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ON SOME EXTREMAL PROBLEMS IN BANACH SPACES

VACLAV ZIZLER

1. Introduction.

In studying various extremal problems in Banach spaces it is often
good to know if some functions attain their maximum over certain sets.
For the case I of linear functionals, there are two classical results. The
first one, due to R.C. James says that a weakly closed subset S of a
Banach space X is weakly compact iff each continuous linear functional
on X attains its supremum on S ([10, p. 139]). The second one, due to
E. Bishop and R. R. Phelps states that every Banach space is sub-
reflexive, i.e. for any Banach space X, those elements of X* which attain
their norm on the unit ball of X, are norm dense in X* (see [4, p. 31]).

In the case II of the norm of linear operators, J. Lindenstrauss proved
that if X,Y are Banach spaces, X reflexive, then the set of all bounded
linear operators of X into Y which attain their norm on the unit ball
of X (i.e. there is an zeX, |jz|=1, ||[T2||=||T||) is norm dense in the
Banach space B(X, Y) of all bounded linear operators of X into Y with
the usual operator norm.

In the case III of the distance function from a given point, we have
the notion of farthest point in a set and the results of E. Asplund and
M. Edelstein ([2], [9]) from which we recall here the one of Asplund: If
S is a bounded norm closed subset of a reflexive and locally uniformly
rotund Banach space X (for definition see the section 2), then except
on a set of first Baire catagory, the points in X have farthest points in §.

In the present note, we give some contributions to the second and third
case. The author thanks the referee for some suggestions that improved
the structure of the paper.

2. Notations and definitions.

We will work in real Banach spaces. If f is a proper convex function
on X (X*), then f* is the function on X*(X), conjugate, or dual to f in
the Fenchel sense, that is
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f*(?/) = supzeX((?/’x) _f(x))
(cf.[1]). For ae X, r>0,
X > K a) ={zgeX; |lx—al| £r}.

If || || is an equivalent norm on a given Banach space X, then by the dual
norm of the norm ||-|| in X* we mean the usual dual supremum norm on
X* with respect to ||-|| on X. The set of all positive integers is denoted
by N. w(X*, X) respectively w(X,X*) denotes the weak topology on X*
respectively on X given by all elements of X respectivelyX*. The first
one is sometimes called the w* topology of X*. A point = of a convex
set C' in a Banach space X is called an exposed point of C ([16, p. 140]),
if these is an f e X* such that f(y) <f(x) for every y € C, y+x. A point
x of a convex set C in a Banach space X is called a strongly exposed point
of C if there is an fe X* such that f(y) <f(x) for any y € C, y+2 and
moreover, if

SWa) > (), yn€C,n=12,..., imply |y,—a|—>0.
A Banach space X is said to be rotund if all points of the norm boundary
of its K,(0) are extreme points of K,(0). Furthermore, a Banach space X
with the norm ||-|| is locally uniformly rotund (LUR) if for z,,ze X
satisfying |z, |=|x|=1,n=1,2,...,
lim, |, +2| = 2 imply lim,  |z,—2|]|=0.
A Banach space X is WUR if for «,,y, € X satisfying |z,|=]y,ll=1,
|#n+yall > 2 imply 2,—y, >0
in the w(X,X*) topology of X.

A Banach space X is an SDS space (cf. [1, p. 31]) if every continuous
convex function is Fréchet differentiable on a dense G, subset of its
domain of continuity, where by a continuous convex function on a
Banach space we mean a function which is defined and convex on all
of X, with valuesin ( — oo, + o), and finite valued and continuous at least
at some point of X. E. Asplund ([1, p. 32]) proved, that if X is a Banach
space which can be given an equivalent norm, such that the corresponding
dual norm in X* is LUR, then X is an SDS space. Thus any Banach
space X with X* separable is an SDS space (see [7], [1, p. 41]). The same
is true for any reflexive Banach space (cf. [22]) and any Banach space X,
if X and X* are both weakly compactly generated (see [12]). Furthermore,
R.C. James proved in [11, p. 571] that for any n € N, there is a Banach
space B, such that the nth conjugate space of B, is the first nonse-
parable conjugate space of B,.

In the sequel, we will identify X with its canonical image in X**.
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3. The case III of the distance function.

