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THE 2-HESSIAN AND SEXTACTIC POINTS ON PLANE
ALGEBRAIC CURVES

PAUL ALEKSANDER MAUGESTEN and TORGUNN KAROLINE MOE

Abstract
In an article from 1865, Arthur Cayley claims that given a plane algebraic curve there exists an
associated 2-Hessian curve that intersects it in its sextactic points. In this paper we fix an error in
Cayley’s calculations and provide the correct defining polynomial for the 2-Hessian. In addition,
we present a formula for the number of sextactic points on cuspidal curves and tie this formula to
the 2-Hessian. Lastly, we consider the special case of rational curves, where the sextactic points
appear as zeros of the Wronski determinant of the 2nd Veronese embedding of the curve.

1. Introduction

Let C = V (F) be an algebraic curve of geometric genus g and degree d,
given by a polynomial F ∈ C[x, y, z]d , in the projective plane P2 over C. In
standard terms, a point p on an irreducible curve C is called singular if all
the partial derivatives of F vanish, and smooth otherwise. Given two curves
C and C ′ and a point p in the intersection, let (C ·C ′)p denote the intersection
multiplicity of C and C ′ at p. Moreover, for any point p ∈ C, let mp denote
its multiplicity, i.e. the intersection multiplicity at p of C and a generic line.

Now, given an irreducible curve C and fixed n ∈ N, consider curves,
not necessarily irreducible, of degree n in P2. With r(n) = 1

2n(n + 3) and
nd ≥ r(n), for every smooth point p ∈ C there exists a curve of degree n
such that the local intersection multiplicity is equal to or bigger than r(n),
referred to as an osculating curve to C at p, see [1]. A smooth point where the
intersection multiplicity between a curve of degree n and C is strictly bigger
than r(n) is referred to as an n-Weierstrass point. In this case, the curve of
degree n is called a hyperosculating curve.

For n = 1 this comes down to tangent lines to C, for each smooth point
p denoted by Tp and given by the linear polynomial xFx(p) + yFy(p) +
zFz(p), with the property that �p = (Tp · C)p ≥ 2. Thus, the smooth 1-
Weierstrass points on C, for which �p > 2, are nothing but the inflection
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points. In particular, if �p = 3, p is called a simple inflection point, and, in
general, the order of an inflection point is given by vp = �p − 2.

The main focus of this paper is the case n = 2. For every smooth point
p on a curve C of degree d ≥ 3 there exists a unique osculating curve of
degree 2, denoted by Op, with cp = (Op · C)p ≥ 5 [4]. In particular, we look
at 2-Weierstrass points, where cp > 5, which includes inflection points and
sextactic points, first studied for curves of arbitrary high degree by Cayley
in [5].

In a broader context, Weierstrass points of curves in any projective space
with respect to a linear systemQ have been intensively studied, both classically
in the case of smooth curves, and more recently for singular curves [2], [9],
[16], [29], [24], [25]. One consequence of this research is that for a singular
plane curve and a linear system Q, the Q-Weierstrass points include both the
smooth Q-Weierstrass points and the singular points [2].

Back in P2, in the case n = 1 it is well known that the Hessian curve to C,
of degree 3(d − 2), given by the polynomial

H = H1(F ) =

∣∣∣∣∣∣∣
Fxx Fxy Fxz

Fyx Fyy Fyz

Fzx Fzy Fzz

∣∣∣∣∣∣∣
,

intersects C in its inflection points and singular points, i.e. its 1-Weierstrass
points.

In [5] Cayley presents a curve with similar properties: a curve of degree
12d−27 that intersectsC in its sextactic points, higher order inflection points,
and its singular points. The first main result of this article is a correction of
Cayley’s defining polynomial for such a curve, referred to as the 2-Hessian to
C. See Section 2 for notation.

Theorem 1.1 (The 2-Hessian). Let C = V (F) be a plane curve of degree
d ≥ 3, with H the defining polynomial of the Hessian curve to C. Then there
exists a curve of degree 12d − 27 given as the zero set of

H2 = H2(F ) = (12d2 − 54d + 57)H Jac(F,H,�H̄ )

+ (d − 2)(12d − 27)H Jac(F,H,�F̄ )

− 20(d − 2)2 Jac(F,H,�),

such that the intersection points between C and this curve are the singular
points, the higher order inflection points, and the sextactic points of C.

Abusing notation we refer to both the Hessian curve and its defining poly-
nomial as H , and similarly we write H2 for both the 2-Hessian curve and its
defining polynomial.
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Observe that the curve V (H ·H2) intersects C in its 2-Weierstrass points.
The situation is more complex for n ≥ 3 and for curves in higher di-

mensional spaces. We refer to [8] for modern results on higher Hessians to
smooth plane curves and, in higher dimensional spaces, generalized Hessians
to smooth curves that are complete intersections.

To complete the picture for n = 2, we turn to another angle. Instead of
studying sextactic points on a curve using its defining polynomial and the 2-
Hessian, we count the number of sextactic points using simple invariants of
the curve, its inflection points, and its singular points.

Recall that singular points on plane curves exist in many different shapes.
Moreover, a singular point can be described by its multiplicity, delta invariant
and number of branches. In particular, a singular point is called a cusp if it
is unibranched, and up to topological type, a cusp p can be described by its
multiplicity sequence,mp, the ordered sequence of multiplicities of the points
above p in the partial minimal embedded resolution of C at p, see [3, p. 503].

Curves with only cusp singularities, cuspidal curves, have been thoroughly
studied the last 25 years, see [20], [21] for an overview. The research has been
motivated by both classification problems and the connections such curves have
to problems in the theory of open surfaces. We mention briefly the recently
proved Coolidge-Nagata conjecture [15], the Orevkov-Piontkowski conjec-
ture [14], and the still unresolved Flenner-Zaidenberg rigidity conjecture.

The second main result in this article is a formula for the number of sex-
tactic points on cuspidal curves, for which the invariants involved are easily
accessible. Indeed, for a cusp p with multiplicity mp, there exists a unique
line Tp such that �p = (Tp · C)p > mp, referred to as the tangent line to C
at p. Similarly, applicable only to cusps where �p = 2mp, there exists a, not
necessarily unique, conicOp with cp = (Op ·C)p > 2mp and cp �= 3mp, 4mp,
referred to as an osculating conic to C at p, see Lemma 3.2.

