that b, < C*(y,a,)? we find
D1 by exp (E}Ll T;) = 2n.q14a,% exp(2g 2}-‘=1 a;) < oo,

which shows that (3.6) and (3.7) holds. So by Remark (¢) to Theorem 1
we see that S+ C(w) a.s.

(6.7) If inf, (@) >0 for all bounded intevals I, and if
lim,, , o {p 27, a;—logn} = oo, ¥p>0,
then S=C(w) a.s.
Notice that the last condition is particularly satisfied if lim,_, na, = cc.
Put A=(-Fk,k) and p=inf, y_y x+n@(®). Then

by = infxeAnn('so(x:a'n)) Z 2pa,
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whenever » is so large that a,, < 1. Now it is no loss of generality assuming
that a, <1 for all n, and so we have

2j-1t;—logn = 2p 37, a;—logn ,

and so by Theorem 2 we have that (—k,k) < C(w) a.s. for all k= 1, which
proves (5.7).

ADDED IN PROOF. (. Andersen has proved that (5.1) implies that S
has o¢-finite p-dimensional Hausdorff measure.
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