Following E. Asplund ([2, p. 223]), a set S<X is called fat in X if it
contains a set G =8 which is a dense G, set in X. E. Asplund proved in [2]
the following result:

If B is a reflexive locally uniformly rotund Banach space and S<B
is a norm closed bounded subset of B, then the set

a(8) = {ce B: 3s such that [c—s| = [c—=|| Vze S}
(i.e. the set of all points in B which have farthest points in S), is fat in B.

In the following result, some further information on the set of farthest
points is derived.

ProPoOSITION 1. Suppose B is a Banach space such that X* 18 LUR and
SDS. Then if S is an arbitrary norm closed bounded subset of B*, we have
that the set a(S) defined above is fat in B*. Moreover, if we define a set-
valued mapping on a(S) into exp B*, by

Ty = {s€8 suchthat ||s—y| = |x—yl|, Yxe S},

then there exists a subset F <a(S) which is fat in B* such that the mapping
T considered on F is single-valued and norm-norm continuous.

Proor. Let us follow first the ideas of the proof of E. Asplund in
[2, p. 213-216], together with the following considerations. Denote the
original norm of B* by ||-||. Let r(x), for xe B* be defined as in [2, p. 214],
ie. r(x)=sup,gllx—s||. Then, as r is the supremum of w*-lower semi-
continuous functions on B*, it is w*-lower semicontinuous on B*. Suppose
S has at least two distinct points. Then r is positive, finite, convex and
satisfies the Lipschitz condition with C=1 (see [2, p. 214]). Therefore,
by another result of E. Asplund [1, p. 32 and 37], r is Fréchet differentiable
on a fat subset E,<B* with the differentials from B. Denote by F the
set H,nE, where X is a fat set from Lemma 1 of [2, p. 213]. Then F is fat
in B*. Take yeF and denote by p, the differential of r at y. Then p,€B,
llp,ll=1 (by Corollary to Lemma 3 of [2, p. 215]). Thus p, attains its
minimum over K,,,(y) = B* at a point x. The rest of the first part of the
proof is the same as Asplund’s one (see [2, p. 216]).

Now we prove that 7' is single valued on F. Suppose there exist
21,2,€T(0), 0 F, such that z, +2,, 7(0)=1, and |}z, =|jzy]| = 1. If 2, = —2,,
then for ¢ real, r(tz;) = 1 +|¢|, so as 7(0)=1 and r convex we get a contra-
diction with the differentiability of r(tz,) at £{=0. Assume now 2z, + —z,.
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Consider the two dimensional subspace P < B* determined by z;,2,. For
an arbitrary heP satisfying ||4]|=1, the convex functions

eMt) = [[th—zll, +=1,2,

are differentiable at ¢=0, since ¢2(0)=7r(0)=1 and @) <r(th). Thus
the norm of P induced from B* is differentiable at —z;,1=1,2. Let
S, €P*,4=1,2 denote the differentials of the norm of P at —z; Then
foo ¥ f—s, since P is rotund. Take h,eP satisfying [|h||=1 such that
f—zl(ho)"':f—zz(ho)- Then

(@")'(0) * (9s)'(0) .

This easily gives a contradiction with the differentiability of r(th,)
at t=0.

Now we prove the continuity of the restriction of 7' to F on F. The
mapping y > p, is norm-norm continuous as a mapping considered on F
(by [1, Lemma 5, p. 43]). Suppose y,€F, y,—~0eF (again without loss
of generality), and »(0)=1. Each p, respectively p,,n=1,2,..., has
the norm 1 in B and each of them attains its minimum over K,(0) < B*
at a unique point z, respectively x, since the norm of B* is LUR. More-
over, if p, —p,, then z,—>z in the norm of B*, since the norm of B is
Fréchet differentiable at each 240 (see [9]). It is easy to see that p,
respectively p, attain their minimum over K, ,(y,) < B* respectively
K,(0) < B* at the point y,, +(y, )z, respectively x. As above,

Yty )2, €Ty, xeTO

and from the continuity of » on B* we have y, +r(y,) r,—>z.

REMARK. It follows from Proposition 1 and from remarks in Section 2
that the “farthest point property’ of the space does not imply its re-
flexivity.

The following result exhibits a class of Banach spaces which have
“farthest point property’’ with respect to weakly compact subsets.

ProrosiTiOoN 2. Assume X 18 a WUR Banach space. Let S be a weakly
compact subset of X. Then the set a(S) defined as above 13 fat #n X.