Theorem 1.2 (Sextactic point formula). LetC be a cuspidal curve of genus
g and degree d ≥ 3. Let I denote the set of inflection points and cusps on C
where �p �= 2mp, and let J denote the set of cusps on C where �p = 2mp.
Then the number of sextactic points s on C, counted with multiplicity, is given
by

s = 6(2d + 5g − 5)−
∑
I

(4mp + 4�p − 15)−
∑
J

(10mp + cp − 15).

Remark 1. Although the formula in Theorem 1.2 is a new restriction for
cuspidal curves, it is superseded by other well known results.

The formula in Theorem 1.2 has a classical touch and resembles the Plücker
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formula for inflection points; see [3, p. 586] for a formula for curves with any
kind of singularities, attributed to Weierstrass and Noether.

Not surprisingly, there exist similar formulas for the number of sextactic
points on plane curves, subject to different restrictions, in the literature. A
formula for smooth curves is explicitly stated by Thorbergsson and Umehara
in [27, p. 90], and a formula for curves with certain singularities is given
by Coolidge, attributed to Cayley, in [7, Theorem 4, p. 280]. Both of these
formulas coincide with the formula in Theorem 1.2 under the appropriate
restrictions and generalizations. Moreover, as briefly commented by Coolidge
in [7, p. 280], it is possible to find a formula for the number of sextactic
points valid for any plane curve. Indeed, the formula in Theorem 1.2 can be
directly extended to curves with multibranched singularities by dealing with
one branch at the time. We do not state this formula explicitly, but we discuss
some of the necessary generalizations in Remark 7. Additionally, note that a
method to compute the number of sextactic points on a plane curve with any
kind of singularities has been presented by Perkinson in [24, pp. 42–44], to
which our approach is very similar, and that a formula would also follow from
such calculations.

For higher n, a formula for the number of n-Weierstrass points would re-
quire a stratification of the Weierstrass points and special treatments of each
subgroup, as in the case of I and J in Theorem 1.2. As described in [24, p. 50],
this would require close inspection of many points on the curve. Hence, a
precise formulation of such a general formula is not within the scope of this
article.

This article has the following structure. In Section 2 we fix Cayley’s poly-
nomial for the 2-Hessian to the one given in Theorem 1.1, and we explore
some curves and their sextactic points using this tool.

In Section 3 we prove the formula from Theorem 1.2 for the number of
sextactic points on cuspidal curves, and we apply this formula to examples.
Moreover, we derive a corollary which ties the sextactic point formula to the
2-Hessian.

In Section 4 we take a closer look at rational curves. In this case, the oscu-
lating conic to a curve at a smooth point can be calculated directly from the
parametrization. Moreover, we show that the zeros of the Wronski determinant
of the 2nd Veronese embedding of the curve correspond to its 2-Weierstrass
points.

The figures in this article are made with GeoGebra [13], computations are
done with Maple [17], and program code can be found in [18, Appendix B].
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2. The 2-Hessian curve

A fair bit of notation is necessary to present the defining polynomial of the
2-Hessian to a curve. For the convenience of the reader, we stay close to
Cayley’s original formulations from [4], [5] and begin this section by recalling
the essential objects.

With C and F as before, and p a point on the curve, let

DFp(x, y, z) = xFx(p)+ yFy(p)+ zFz(p),

D2Fp(x, y, z) = x2Fxx(p)+ y2Fyy(p)+ z2Fzz(p)

+ 2xyFxy(p)+ 2xzFxz(p)+ 2yzFyz(p).

Moreover, with Hess(F ) denoting the Hessian matrix of F , write

Hess(F ) =
⎡
⎣ a h g

h b f

g f c

⎤
⎦ ,

where as usual

a = Fxx, b = Fyy, c = Fzz, f = Fyz, g = Fxz, h = Fxy,

and H = det Hess(F ). Similarly, for the Hessian matrix of H , write

Hess(H) =
⎡
⎣ a

′ h′ g′
h′ b′ f ′
g′ f ′ c′

⎤
⎦ ,

so that the elements denote the second order partial derivatives of H ,

a′ = Hxx, b′ = Hyy, c′ = Hzz, f ′ = Hyz, g′ = Hxz, h′ = Hxy.

Following the pattern, the elements of the adjoint matrix Hess(F )adj are as-
signed the notation

Hess(F )adj =
⎡
⎣ A H G

H B F

G F C

⎤
⎦ ,

where

A = bc − f 2, B = ac − g2, C = ab − h2,

F = hg − af, G = hf − bg, H = fg − hc.
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Furthermore, put

� = (A ,B,C ,F ,G,H ) · (a′, b′, c′, 2f ′, 2g′, 2h′),

which also can be expressed as the trace of the product of the adjoint matrix
of the Hessian matrix of F and the Hessian matrix of H :

� = tr
(
Hess(F )adj · Hess(H)

)
.

Additionally, let

∂x�H̄ = (Ax,Bx,Cx,Fx,Gx,Hx) · (a′, b′, c′, 2f ′, 2g′, 2h′),
∂x�F̄ = (A ,B,C ,F ,G,H ) · (a′

x, b
′
x, c

′
x, 2f ′

x, 2g′
x, 2h′

x).

Observe that the partial derivative of � with respect to x can be written

�x = ∂x�H̄ + ∂x�F̄ ,

and note that none of the terms on the right-hand side is an actual derivative.
Naturally, similar expressions can be found for�y and�z by replacing x with
y and z in the above. Thus, although they are not true Jacobi determinants, we
use Cayley’s notation and write

Jac(F,H,�H̄ ) =

∣∣∣∣∣∣∣
Fx Fy Fz

Hx Hy Hz

∂x�H̄ ∂y�H̄ ∂z�H̄

∣∣∣∣∣∣∣
and

Jac(F,H,�F̄ ) =

∣∣∣∣∣∣∣
Fx Fy Fz

Hx Hy Hz

∂x�F̄ ∂y�F̄ ∂z�F̄

∣∣∣∣∣∣∣
.

