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PARABOLICALLY INDUCED UNITARY
REPRESENTATIONS OF THE UNIVERSAL
GROUP U(F)* ARE Cy

CORINA CIOBOTARU

Abstract

We prove that all parabolically induced unitary representations of the Burger-Mozes universal
group U (F)T, with F being primitive, are Cy. This generalizes the same well-known result for
the universal group U (F)*, when F is 2-transitive.

1. Introduction

Let I be ad-regular tree, withd > 3. Let G := U(F)" < Aut(J), with F <
Symf{l, ..., d} being primitive, be the universal group introduced by Burger
and Mozes in [3, §3]. Given a (strongly continuous) unitary representation
7: G — 9U(J¢) on a (infinite-dimensional) complex Hilbert space (#, (-, -}),
we are interested in studying the matrix coefficients ¢, ,,: G — C given by
Cow(g) == (m(g)v, w), for every v, w € #. We say (z, #) is a C unitary
representation of G if for any of its associated matrix coefficients ¢, ,,, the
subset {g € G | |y, (g)| > €} is compact in G, for every € > 0; equivalently,
lim,_, o |€y,w(g)| = 0, forevery v, w € #, where 0o represents the one-point
compactification of the locally compact group G.

It is a general fact [2, Appendix C, Proposition C.4.6] that the left regular
unitary representation of G is Cy. When F is 2-transitive (if and only if G is 2-
transitive on the boundary 09" ) Burger and Mozes [3] showed the Howe-Moore
property of G: every unitary representation of G, without non-zero G-invariant
vectors, is Cy. Still, for F being just primitive, but not 2-transitive, it is difficult
to predict when a (non-trivial) unitary representation of G is Cy or not. Apart
from [2, Proposition C.4.6] and the general criterion proven in [6] (and the
references therein) providing a unified proof of the Howe-Moore property for
all known examples, there are no other known techniques to prove that a unitary
representation of a locally compact group is Cy.
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When F' is primitive, [7] shows G has a weakening of the Howe-Moore
property, namely the relative Howe-Moore property with respect to any horo-
spherical stabilizer G? := {g € G | g(§) = &, g elliptic} with & € 3.7. This
relative property was introduced and studied in [8]. Another result of [7] shows
when F is primitive but not 2-transitive, that the stabilizer G, in G of anon-zero
vector v € J of a unitary representation (r, #) of G without non-zero G-
invariant vectors, either is compact or if it is not compact then it equals G2, for
some § € 3.7 . Itis then natural to ask whether the unitary representations of G
induced from closed subgroups of the stabilizer G; := {g € G | g(§) = &} for
& € 0 are C or not. The following vanishing result gives the answer to this
question. For the theory of induced unitary representations we use notation
and the results from [2, Appendices B and E].

THEOREM 1.1. Let F < Sym({l1, ..., d} be primitive and § € 0 . Let H be
a closed subgroup of G stabilizing & and let (o, ) be a unitary representation
of H. Then the induced unitary representation (1w, , #y) on G is Cy.

We emphasise Theorem 1.1 covers the known case when F is 2-transitive
(that case being covered by the Howe-Moore property). Still, the proof of
Theorem 1.1 is very different from the general one proving the Howe-Moore
property. This is firstly, because the group G, when F is primitive but not 2-
transitive, does not verify the general criterion given in [6]. Secondly, if F is
primitive but not 2-transitive, it is a direct consequence the quotient G/Gg is
not compact anymore and not isomorphic to the boundary 9.7, for any choice
of & € 3.7 . Moreover, by [7], G is a closed, still non-compact subgroup, for
every £ € 07

To prove Theorem 1.1, we follow the lines of the standard argument that
the left regular unitary representation is Cy. The novelty of the article is the
control of the integral given by Remark 3.10 in terms of indices of subgroups
and we distinguish three cases in the calculation of the asymptotics of that
integral.

2. Some properties of G

For the definition and the main properties of the Burger-Mozes universal groups
the reader can consult Burger-Mozes [3], Amann [1], Ciobotaru [5].