Proor. Follow the proof of Theorem of E. Asplund [2, p. 216], with
the following additional considerations: Take again yeE and pedr(y)
(the subdifferential of r at y). Suppose y=0, 7(0)=1. We again have
lpll=1. Now take z,€X, n=1,2,..., satisfying |z,/|=1, such that
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P(x,) < —1+41/n. Consider the function » on the closed line segment
{0, —z,). Then for the increase 8,, of r from 0 to —z, we have from the
Lipschitzian property (C'=1), that 6, <1, and since pedr(0), we also have
0,21—1/n. Hence the ball K, ,,(—,) is the smallest closed ball with
the center —z, that contains 8, so we may find points z,e8,n=1,2,...,
such that

”zn+xn” - (6n+ l) 0.

Of course, since S < K,(0) < X ((0)=1), we have |jz,||< 1. Thus,
llzall = 1 =ll2all, llen+2,ll > 2.

Therefore, by the WUR property, z, —z,, -0 in the weak topology of X.
From the weak compactnes of §, assume without loss of generality that
z,>x€fS in w(X,X*). Then , >z in w(X,X*) and therefore p(z,)— p(x).
Thus 12z |jz|| 2 |p(x)| =1. Hence z is a farthest point to 0 in S.

In the following, extconv S will mean the set of all extreme points of
the closed convex hull of the set S. Moreover, wcl S denotes the weak
closure of the set S.

CoroLLARY. Assume a Banach space X 18 WUR and its norm is Fréchet
differentiable at all nonzero points. Let S be a weakly compact subset of X.
Denote by Mg the set of all s€ S for which an element ¢ of X exists such
that ||s —c||=sup,cgllx —c|| (3.e. the set of all farthest points in S).

Then the closed convex hull of Mg is equal to that of S and thus extconv S
<welMg.

Proor. We will use Smuljan’s theorem on duality of Fréchet differenti-
ability and strong exposedness (see[20], [21], or [1, p. 35]), together with
the Bishop-Phelps theorem on subreflexivity of Banach spaces. From
these results it follows that those points which are strongly exposed of
K,(0)=X*, by elements of X are norm dense on the boundary of
K,(0)=X*. Then by the result of S. Mazur and R. R. Phelps (cf. [18,
p- 976]), every closed convex bounded subset of X can be representated
as the intersection of all closed balls that contain it. This fact may be
used to prove our statement (cf.[9, p. 175]) as follows: Denote the closed
convex hull of 8 by 7. Clearly, Mg<T. Suppose there is an ze7', x¢ M.
Then there is, by the Mazur-Phelps theorem a ¢,e X and r> 0 such that

z ¢ Kr(co)’ .K,.(Go) > -MS .

Take an ¢ > 0 such that r+ 3¢ < |l —c,l|. Then there is a cea(S) such that
lle —¢ol| S &. Let s€ 8 be the farthest point to ¢ in S. We have for any ye8
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ly—coll = lly—cli+lle—coll = lls—cll+lle—coll = lls—coll +2llc—coll
S r+2e.

Thus S< K, ,,,(c,) and therefore T< K, ,,(c,), a contradiction. The rest
of our statement follows from the famous Krejn-Milman theorems
(cf. [15, p. 325, 332]).

ReMarx. The WUR spaces are not uncommon. For instance, any
Banach space with separable dual can be easily equivalently renormed
to be WUR (cf. [24, p. 200]). ly(B,) is WUR if all B,, n=1,2,..., are
(cf. [25, p. 22]).

The following result says that also reflexive Banach spaces with
Fréchet differentiable norm at all nonzero points have ‘“farthest point
property’’ for weakly closed bounded subsets.

ProrosiTiON 3. Assume X is a reflexsve Banach space with Fréchet
differentiable norm at all nonzero points.

Then for any weakly closed bounded subset S of X, the set a(S) defined
as above (before Proposition 1), is fat in X and if we use the notations from
the preceeding Corollary, the closed convex hull of the set Mg is equal to that
of S and thus extconvScwelMg.