Moreover, put

� = (A ,B,C ,F ,G,H ) · (H 2
x ,H

2
y ,H

2
z , 2HyHz, 2HxHz, 2HxHy),

or equivalently, in matrix form,

� = −

∣∣∣∣∣∣∣∣∣

0 Hx Hy Hz

Hx a h g

Hy h b f

Hz g f c

∣∣∣∣∣∣∣∣∣
.
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Lastly, this time an actual Jacobi determinant, let Jac(F,H,�) denote the
determinant

Jac(F,H,�) =

∣∣∣∣∣∣∣
Fx Fy Fz

Hx Hy Hz

�x �y �z

∣∣∣∣∣∣∣
.

2.1. The osculating conic

For completion, before we move on to the 2-Hessian, we present the osculating
conic to a curve at a smooth point, give a formal definition of a sextactic point,
and present an example.

For any smooth point p on a curve C of degree d ≥ 3 there exists a unique
osculating curve of degree 2. In the case of inflection points, this curve is
the double tangent line. For a smooth point that is not an inflection point, the
osculating conic was first presented by Cayley in [4].

Theorem 2.1 ([4, p. 377]). LetC be a plane curve of degree d ≥ 3 given by
a polynomial F . If p is a point on C that is neither singular nor an inflection
point, then, with 9H 3� = −3�H + 4�, the osculating conicOp to C at p is
given by

D2Fp −
(

2

3

1

H(p)
DHp +�(p)DFp

)
DFp = 0.

Definition 2.2. On a plane curve C, a smooth point p that is not an
inflection point is called a sextactic point if

cp = (Op · C)p ≥ 6.

With sp = cp − 5, a sextactic point p is said to be of order sp, or sp-sextactic.

A first example of a sextactic point on a curve can be found on a cubic.

Example 2.3. Let C be the cubic curve with a nodal singularity given by

F = y2z− x3 − x2z.

Pick a smooth point on C, say p1 = (−4
5 : 4

5
√

5
: 1

)
. The osculating conic

Op1 , for which (Op1 · C)p1 = 5, is shown in Figure 1 on the next page. Its
defining polynomial can be directly computed with the formula in Theorem 2.1
and [18, Program B.2, pp. 67–68],

1125x2 + 625y2 + 64z2 + 400
√

5yz+ 1200xz+ 350
√

5xy = 0.
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Figure 1. The nodal cubic from Example 2.3 with the osculating conic
Op1 at the smooth point p1.

Figure 2. The nodal cubic from Example 2.3 with the hyperosculating
conic Op2 at the sextactic point p2.

Now, pick p2 = (−1 : 0 : 1). The osculating conic Op2 can be computed
as above,

2x2 + y2 + z2 + 3xz = 0.

Note that (Op2 · C)p2 = 6, hence p2 is a sextactic point and Op2 a hyperoscu-
lating conic, see Figure 2.

Remark 2. For a thorough investigation of a nodal cubic with respect to its
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sextactic points using elementary methods, we refer to the Appendix by Sakai
in [28, pp. 383–385] by Tono. Perhaps somewhat surprisingly, a sextactic point
on such a curve plays an important role in the construction of a particularly
interesting series of unicuspidal curves, first studied by Orevkov in [23].

Remark 3. From the perspective of abelian groups on curves, in Ex-
ample 2.3 it can be observed directly that p2 = (−1 : 0 : 1) is a sextactic
point. Indeed, the curve is given on Weierstrass form, and the vertical line
x + z = 0 is the tangent line to C at p2, passing through the identity element
and inflection point (0 : 1 : 0). Thus, p2 is a 2-torsion point for the abelian
group structure on the smooth part of C, and it follows that p2 is a sextactic
point.

2.2. The correct 2-Hessian

An incorrect defining polynomial of the 2-Hessian to a curve C is given by
Cayley in [5, p. 556]:

(12d2 − 54d + 57)H Jac(F,H,�H̄ )

+ (d − 2)(12d − 27)H Jac(F,H,�F̄ )

− 40(d − 2)2 Jac(F,H,�).

Cayley’s proof of this result is based on restrictions that arise when more than
five points in the intersection between a conic and the curve C coalesce, and
it is mostly correct. There is, however, an elementary computational error in
the proof that affects the coefficient of the last term and makes the polynomial
invalid. See Theorem 1.1 for the correct defining polynomial of the 2-Hessian
to a curve.

Remark 4. The mistake is neither corrected in the version of the paper [5]
published in The collected mathematical papers of Arthur Cayley [6, p. 221],
nor in later works that cite the result, see [8, p. 226] and [26, p. 372].

Correction of Cayley’s proof of Theorem 1.1. Cayley’s mistake oc-
curs in Section 19 on p. 553 in [5] as he attempts to simplify an expression
that he has obtained for the 2-Hessian in Section 10 on p. 550.

In the simplification Cayley introduces, in Section 18 on pp. 552–553, an
expression W and correctly states that

W := H∂�− 5�∂H = −3

4d − 9
ϑ Jac(F,�,H)− 5d − 9

4d − 9
∂(�H),

where ∂ = (Fyν − Fzμ)∂x + (Fzλ − Fxν)∂y + (Fxμ − Fyλ)∂z and ϑ =
λx + μy + νz, with λ,μ, and ν arbitrary constants.
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Moreover, in Section 19, Cayley states that

�∂H =
1
2

4d − 9
ϑ Jac(F,�,H)+

3
2 (d − 2)

4d − 9
H∂�,

and subsequently calculates

9HW + 40�∂H = −9(5d − 9)

4d − 9
H∂(�H)+ 60(d − 2)

4d − 9
H∂�

+ ϑ

4d − 9

[−27H Jac(F,�,H)+ 40 Jac(F,�,H)
]
,

(1)
where he makes the mistake of forgetting to multiply 40 by the 1

2 in the first
term of �∂H .

The correct calculations yield

9HW + 40�∂H = −9(5d − 9)

4d − 9
H∂(�H)+ 60(d − 2)

4d − 9
H∂�

+ ϑ

4d − 9

[−27H Jac(F,�,H)+ 20 Jac(F,�,H)
]
,

(2)
where the coefficient of Jac(F,�,H) in the parenthesis is 20 as opposed to
40 in Equation (1).

