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LINEAR RECURRENCE IN BOOLEAN RINGS.
PROOF OF KLYVE’S CONJECTURE

JOHANNES MYKKELTVEIT and ERNST S. SELMER

In the preceeding paper [2], to which we had access in manuscript,
Klgve puts forward a conjecture on linear recurring sequences in Boolean
rings. We shall prove this conjecture. The representation of ring elements
by vectors was suggested by Mykkeltveit, and the reformulation of the
conjecture by Selmer.

We shall follow Klgve’s notation throughout.

1. Reformulation of the conjecture.
We define

my < my iff  By(m;) £ Bi(m,) foralle,

that is, ff the bsnary representation of my contains at least the same 1’s as
that of m;. Then Klgve’s conjecture can be written

(1.1) S X) by (X) = lem, <, @(X) -
In the recurrence relation
(1.2) Ty =0Ty 3+ ... +0%, ., n20,
we replace some of the a,’s by zero, and are then left with a recurrence
(1.3) Xy = ATy gt ...+, ;, n20,

where the coefficients a,, are independent elements of the given Boolean
ring. The choice of coefficients is uniquely determined by the number
(1.4) m = 9_, 251,

This is constructed from the indices j, in exactly the same way as Klgve

uses to characterize any choice of the original coefficients a,,...,a, by
a number m.
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Let G,,(X) be the polynomial in GF[2][X] of least degree associated
with the recurrence (1.3). Using all coefficients in (1.2), we see that
Gyr_1(X) is the same as Klgve's F (X).

If we for the parameters a;, choose particular values lying in GF[2],
then the associated polynomial must be a divisor of G, (X), hence
(1.5) lem,, -, @,(X) | Gp(X) .

On the other hand, we must have

(1.6) G,(X) |lem, . f(X) ,

in analogy with Klgve’s formula (4.5). Combining (1.1), (1.5) and (1.6),
we see that Klgve’s conjecture implies

Bl X) = lem, € @u(X) | G(X) [lem, i X) lem, ¢ phy(X) = hy(X)
and thus
(1.7) Gp(X) = lem, -, Q,(X), 1Sm=27—1.
Conversely, (1.7) implies that
Gn(X) = lem, . f(X) = k,(X),

and thus f,,(X)|A,,(X), which is Klgve’s conjecture. This is consequently
equivalent to the relation (1.7).

Since we are going to prove it, we state the reformulated conjecture
as a

THEOREM. Let A be a Boolean ring, and consider the linear recurrence
Ty = Qjy_ji+ .. +CGZy 4 @,T, €A,

where the coefficients a;, are independent parameters. Let G,,(X) be the
polynomial sn GF[2][X] of least degree associated with this recurrence.

For the parameters a;,, we can in 2°—1 ways choose particular values,
not all 0, lying in GF[2]. For each such choice, we get a binary recurrence
relation with an associated characteristic polynomial @,(X). The least com-
mon multiple of these polynomials is then just G, (X).

Formulated this way, the truth of Kleve’s conjecture appears very
likely indeed. It does, however, seem hard to prove by the method used
in Klgve’s paper.
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2. Proof of the theorem.

Following Berlekamp [1, p. 365], we shall represent the elements
aj‘eA, t=1,2,...,s, by binary (column) vectors a;, of dimension 2s.
Addition of such vectors is component-wise modulo 2, and also multi-
plication s performed component-wise. Any product of elements a,; shall
be represented by the product of the corresponding vectors a;,. The
vectors with all components 0 or all 1 are denoted 0 and 1, respectively.
The fundamental relations a?=a and 2a=0 of a Boolean ring clearly
hold.

To fix the ideas, we illustrate the choice of vectors a; for s =3 in Table
(2.1). We number both rows and columns from 0 to 28— 1="7. Then the
digits of row p and column 1,2,3=s form the binary representation, in
reverse order, of the number p. Equivalently, we can say that the com-
ponents of a;, are grouped in alternating blocks of 2i-! 0’s and 2~ 1’s.