Proor. Follow again the ideas of the proof of the Theorem in [2, p.
216]. Take yeZ and peor(y). Suppose y=0 and 7(0)=1. Let p attains
its minimum over K,(0)<X at xeK,(0). Then as it is shown in the
above mentioned proof, for any !> 0, the smallest closed ball with the
center —lx which contain § is K; ,(—Ir). Take the feK,(0)<X* such
that f(x)=1. Then sup, gf(u)=1, since S < K,(0)< X and since

SUP,esf(u) £ 1—&, &>0

would imply sup,.g f(w) <1—¢ where S, is the closed convex hull of §.
Then from the proof of Mazur-Phelps result we find that there would
be a closed ball K with the center — [z for some [, > 0 such that § < K and

SUPyex f(’ll,) S 1-4e

(for details see [27, Proposition 1]). The radius of K is evidently smaller
than [,+1, a contradiction. Thus there are z,eS8,n=1,2,..., such
that f(z,)— 1. From the weak compactness of S suppose without loss of
generality that z, —>ze 8 in w(X,X*). Then f(2)=1 and thus |2[|=1 and =z
is a farthest point to 0 in S. Therefore we have proved that a(S) is fat in
X. The proof now proceeds as in Corollary to Proposition 2.
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The assumption of weak closednees of subsets in Proposition 3 is
dropped in the following.

CoroLLARY. Suppose a reflexive Banach space X has Fréchet differenti-
able morm at all nonzero points and satisfies the following condition:

(H) If|x,) =zl =1 and x, >x in w(X,X*), then ||z, —x||>0.

Then for any norm closed bounded subset S < X, the set a(S) vs fat in X and
the closed convex hull of the set Mg (with the notations as above) 18 equal to
the closed convex hull of the set S. Thus extconv S <wecl Mg.

Proor. Follow the proof of Proposition 3. From the reflexivity of X,
assume (without loss of generality) z, »>zeX in w(X,X*). Since |jz,[|=1
and f(z,)—1, we have |2||=1. Thus, by the property (H), |z, —z||—0.
Therefore ze 8 and is a farthest to 0 in S.

ReMARK. Clearly, LUR implies (H). D. Wulbert proved in [23] that
ls(B,,) satisfy (H) if all B,,n=1,2,..., does.

4. The case II of linear operators.

In this Section we state a w*-analog of the result of J. Lindenstrauss
mentioned in the Introduction. First, it is easy to see that Lemma 1 of
J. Lindenstrauss [16, p. 140] has the following variant for dual spaces:

Lemma 1. Suppose T is a linear bounded operator of X* snto Y*, which
18 also w*—w* continuous. Then there is an xeX*, |jz||=1 such that
|T|| =T\, ¢ff the following assertion ts valid:

There exist x,€X*, fLeY, k=1,2,..., such that |z, |=|fll=1, and
[fi(Tx)| = |IT||—1fj for Naj = k, k = 1,2,....

Proor. If the condition holds, take z a w(X*,X)-limit point of the
sequence {z;},k=1,2,.... Then zeK,(0)<X* and there exists a subnet
%, , v€A of the sequence {x,},k=1,2,..., such that z; -z, in w(X*,X).
Now, since 7' is w(X*,X) -w(X*,X) continuous on X*, we have for any
jeN

|f{(T=)| = limveA'fj(Txk,)l'
Thus, since for any jeN,

\fi(Tz)l 2 IT|—1[j for » 2 ypf,ved ,
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we have
ITl 2z 1f{(T=)| z |TlI—-1[j
for any jeN. Therefore

1Tz = supsex,@er |f(T®)] = |IT].
If there is an zeX*, ||lz]|=1 such that ||Tz|=||T|, we may simply put
x,=2x,k=1,2,... and take f;e Y satisfying |/f;||=1 such that
Ifi(Tz)| z | T=ll-1[j, jeN.

Next we obtain:

ProrosiTioN 4. Let X,Y be arbitrary Banach spaces. Denote by
B*(X* Y*) the set of all linear bounded operators of X* into Y* which are
w*-w* continuous.

Then there exist a norm dense set D < B*(X*,Y*) formed by operators
which attain thesr norms on K,(0)< X*.

Proor. Following the proof of J. Lindenstrauss for generally nondual
spaces, we make only a few changes (see [16, p. 141]).
Let Te B*(X* Y*) satisfying ||[T||=1 and ¢€(0,4) be given. Choose a
decreasing sequence {;},k=1,2,... of positive numbers such that
230 e <&, 22418 < 83 & < 1/10k, k=1,2,...