Following Cayley’s remaining calculations in Sections 20–25 on pp. 553–
556 in [5], using the expression in Equation (2), leads to the polynomial in
Theorem 1.1.

Remark 5. Note that Cayley’s result is stated for smooth curves in [5].
However, the proof is based on local considerations, hence the corrected poly-
nomial identifies the higher order inflection points and sextactic points on sin-
gular curves as well. Moreover, each term in the polynomial H2(F ) involves
a determinant with the partial derivatives of F in one row, so the 2-Hessian
certainly contains the singular points of C.

Example 2.4. Let C be the curve given by the defining polynomial

F = x4 − x3y + y3z.

This curve has one cusp with multiplicity sequencemp = [3] and two simple in-
flection points. The defining polynomial for the 2-Hessian, computed with [18,
Program B.3, p. 69], is

−27 · 311 · 5 · 7 · y18 · (4x − y) · (14x2 − 7xy + 2y2) = 0.
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Table 1. Invariants and intersections for the rational cuspidal quartic in Example 2.4.

Point p mp δp (Tp · C)p (Op · C)p (H · C)p (H2 · C)p
(0 : 0 : 1) [3] 3 4 — 22 81
(8 : 16 : 1) 0 3 — 1 0
(0 : 1 : 0) 0 3 — 1 0(
64
3 : 256

3 : 1
)

0 2 6 0 1(
49
24 + i 77

√
7

24 : −637
48 + i 343

√
7

48 : 1
)

0 2 6 0 1(
49
24 − i 77

√
7

24 : −637
48 − i 343

√
7

48 : 1
)

0 2 6 0 1

The intersection points of H2 and C are

p1 = (0 : 0 : 1),

p2 = (
64
3 : 256

3 : 1
)
,

p3 = (
49
24 + i 77

√
7

24 : −637
48 + i 343

√
7

48 : 1
)
,

p4 = (
49
24 − i 77

√
7

24 : −637
48 − i 343

√
7

48 : 1
)
.

The point p1 is the cusp, while p2, p3 and p4 are sextactic points. With [18,
Program B.2, pp. 67–68] we compute the osculating conics for the latter and
check with Maple [17] that

(Op2 · C)p2 = (Op3 · C)p3 = (Op4 · C)p4 = 6.

Note that Cayley’s original formula for the 2-Hessian identifiesp2 as a sextactic
point, but not p3 and p4.

A complete overview of this curve in terms of singularities, inflection points
and sextactic points, and intersections with associated curves, can be found in
Table 1.

3. Sextactic point formulas

In this section we prove the formula for the number of sextactic points on a
cuspidal curve in Theorem 1.2, and we apply it to examples. Moreover, we state
a corollary to the formula that reflects the intersection of C with its Hessian
and 2-Hessian.

3.1. Proof of the sextactic point formula

The key ingredient in our proof is a generalized Plücker formula by Ballico and
Gatto in [2] (see also [25]). To each Q-Weierstrass point p on a curve C it is
possible to assign a so-calledQ-Weierstrass weightwp(Q). On the other hand,
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the sum of the Weierstrass weights can be computed through a generalization
of the Brill-Segre formula. In our situation the result can be stated as follows.

Proposition 3.1 ([2, Proposition 3.4, p. 153]). Let C be a projective, irre-
ducible, cuspidal curve of geometric genus g, letQ be a complete linear system
of degree degQ and dimension r , and letwp(Q) denote the Weierstrass weight
of C at p with respect to Q. Then

∑
p∈C

wp(Q) = (r + 1)(degQ+ rg − r).

In the case of plane curves, to compute the n-Weierstrass weightwp(n) of a
point p ∈ C with respect to a complete linear system of curves of degree n and
dimension r , we use a technique by Notari from [22, pp. 24–26]. Assuming
thatC is cuspidal, Notari’s algorithm reduces to, for each point p ∈ C, finding
curves C0, . . . , Cr of degree n such that the intersection multiplicities at p
are distinct. Subsequently, with hi = (C · Ci)p, the n-Weierstrass weight of a
unibranched point p can be expressed as

wp(n) =
r∑
i=0

(hi − i). (3)

Note that the integers hi do not constitute an ordered sequence.
The last important ingredient in the proof of Theorem 1.2 is Lemma 3.2,

which uses the Puiseux parametrization of C at p to determine hi .

Remark 6. In the remainder of this article we omit the index p for the local
invariants when only one point is discussed.

Lemma 3.2. Let p be a smooth point or a cusp of multiplicity m on a plane
curve C of degree d ≥ 3. With Tp the tangent line at p, let � = (Tp · C)p.

If � �= 2m, then a curve of degree 2 intersects C at p with one of the
following intersection multiplicities:

h0 = 0, h1 = m, h2 = �, h3 = 2m, h4 = m+ �, h5 = 2�.

If � = 2m, then a curve of degree 2 intersects C at p with one of the
following intersection multiplicities:

h0 = 0, h1 = m, h2 = 2m, h3 = 3m, h4 = 4m, h5 = c,

where c is subject to the restrictions

c > 2m and c �= 3m, 4m.
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In particular, a curve of degree 2 that intersects C at p with intersection
multiplicity c is irreducible. If p is a cusp, such a curve is not necessarily
unique, but c is uniquely determined.

Proof. Since p is unibranched, the Puiseux parametrization of C at p can
be given by

(tm : at� + · · · : 1),

where a �= 0, and “· · ·” denotes higher order terms in t [10, Cor. 7.7, p. 135].

The case � �= 2m: We choose the standard basis for plane curves of degree
2, i.e.

x2, y2, z2, yz, xz, xy,

and substitute the Puiseux parametrization of C at p into this basis. This gives

x2 = t2m, y2 = a2t2� + · · · , z2 = 1,

yz = at� + · · · , xz = tm, xy = atm+� + · · · .
By assumption � �= 2m, hence the basis elements represent curves with dis-
tinct intersection multiplicities at p, and taking the order of t in each element
provides the desired values. No other order is possible to obtain by any linear
combination of the basis elements.