Table (2.1)
1 a; a; a3 ana, a6, aa;  a05a0,
1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0
1 0 0 1 0 0 0 0
1 1 0 1 (1] 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1
y =0 1 2 4 3 5 6 7

|

Each product
I 0, =01,

can in the usual way (cf. (1.4)) be characterized by the number

y = Zai-l 9i~1 ,

which is given below the vectors in (2.1). From the choice of a;,, it fol-
lows easily that the column vector corresponding to » has the first »
components =0 and the (v+ 1)st component=1. By permuting columns,
we can therefore transform the matrix of (2.1) into a matrix 7 with 1’s
along the main diagonal and 0’s above this diagonal. The vectors of (2.1)
are thus linearly independent.

Incidentally, it can be shown that the complete distribution of 0’s
and 1’s among the elements ¢, , of .7 is determined by
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(2.2) ty=1<vci.

Because of the linear independence, any binary vector & of dimension
2¢ is uniquely determined as a (binary) linear combination of the vectors
of (2.1). No proper binary polynomial in these vectors can therefore
vanish identically. This ensures that the independence of the ring ele-
ments ay; is refasned by the vector representation chosen.

In the recurrence (1.3), the initial elements x_,,z_,,. .. could of course
be ring elements different from 0,1 or polynomials in the coefficients a;;.
This would necessitate representation by vectors of dimension 2° with
o >s. However, as pointed out by Klgve, we get the same period and the
same ‘‘minimal’’ associated polynomial G, (X) if we use the initial values
z3=1,x_y=x_s=...=0. In the notation of Selmer [3], the resulting
recurring sequence is the ‘“impulse response sequence”’, IRS. (In a feed-
back shift register, this sequence results from applying a single pulse to
an empty register.)

In the vector representation of the recurrence (1.3), we can conse-
quently use the initial vectors ®_;=1, x_,=2_;=...=0. Any vector x,
is then a binary polynomial in @, ,...,a; , and vectors of dimension 2¢
will suffice.

Again to fix the ideas, we illustrate the vector form of (1.3) for s=2:

xn(o) 0 xn—jl(o) 0 xn-jg(o)
1
(2.3) SN I 3 S D L8 L nz0
: 2. 7 10( \ax. .. @ 1| \x (2) ’ =
n n—j1 n—jg
xn(3) 1 X, 11(3) 1] |z,— 12(3)

Clearly 2,@=0 for n20. The remaining {x,»},., for 1<A1=<2%! are
binary sequences of the type IRS, determined by the recurrence rela-
tions described in the theorem, with characteristic polynomials @,(X),
u<m, where m is given by (1.4). Since the characteristic polynomial is
also the ‘“minimum polynomial” (cf. Selmer [3]) of an IRS in GF[2],
their least common multiple is just the G,,(X) of the theorem. This proves
the theorem.

To stress that the {x,®} of (2.3) are impulse response sequences, let
us denote them by {Z,*} (in the notation of Selmer [3]). The upper index
u indicates the characteristic polynomial @, (X).

The only vector of (2.1) with an odd number of components 1 is the
last one, corresponding to the product of all vectors a,,. Hence a vector
@, will contain this product as an addend iff the vector has an odd num-
ber of components 1, that is, iff
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(2.4) SiemZ,® =1 (mod2).

We now return to the recurrence (1.3) in the ring A, where (2.4) is
the condition for z, to contain the product of all the coefficients as an
addend. Since the deleted coefficients in the transition from (1.2) to (1.3)
will not influence the occurrence of this product, the condition (2.4)
applies to the complete recurrence (1.2) ag well. In this recurrence, with
the IRS, Klgve denotes the coefficient of a;a;, . ..a; by T(m,n), where
m is given by (1.4). Comparing with (2.4), we get the interesting formula

(2.5) T(m,n) =3 ,cmZ,» (mod2), nz0,

where the summation is taken over all IRS for y<m.

This formula should be compared with Klgve’s formula (4.4), which
contains indices <n on the right hand side. This fact seems to make
Klgve’s method less efficient than the vector method used above.

In Klgve’s notation, f,(X) is the minimum polynomial in GF[2][X]
associated with the binary sequence {I'(m,n)},.,. This means that (2.5)
yields an immediate proof of Klgve’s conjecture in the unmodified ver-
sion (1.1).
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