To fix the notation, let d (-, -) be the usual metric on J . Let Aut(J )"
be the group of all type-preserving automorphisms of J and by definition
G < Aut(J)™. For every pair of points x, y € U 37, [x, y] is the unique
geodesic between x and yin g UdJ .ForG < Aut(J )andx,y € UIT we
define G, ) := {g € G | g fixes pointwise the geodesic [x, y]}. In particular,
G, :={g € G| gx)=x} For& € 07 we have already defined G; and Gg.
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Note G¢ can contain hyperbolic elements; if this is the case then Gg < Ge.
If H < G¢ and x € J then H, evidently equals H, ¢). For a vertex x € I
and an edge e in the star of x, set K := G, and let 7, , be the half-tree of
g emanating from the vertex x and containing the edge e. For a hyperbolic
element y € Aut(J), we write |y | := min,cs{dg (x, y(x))}, which is called
the translation length of y. Set Min(y) = {x € I | ds(x, y(x)) = |y|}.

REMARK 2.1. As F is primitive, given an edge ¢’ € E(J) at odd distance
from e, one can construct, using the definition of G, a hyperbolic element
in G translating e to ¢’. Moreover, every hyperbolic element in G has even
translation length, as G has only type-preserving automorphisms.

LEMMA 2.2 (The K At K decomposition). Let F be primitive. Let x € I be
avertex and e an edge in the star of x. Then G admits a K AT K decomposition,
where AT :={y € G| e C Min(y), y(e) C Ty} U {id}.

PrOOF. Let g € G. If g(x) = x, then g € K. If not, consider the geodesic
segment [x, g(x)] in J; denote by e; the edge of the star of x belonging to
[x, g(x)]. By type-preserving, [x, g(x)] haseven length. As F is also transitive,
there is k € K with k(e;) = e; therefore, kg(x) € I, .. By Remark 2.1, there
is a hyperbolic element y € G of translation length equal to the length of
[x, g(x)], translating the edge e inside . and with y(x) = kg(x); thus
y kg € K. Note the KA*K decomposition of an element g € G is not
unique.

LEMMA 2.3. Let F be primitive and let H be a closed, non-compact and
proper subgroup of G. Then, for every x € I, H, does not have finite index
in G,.

Proor. By Caprace-De Medsts [4, Proposition 4.1] the subgroup F is prim-
itive if and only if every proper open subgroup of G is compact. H cannot be
an open subgroup of G, as otherwise H would be compact, contradicting the
hypothesis. Suppose there is an x € I with [G, : H,] < 0o. As H, is closed
in G, and of finite index, H, is open in G, and so also in G. This means H is
open in G, obtaining a contradiction.

3. Induced unitary representations

We follow [2, Appendices B and E] where all the definitions, notation, proofs
and complementary definitions can be found (see also [5]). Fix, in this section,
G to be a locally compact group and H < G a closed subgroup. All Haar
measures used in this paper are considered to be left invariant. We denote
by dx, respectively, dh the Haar measure on G, respectively, H. We endow
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G/H with the quotient topology: the canonical projection p: G — G/H is
continuous and open.

DEerINITION 3.1 (See [2, Appendix B]). A rho-function of (G, H) is a con-
tinuous function p: G — R7 satisfying the equality

_ Ag(h)
Ag(h)

p(xh) p(x) forall xe G,he H, (D

where Ag, Ay are the modular functions on G, respectively on H.

By [2, Theorem B.1.4], there is a correspondence between rho-functions
of (G, H) and continuous G-quasi-invariant regular Borel (CGQIRB) meas-
ures on G/H (see [2, Appendix A.3]), where continuous means the Radon-
Nikodym derivative of w is continuous.

DEFINITION 3.2. Let (0, %) be a unitary representation of H. Suppose
G/H is endowed with a CGQIRB-measure p, with associated rho-function
p on G. The induced unitary representation (., # ,) of G is defined as
follows. For every g € G, we define the unitary operator 7, ,(g) on &/ by
o1 (@) (E)(x) i= (p(g~"'x)/p(x))/?£(g™"x), where & € o/ and x € G, and
where &/ is a specific dense subset of the Hilbert space 7 ,. For a complete
definition see [2, Appendix E]. Moreover, by [2, Proposition E.1.4], this is a
unitary representation of G on the Hilbert space 7, ,.

REMARK 3.3. By [2, Proposition E.1.5], induced unitary representations
do only depend on the unitary representations (o, /) of H and not on the
CGQIRB-measures on G/H. If (75, #5,,,) is Co the same is true for
(T[U,M’ %a,uz)-

NotaTioN 3.4. By Remark 3.3 it is legitimate to write (75, #,) for the
unitary representation of G induced from the unitary representation (o, %)
of H.

LeEMMA 3.5. For every compact subgroup K of G there exists a CGQIRB-
measure L on G/ H which is left K -invariant.