The case � = 2m: Observe that since d ≥ 3, the Puiseux parametrization
has the form

(tm : at2m + abt
b + · · · : 1)

for some non-zero constants a and ab, with b > 2m, and we may assume that
there are no terms of order between 2m and b in the y-coordinate. Then

x2 = t2m, y2 = a2t4m + 2a · abt2m+b + a2
b t

2b + · · · , z2 = 1,

yz = at2m + abt
b + · · · , xz = tm, xy = at3m + abt

b+m + · · · .
Since � = 2m, two of the orders of t in the basis elements are equal to 2m, and

h0 = 0, h1 = m, h2 = 2m, h3 = 3m, h4 = 4m.

The remaining intersection multiplicity, h5 = c, can be found by computing
the order of t in all possible linear combinations of the basis elements. There
are three main cases to consider.

First, assume that b �= 3m, 4m. If 4m < b, then

yz− ax2 = 0
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is the unique conic with order c = b in t . If 3m < b < 4m, then any member
of the family of conics

yz− ax2 + k1y
2 = 0,

with k1 ∈ C, has order c = b in t . If 2m < b < 3m, then any member of the
family of conics

yz− ax2 + k1y
2 + k2xy = 0,

with k1, k2 ∈ C, has order c = b in t .
For the remaining two cases, b = 4m and b = 3m, we need to ensure the

existence of c. Indeed, if b = km for some k, then since p is unibranched,
there exists a term with non-zero coefficient in the y-coordinate of the Puiseux
parametrization such that the order of t in this term is bigger than b, and m is
not a factor of this order. Thus, a linear combination of the basis elements will
provide a curve of degree 2 that intersectsC at p with intersection multiplicity
c for some c > b > 2m and c �= 3m, 4m.

Thus, secondly, if b = 4m, then

yz− ax2 − ab

a2
y2 = 0

is the unique conic with order c in t for a c > b = 4m.
Third, if b = 3m and c < 4m, then any member of the family

yz− ax2 − ab

a
xy + k1y

2 = 0,

with k1 ∈ C, has order c in t . If 4m < c, then

yz− ax2 − ab

a
xy + a2

b

a3
y2 = 0,

is the unique conic with order c in t .
In each of the above cases, the curves are irreducible and c is uniquely

determined, with c > 2m and c �= 3m, 4m.

Motivated by the notion of tangent line at a cusp and Lemma 3.2, we give
the following definition.

Definition 3.3. An osculating conic at a cusp p for which � = 2m is a
conic that intersects C at p with intersection multiplicity c, for a c > 2m and
c �= 3m, 4m.

Proof of Theorem 1.2. Let C be a cuspidal curve of geometric genus g,
and let Q be the complete linear system on C cut out by curves of degree 2,
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with degQ = 2d and r = dimQ = 5. Hence, the right-hand side of the
formula in Proposition 3.1 reads

6(2d + 5g − 5).

For the left-hand side of the formula, to compute the 2-Weierstrass weight
of a point p, we proceed by considering the set of points for which � �= 2m
and the set of points for which � = 2m, respectively.

The case � �= 2m: This case includes the inflection points and some of the
cusps, and coincides with the set I .

Inserting the values from Lemma 3.2 into Equation (3) yields

wp(2) =
5∑
i=0

(hi − i) = 4m+ 4�− 15.

The case � = 2m: Note that this case includes all smooth points that are not
inflection points and some of the cusps; the latter points constitute the set J .

As above, Lemma 3.2 provides the possible intersections, and we gather

h0 = 0, h1 = m, h2 = 2m, h3 = 3m, h4 = 4m, h5 = c.

Thus, the 2-Weierstrass weight of p is

wp(2) = 10m+ c − 15.

Note that if p is smooth, then wp(2) is equal to its order as a sextactic point,
wp(2) = c − 5 = sp. The formula is valid even when p is not sextactic, as
in this case c = 5, or equivalently, wp(2) = 0. Hence, the total number of
sextactic points on C, counted with multiplicity, is s = ∑

sp.

Putting all this together while isolating s, we get

s = 6(2d + 5g − 5)−
∑
I

(4mp + 4�p − 15)−
∑
J

(10mp + cp − 15).

Remark 7. A sextactic point formula for curves with arbitrary singularities
follows from Theorem 1.2 by decomposing all singularities down to their
irreducible branches, and subsequently calculating the Weierstrass weights for
each branch separately, see [22] and [24]. In fact, the formula reads the same as
in the cuspidal case, except that in this case I denotes the set of inflection points
and the branches of singular points where � �= 2m, and J denotes the branches
where � = 2m. In other words, both cusps, inflection points, and sextactic
points might hide in branches of singular points with multiple branches, and
these must be accounted for.
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3.2. A lemma and examples

The essential ingredients depending onC in the sextactic point formula are the
degree d and genus g, and mp, �p, and cp for its inflection points and cusps.
Finding these numbers usually requires less heavy calculations than applying
the 2-Hessian directly.

Moreover, we have the following lemma, which shows that �p and cp for
a cusp p sometimes can be determined merely by the degree of C and the
multiplicity sequence mp.

Lemma 3.4. Let p be a cusp with multiplicity sequencem = [m,m1, . . . , 1]
on a plane curve C of degree d ≥ 3. Then

d ≥ � = km+mk ≥ m+m1

for some k ≥ 1, with m = m1 = · · · = mk−1.
Moreover, if � = 2m,

2d ≥ c = km+mk > 2m

for some k ≥ 2, with m = m1 = · · · = mk−1, and c �= 3m, 4m.

Proof. In the first case, since � is the intersection multiplicity of a curve
and a line at a point, it follows from Bézout’s theorem that d ≥ �. Moreover,
by [11, Proposition 1.2, p. 440], we have � = km+mk for some k ≥ 1, with
m = m1 = · · · = mk−1, from which we derive the last inequality.

In the second case, since c is the intersection multiplicity of a curve and a
conic at a point, it follows from Bézout’s theorem that c ≤ 2d. Additionally,
by Lemma 3.2, the curve Op is irreducible, so as above, [11, Proposition 1.2,
p. 440] ensures that c = km+mk for some k ≥ 1, withm = m1 = · · · = mk−1.
Again by Lemma 3.2, c > 2m and c �= 3m, 4m, and the result follows.