Next choose inductively a sequence {T',} of linear bounded operators of
X* into Y* and sequences {r;} < K,(0) = X* and {f,} < K;(0) = Y
such that

T,=T

1Tl 2 IIThll— &2 llll = 1, =12..
flTwr) 2 1Tl =& Il =1, k=12,...,
Tex = Thx+epfi(Tixe) Ty, zeX* k=1,2,....
We may verify that similarly as in the above mentioned work of J. Lin-
denstrauss,
IT;—TWll < 2335 e, 3= ITull =8 j<kk=12...,
1Tenll = llTkII+8kl|TklI’—48k2, k=12,...,
ITell 2 175l 2 1, j<k,k=1,2,...,
[fi(Tyx)l = T4l —6e5, j<k,k=1,2,....
Then T, converges in the norm of B(X*,Y*) (= the Banach space of all

bounded linear operators of X* into Y*) to a linear bounded operator
T of X* into Y* such that ||T——T,|[§ej’ and ||? — 7|/ <e. Furthermore,
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it is easy to see that the partializations 7';/K,(0) are continuous with
respect to the relativized w* topology on K,(0) = X* and the w* topology
of Y*. Thus the same property is shared also by 7'/K,(0) — their uniform
limit with respect to the norm (and thus a fortiori with respect to the
w*) topology of ¥*. Therefore 7'e B*(X*,¥*), by the Banach-Dieudonné
theorem (see [5, p. 265]). Now, as in Lindenstrauss’ work,

\fi( @)l 2 |1PI-1/5, j<k, k=12,...

(cf. 16, p. 142]). Using now Lemma 1, we see T attains its norm on
K,(0)= X*,

5. Applications.

In this Section we give some applications of the notions studied in
this note to the structure of Banach spaces.

ProrosrrioN 5. Assume X is a Banach space. Then

(i) If X is an SDS space, then the norm of X** 48 Fréchet differentiable
on a w(X** X*) dense set in X**.

(ii) If X* is an SDS space, then K,(0)<X** is the w(X**, X*) closed
convex hull of those of its points lying in X that are strongly exposed by
elements of X*.

Proor. V. L. Smuljan proved in [20], [21] (see also [7, p. 296]) that
the norm of a Banach space X (X*) is Fréchet differentiable at z, |jz| =1
iff whenever f,eX* (X) satisfy ||f,/|=1and f,(z)—1, then {f,} is a norm
convergent sequence in X* (X). From this and the w(X**, X*) density
of the canonical image of X in X** (i) easily follows.

If X* is an SDS space, then K,(0) <X is the closed convex hull of its
strongly exposed points—the result following from the ones in Asplund’s
paper [1l](see [26, p. 452]). From this and the first part of this proof
(ii) easily follows.

CoroLLARY 1. If for a Banach space X, X** is separable, then the norm
of X** i3 Fréchet differentiable on a w(X**,X*) dense set in X** and
K (0)c X** is the w (X**,X*) closed convex hull of those of its points
Jrom X that are strongly exposed by elements of X*.

Proor. Use the remarks in Section 2.

CoroLLARY 2. [;(N) is not ssometrically ssomorphic to any bidual of
Banach space.
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Proor. The norm of /,(N) is nowhere Fréchet differentiable, as it is
remarked in [16, p. 145]. This is easily seen, since otherwise there would
be a point zecy*(N), |iz]|=1 at which the norm of ¢,*(N) is Fréchet dif-
ferentiable with the differential y, lying in c¢o(N) by Asplund’s result
([1, p. 37]). Then y would be a strongly exposed point of K,(0)<cy(N),
a contradiction.

ProrosiTION 6. Assume X ts a Banach space such that X* is an SDS
space. Then

(i) Every w* compact set in X* 1s the intersection of finste unions of
closed balls in X*.

(ii) Suppose {4,}, n=1,2,... is an arbitrary countable family of closed
convex bounded sets in X. Define the set M < X* as follows:

M = {feX*suchthatVneN, f attains its maximum on 4,} .
Then M is fat in X*.

Proor. (i) follows exactly as Theorem 3 of [6, p. 411], using the w*
compactness of K,(0)<X*.

(ii). For any neN, let F,, be a function on X defined as follows: F, (x) =0
on 4,,F, (x)= + o for x¢A4,. Then the Fenchel dual function ¥, * on X*
is continuous, finite, convex and thus Fréchet differentiable on a dense
G, subset @, < X* with the differentials lying in X ([1] p. 37). Further-
more, if F,* is Fréchet differentiable at f with the differential z(eX)
then it follows from the results of [1, Proposition 5 on p. 46] that xe4,,

and f (x) = SupueAnf (u) .
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