Proor. By [2, Theorem B.1.4] let u; be a CGQIRB-measure on G/H
with p;: G — R its associated rho-function. Let p: G — R7 be the function
defined by g € G — p(g) = fK p1(kg) dk, with dk the Haar measure
on K. Then p is continuous, satisfies equation (1) from Definition 3.1 and
so p is a rho-function and left K-invariant. By [2, Theorem B.1.4], let i be
the CGQIRB-measure on G/H associated with p. As the Radon-Nikodym
derivative of 11 satisfies 24 (x H) = 292 for every x, y € G and because p

. i . dp o) >
is left K-invariant, we obtain yu is left K-invariant.
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LEMMA 3.6. Let K < G be compact. Consideron G/H a CGQIRB-measure
u which is left K -invariant and suppose W (K H) # 0. If K’ < K is a compact
subgroup of infinite index in K, with H N K < K’, then the index of K’ in K
is uncountable and w(K'H) = 0. In particular, if H 0 K has infinite index in
K then the index of H N K in K is uncountable and u(H) = 0.

Proor. By Lemma 3.5, we know G/H admits a CGQIRB-measure p
which is left K-invariant. By the definition of a regular Borel measure
w(K H) < oo. Suppose theindex of K’ in K is countable; there exist {k,, },en C
K\K'withK =| |,.yk« K. Then KH =| |, k,K'H.Indeed, ifk, K'HN
knK'H # () for some n # m we would have k,k' = k,,k"h, for some
h € Hand some k', k" € K';s0h € HN K < K’ and thus k, K’ = k,,K’,
which is a contradiction. Therefore, write wW(KH) = ), uw(k,K'H) =
D nen M(K'H), as p is countably additive and left K-invariant. Because
w(K'H), w(KH) < oo we conclude w(K’H) must be zero and so w(K H)
is zero too, which contradicts the hypothesis. Therefore, the index of K’ in K
must be uncountable. By the countable additivity of u, K -invariance of u and
Ww(K H) # 0, one easily obtains u(K'H) = 0.

REMARK 3.7. By [2, Theorem B.1.4] let u be a CGQIRB-measure on G/ H
with associated rho-function p. Let K be a compact subset of G. Then, for
every g € G,

gu(KH) = (g™ 'KH) = / 1kn(xH) dgupu(xH)

G/H

- - 8 guiem < ¢ | twutdneetn = ¢, - uk i),
kH P(X) KH

where C; > max,cx{p(gx)/p(x)}.

LEMMA 3.8. Let (0, J) be a unitary representation of H. Assume the in-
duced unitary representation (7, , #5) on G is not Cy. Then there existny, n; €
span({&ry | f € Co(G), v € K}), § > 0 and a sequence {t; };~o C G, with
ty — 00, such that |(7w, (t)n}, ny)| > 8, for every k > 0.

Proor. Follows from span({¢;,, | f € C.(G), v € J}) is dense in 7.

LEMMA 3.9. Let K be an open-compact neighborhood in G of the identity.
Let (0, ') be a unitary representation of H and ny,n, € span({&s, | f €
C.(G),v € J}). Consider on G/H a CGQIRB-measure |1, with associated
rho-function p on G.

Then there exist a constant C > 0, numbers N1, N, € N and elements
{hiYien.. .o {h}}jg{l 77777 Ny C G, all of them depending only on 1y and n;,
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such that

(7o ()1, m2)| = (01, 06 (" )2) |

Ny, N,

pt 0N
<> o) Mm@ | duGeH)
i = 1(hi K H)Nh[ K H
N1, N> —1 1/2
p(t~ x)
<C / ( ) du(xH)
i;I (KK P(X)

for everyt € G. Moreover, we have

/ (p(t‘lx)
1(hi K H)OW K H

p(x)
/hiKHmzl (WK H)

Proor. Using Notation 3.4 we simply refer to (77, ., #5.,,) as (y, Hy).

Lett € G.As ni,m € span({&s, | f € C.(G),v € J}), they only
depend on a finite number of functions from C.(G). Denote by A, B C G the
union of the support of those functions defining n;, respectively, 1,. A and
B are compact subsets of G. Cover A, respectively, B, with open sets of the
form kK, where h € A, respectively, i € B. From these open covers extract
finite ones covering A, respectively, B. By making a choice and fixing the
notation, consider A C UINZ‘1 h;K and B C U]N:zl h}K, where h;, h;. € G and
N1, N, € N. We obtain:

-1 1/2
L/ (pl(ot(x;)> <771(f_1x)’ UZ(X))y[dM(xH)’
H

12
) ("), ()

1/2
(%) (M), m@y))x

du(xH)

du(yH).