In Examples 3.5 and 3.6 we consider two cuspidal curves and use the for-
mula in Theorem 1.2 to compute the number of sextactic points on these
curves. Note that these curves have the same degrees and singularities; they
are equisingularly equivalent. However, the curves are not projectively equival-
ent, and they have different numbers of inflection points and sextactic points,
see Remark 8. We revisit these curves in Examples 4.5 and 4.6.

Example 3.5. Let C be the cuspidal quintic given by

F = y5 + 2x2y2z− x3z2 − xy4.

By explicit calculations with appropriate associated curves it can be shown
that this curve has two cusps; p1 with multiplicity sequence [3, 2] and p2 with



THE 2-HESSIAN AND SEXTACTIC POINTS ON PLANE ALGEBRAIC CURVES 29

Table 2. Invariants and intersections for the curve in Example 3.5.

Point p mp δp (Tp · C)p (Op · C)p (H · C)p (H2 · C)p
(0 : 0 : 1) [3,2] 4 5 — 29 108
(1 : 0 : 0) [22] 2 4 5 15 55(

759375
28672 : 3375

448 : 1
)

0 3 — 1 0

p4 0 2 6 0 1
p5 0 2 6 0 1

Table 3. Invariants and intersections for the curve in Example 3.6.

Point p mp δp (Tp · C)p (Op · C)p (H · C)p (H2 · C)p
(0 : 0 : 1) [3,2] 4 5 — 29 108
(1 : 0 : 0) [22] 2 5 — 16 57

multiplicity sequence [22]. Additionally, it has one simple inflection point, p3,
and two sextactic points, p4 and p5, see Table 2.

On the other hand, it is possible to compute the number of sextactic points
directly using Theorem 1.2. For p1 with multiplicity sequence [3, 2], it follows
from the first part of Lemma 3.4 that � = 3 + 2 = 5 �= 6 = 2m, so

wp1(2) = 4 · 3 + 4 · 5 − 15 = 17.

For p2 with multiplicity sequence [22], Lemma 3.4 does not determine �, but
it can be calculated directly from the defining polynomials of C and Tp2 that
� = 4 = 2m. By the second part of Lemma 3.4 we have that c = 2+2+1 = 5,
so

wp2(2) = 10 · 2 + 5 − 15 = 10.

For the inflection point p3, m = 1 and � = 3, so

wp3(2) = 4 · 1 + 4 · 3 − 15 = 1.

Thus, the number of sextactic points on C is

s = 6 · (2 · 5 + 5 · 0 − 5)− 17 − 10 − 1 = 2.

Example 3.6. Let C be the rational cuspidal quintic given by

F = x3z2 − y5.

This curve has two cusps, p1 with multiplicity sequence [3, 2] and p2 with
multiplicity sequence [22], and no inflection points. See Table 3.
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For both these cusps we have that � = 5 �= 2m, hence

wp1(2) = 4 · 3 + 4 · 5 − 15 = 17, wp2(2) = 4 · 2 + 4 · 5 − 15 = 13.

Thus, the number of sextactic points on C is

s = 6 · (2 · 5 + 5 · 0 − 5)− 17 − 13 = 0.

Remark 8. Note that the curves from Examples 3.5 and 3.6 both belong
to the family of equisingular curves given by V

(
y5 − x(xz − λy2)2

)
, λ ∈ C,

with λ = 1 and λ = 0, respectively. Indeed, for λ �= 0, the curves in the
family are algebraically equivalent to the curve in Example 3.5. In this case, the
intersection multiplicity of the curve and its tangent at the cusp with multiplicity
sequence [22] is equal to 4, while in Example 3.6, where λ = 0, it jumps to 5.
The difference in the intersection multiplicities leads to different Weierstrass
weights. This gives room for smooth Weierstrass points when λ �= 0, while
there are no smooth Weierstrass points when λ = 0, see also Remark 13.

3.3. A corollary that ties things together

As a corollary to Theorem 1.2, we state a formula that reflects the intersection
of a curve of degree d with its 2-Hessian of degree 12d − 27.

Corollary 3.7. Let C be a cuspidal curve of genus g and degree d ≥ 3,
and let δp denote the delta invariant of a singular point p. Then with notation
as in Theorem 1.2, the following equations hold:

d(12d − 27)+ 3d(d − 2)

= s + 30
∑

δp +
∑
I

(4mp + 4�p − 15)+
∑
J

(10mp + cp − 15),

d(12d − 27)

= s + 24
∑

δp +
∑
I

(3mp + 3�p − 12)+
∑
J

(7mp + cp − 12).

Remark 9. Recall that in the case of cusps, δp can be calculated from the
multiplicity sequence mp,

δp =
∑ mi(mi − 1)

2
,

where mi is the ith element in mp.

Before we prove Corollary 3.7, note that the two formulas could be in-
terpreted as an application of Bézout’s theorem to C and its Hessian and 2-
Hessian; the terms 3d(d − 2) and d(12d − 27) are simply the product of the
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respective degrees. The remaining terms are local in nature, and we claim in
Conjecture 3.8 that these terms reflect a natural geometrical interpretation. We
have verified that the conjecture holds for all rational cuspidal curves of degree
4 and 5, see [18]. Note that a similar result is proved for the Hessian curve of
a cuspidal curve, see [21, Theorem 2.1.9, p. 32].

Conjecture 3.8. The intersection multiplicity (H2 ·C)p of a cuspidal curve
C and its 2-Hessian curveH2 at a point p is determined by the multiplicitym,
the delta invariant δ, and the intersection multiplicity with the tangent � or the
intersection multiplicity with an osculating conic c.

If p is a point on C such that � �= 2m, then

(H2 · C)p = 24δ + 3m+ 3�− 12.

If p is a point on C such that � = 2m, then

(H2 · C)p = 24δ + 7m+ c − 12.

Proof of Corollary 3.7. By substituting Clebsch’ formula for the genus
of a plane curve, see [12, p. 393],

g = (d − 1)(d − 2)

2
−

∑
δp,

into the formula from Theorem 1.2, we infer that

s = 15d2−33d−30
∑

δp−
∑
I

(4mp+4�p−15)−
∑
J

(10mp+cp−15), (4)

which can be rewritten as the first formula.
Moreover, the inflection point formula for cuspidal curves, explicitly stated

in [21, Theorem 2.1.8, p. 32], reads

v = 3d(d − 2)−
∑

(6δp +mp + �p − 3),

where v denotes the number of inflection points counted with multiplicity, and
where the sum is taken over all cusps on C. This formula can be rewritten as

0 = 3d2 − 6d − 6
∑

δp −
∑
I∪J
(mp + �p − 3). (5)

By subtracting Equation (5) from Equation (4) and sorting terms, we reach
the second formula.
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4. Sextactic points on rational curves

In this section we assume that C is a rational plane curve, i.e. g = 0 and C can
be given by a parametrization

ϕ(s, t) = (ϕ0(s, t) : ϕ1(s, t) : ϕ2(s, t)), for (s : t) ∈ P1.

Properties of this parametrization can be exploited to find key information
about the 2-Weierstrass points of a rational curve in a natural way.

Remark 10. The results in Theorems 4.2 and 4.4 build upon standard
tools for studying Weierstrass points and hyperosculating spaces, see [1], [19],
[24], [25], as well as results from the previous sections. Indeed, the classical
flavour of the statements indicate that the results are well known. However, we
have failed to find a suitable reference, and include the results and their proofs
for completion.

First in this section, we state a corollary to Theorem 1.2 for rational cuspidal
curves, which is obtained by setting g = 0.

Corollary 4.1. With notation as in Theorem 1.2, the number of sextactic
points s, counted with multiplicity, on a rational cuspidal curve of degree d ≥ 3
is given by

s = 6(2d − 5)−
∑
I

(4mp + 4�p − 15)−
∑
J

(10mp + cp − 15).

4.1. The osculating conic for rational curves

For a smooth pointp on a rational curve, it is possible to compute the osculating
curve of degree 2 directly from the parametrization.

Theorem 4.2. Let C be a rational plane curve given by a parametrization
ϕ(s, t), and let ω(s, t) be the determinant

ω(s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 yz xz xy

∂4(ϕ2
0)

∂s4

∂4(ϕ2
1)

∂s4

∂4(ϕ2
2)

∂s4

∂4(ϕ1ϕ2)

∂s4

∂4(ϕ0ϕ2)

∂s4

∂4(ϕ0ϕ1)

∂s4

∂4(ϕ2
0)

∂s3∂t

∂4(ϕ2
1)

∂s3∂t

∂4(ϕ2
2)

∂s3∂t

∂4(ϕ1ϕ2)

∂s3∂t

∂4(ϕ0ϕ2)

∂s3∂t

∂4(ϕ0ϕ1)

∂s3∂t

∂4(ϕ2
0)

∂s2∂t2

∂4(ϕ2
1)

∂s2∂t2

∂4(ϕ2
2)

∂s2∂t2

∂4(ϕ1ϕ2)

∂s2∂t2

∂4(ϕ0ϕ2)

∂s2∂t2

∂4(ϕ0ϕ1)

∂s2∂t2

∂4(ϕ2
0)

∂s∂t3

∂4(ϕ2
1)

∂s∂t3

∂4(ϕ2
2)

∂s∂t3

∂4(ϕ1ϕ2)

∂s∂t3

∂4(ϕ0ϕ2)

∂s∂t3

∂4(ϕ0ϕ1)

∂s∂t3

∂4(ϕ2
0)

∂t4

∂4(ϕ2
1)

∂t4

∂4(ϕ2
2)

∂t4

∂4(ϕ1ϕ2)

∂t4

∂4(ϕ0ϕ2)

∂t4

∂4(ϕ0ϕ1)

∂t4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Then, for a smooth point p = ϕ(s0, t0), the polynomial ω(s0, t0) ∈ C[x, y, z]2

is the defining polynomial of the osculating curve of degree 2 to C at p.

Proof. Let v2(C) ⊂ P5 denote the image of C under the 2nd Veronese
embedding of P2 to P5, such that

v2(C)(s, t) = (ϕ2
0 : ϕ2

1 : ϕ2
2 : ϕ1ϕ2 : ϕ0ϕ2 : ϕ0ϕ1).

Now, consider the determinant ω̃(s, t), where in the first row of ω(s, t) the
standard basis of plane conics is substituted with the coordinates of P5.

For a smooth point v2(C)(s0, t0), the linear polynomial ω̃(s0, t0) defines
a unique osculating hyperplane to v2(C) in P5, and this hyperplane corres-
ponds to the osculating curve of degree 2 to C at p = ϕ(s0, t0), with defining
polynomial ω(s0, t0).

Note that for an inflection point, ω(s0, t0) is reducible and equals the
(double) tangent. For a smooth point that is not an inflection point, ω(s0, t0)
and Cayley’s osculating conic from Theorem 2.1 coincide by uniqueness.

Example 4.3. The nodal cubic from Example 2.3 can be given by the
parametrization

ϕ(s, t) = (st2 − s3 : t3 − s2t : s3).

At a smooth point ϕ(s0, t0) the osculating curve of degree 2 has defining
polynomial ω(s0, t0) equal to

(2s10
0 + 5s8

0 t
2
0 + 60s6

0 t
4
0 + 45s4

0 t
6
0 )x

2 + (s10
0 + 10s8

0 t
2
0 + 5s6

0 t
4
0 )y

2

+(s10
0 −5s8

0 t
2
0 +10s6

0 t
4
0 −10s4

0 t
6
0 +5s2

0 t
8
0 − t10

0 )z
2 −8(5s7

0 t
3
0 +6s5

0 t
5
0 +5s3

0 t
7
0 )yz

+(3s10
0 + 70s6

0 t
4
0 + 40s4

0 t
6
0 + 15s2

0 t
8
0 )xz− 8(5s7

0 t
3
0 + 3s5

0 t
5
0 )xy.

Evaluating this expression at the point p = (−1 : 0 : 1) = ϕ(1, 0) gives the
same defining polynomial for Op as before,

2x2 + y2 + z2 + 3xz = 0.

4.2. The Weierstrass weight

For rational curves, not necessarily cuspidal, information about its 2-Weier-
strass points can be found by direct computation and inspection of the zeros
of a homogeneous determinantal polynomial.
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Theorem 4.4. LetC be a rational plane curve with parametrization ϕ(s, t),
and let ξ(s, t) denote the Wronski determinant

ξ(s, t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Moreover, let (si : ti) denote the distinct zeros of ξ(s, t), with i ≤ 6(2d − 5).
Then the points pi = ϕ(si, ti) are 2-Weierstrass points on C, and the 2-
Weierstrass weight wpi (2) is equal to the order of the zero of ξ(s, t) corres-
ponding to (si : ti).

Remark 11. Note that the zeros in Theorem 4.4 correspond to all smooth
2-Weierstrass points on C, and only the singular points with wp(2) > 0, i.e.
singular points where at least one branch is a cusp, an inflection point or a
sextactic point.

Proof. First observe that whenever ξ(s, t) vanishes, the corresponding
point on v2(C) is either singular, or there exists a hyperplane in P5 that is
hyperosculating to v2(C). As before, this hyperplane corresponds to a hyper-
osculating curve of degree 2 with respect to a point p on C in P2, hence
determining an inflection point or a sextactic point.

For a smooth curve, [19, VII.4, pp. 233–246] ensures that the multiplicity
of a zero of ξ(s, t) equals the 2-Weierstrass weight of the corresponding point.
Note that this is the same as the flattening points of the Veronese embedding,
as described in [1, p. 15]. This takes care of the smooth points. Alternatively,
the below analysis for singular points can be applied to smooth points.

In the case of singular points, we consider each branch separately, and per-
form a local computation. So choose one branch and perform a linear trans-
formation on C so that the chosen branch of p corresponds to the parameter
values (s : t) = (1 : 0), and so that its tangent is y = 0. Moreover, by abuse
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of notation, observe that

ξ(1, t) = ξ(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

v2(C)(t)

v2(C)
′(t)

v2(C)
′′(t)

v2(C)
(3)(t)

v2(C)
(4)(t)

v2(C)
(5)(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Assume first that the chosen branch can be parametrized by

(tm : at� + · · · : 1),

with a �= 0 and � �= 2m. Substituting this into ξ(t), computing the determinant,
and comparing with the proof of Theorem 1.2 in Section 3.1, it follows that

ordt ξ(t) = 4m+ 4�− 15 =
5∑
i=0

(hi − i).

If � = 2m, first transform the branch of C at p so that it is given by the
parametrization (tm : at2m+· · · : 1), where a �= 0. Subsequently, by applying
the Veronese embedding, consider the curve

ρ(t) = (t2m : a2t4m + · · · : 1 : tm : at2m + · · · : at3m + · · ·)
in P5, which by a suitable linear transformation in P5 can be given by the
parametrization

σ(t) = (t2m : a2t4m + · · · : 1 : tm : act
c + · · · : at3m + · · ·),

for an ac �= 0, and c > 2m, c �= 3m, 4m, see Lemma 3.2. Then, for a
parametrized curve ψ in P5, consider the determinant

Wψ(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ(t)

ψ ′(t)
ψ ′′(t)
ψ(3)(t)

ψ(4)(t)

ψ(5)(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Straightforward computations give that the order of t inWσ(t) is 10m+c−15.
Now, ordt Wσ (t) = ordt Wρ(t) = ordt ξ(t), hence ordt ξ(t) = 10m+ c − 15.
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Moreover, notice that in this case the inverse image of the hyperplane x4 = 0
under the linear transformation inP5 and the Veronese embedding corresponds
to a conic inP2 that intersects the branch ofC atpwith intersection multiplicity
h5 = c. Hence, we have that ordt ξ(t) = ∑5

i=0(hi − i).
Performing a similar analysis on all branches of C at p, and summing up,

we reach wp(2).

Remark 12. Observe that the polynomial ξ is homogeneous in s and t
of degree 6(2d − 5). Since the 2-Weierstrass weights add up to this number,
Theorem 4.4 provides another proof of Corollary 4.1.

We now revisit Examples 3.5 and 3.6, and compute the 2-Weierstrass points
and weights using the Wronski determinant in Theorem 4.4.

Example 4.5. Let C be the rational cuspidal quintic from Example 3.5,
with parametrization

ϕ(s, t) = (s5 : s3t2 : st4 + t5).

Computing the Wronski determinant gives

ξ(s, t) = −224 · 312 · 52 · 74 · s17t10(192s3 + 1680s2t + 5275st2 + 5250t3).

The cusps p1 and p2 correspond to the parameters (0 : 1) and (1 : 0), re-
spectively, while the inflection point p3 and the sextactic points p4 and p5

correspond to zeros of 192s3 + 1680s2t + 5275st2 + 5250t3. Determining
the order of the corresponding zeros, we conclude, as in Example 3.5, that
wp1(2) = 17, wp2(2) = 10, and wp3(2) = wp4(2) = wp5(2) = 1.

Example 4.6. Let C be the rational cuspidal quintic from Example 3.6,
with parametrization

ϕ(s, t) = (s5 : s3t2 : t5).

Computing the Wronski determinant gives

ξ(s, t) = −225 · 313 · 55 · 75 · s17t13.

The cusp p1 corresponds to the parameter value (0 : 1), and the exponent of
s gives the 2-Weierstrass weight, wp1(2) = 17. The cusp p2 corresponds to
(1 : 0), thus wp2(2) = 13.

Remark 13. Note that the curve from Examples 3.6 and 4.6 is an example
of a cuspidal curve Cm,� of degree � with defining polynomial

F = xmz�−m − y�.
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For any �,m ∈ N, with m < � and gcd(m, �) = 1, the curve Cm,� is cuspidal;
bicuspidal when 1 < m < � − 1, and unicuspidal with an inflection point
otherwise. It can be shown that these curves have no other n-Weierstrass points
for 1 ≤ n < �. A proof in a more general setting can be found in [2, Section 4],
but, additionally, it is possible to construct a direct proof of this claim with
methods from the present article, see [18, Theorem 5.4.3, p. 54].
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