(7o (N1, )| =

Ny, N,

S /
(=1 Y10 K )N K H

(p(t_lx) du(xH).

12
) (™" x), m(x)) o
p(x)

To obtain the last inequality of the lemma and the constant C, we use the
following. Recall 0y, € span({&, | f € C.(G),v € J}). We claim
the scalar product (n; (t~'x), 72(x)) s is a bounded function in x € G and this
upper-bound depends neither on ¢ nor on the domains {¢ (h; K H)N h} KH}y, -
Indeed, for simplicity, consider n; = &7, ,, and n, = &, ,,, where fi, f> €
C.(G) and vy, v, € J. In this case we have:
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[(Efy 0 (17 %), &7y, () 7|
//(fl(l_lxhﬂﬁ(hl)(vl),fz(Xhz)d(hz)(vz))yfdhldhz
nJu

5/ / 1 k)] LfaGeho)] - [l - Ially dindhs < C,
HJH

where C is a constant which does not depend on ¢, but depends on 1, 1. From
here the conclusion follows. Note the last assertion of the lemma follows using
the change of variables y := ¢~!x and the positivity of p.

REMARK 3.10. Lemma 3.9 can be used in the following way. In order to
show that induced unitary representations are Cjy, it is enough to evaluate
integrals of the form

Lo 12
/ (u) A H),
Ww(AKENLKH N P(X)

where f1, f» € G are considered to be fixed and 7, — oo.

LEmMA 3.11. Let K < G be open-compact. Let g, fi, f» € G with
g(iKH)N LKH # 0. Then g(fiKH) N LKH = | |,.; fokiH, for some
{kitic: C K/(K N H) pairwise different. In addition, for everyi € I, thereisa
unique ki, € K /(KN H) and aunique h; € H with gfiky, = fokih; € frkiH.

Proor. Let x € gfi KH N f,K H. Then there exist k, k' € K and h, I’ €
H, with x = gfikh = f,k'h'; so xh™' = gfik = fok'h’h~'. By taking
k' € K/(K N H) we obtain the first part of the lemma. Suppose there are
k,k € K/(KNH)and h,h' € H withk ¢ k'H and gfik = fok;h, gfik’ =
frkih' € fokiH. From here we have k = k" and h = /. Note fori # j € I,
we might have h; = h;.

LEMMA 3.12. Let K < G be open-compact and G be unimodular. Consider
on G/H a CGQIRB-measure u, with associated rho-function p on G. Let
g, f1, [>» € G. Then there is a constant C > 0, depending only on K, p and
fi, f> with

_ 1/2
f (”(g—x)) dp(xH) < C f A ()™ Pdp(foki H),
¢fiKHNfLKH p(x) L, frkiH

iely
where I, k; and h; are given by Lemma 3.11.

PrROOF. Suppose gfiKH N f,KH # ¥, as otherwise the conclusion is
trivial.
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By Lemma 3.11, gflKH N fzKH = I_liel fgkiH, for some {k;}ic; C
K /(K N H) pairwise different. Let x € gfi K H N f, K H. Then, by the same
Lemma 3.11, x = gfiki,h = frkih;h, for some h € H and some i € [.
Therefore,

(p@ﬂmy”:(pumm>y”_<pUWMAMM)W
p(x) p(fokihih) p(faki) Ap (hih)
As the map p is continuous on G and K is compact, there exists a constant

C > 0 with 0 < (p(fik)/p(fok')'/* < C, for every k, k' € K. We obtain
(p(g %) /p(x)'/? < CAy(h;)~'/?, for x € f>k; H. The conclusion follows.

Note for i # j € I, so for fok;H, f>kjH, one can have Agh)™V? =
Ay (h;)~1/2. Therefore, the function Ay (h;)~'/> might be integrated on a big-
ger subset than f>k; H, and thus on a subset that might not have measure zero.
We summarise below our general strategy to prove induced unitary represent-
ations on locally compact groups are Cy.

REMARK 3.13 (The strategy: first step). Let K < G be open-compact and
G be unimodular. Consider on G/H a CGQIRB-measure p, with associated
rho-function p on G. By Lemma 3.5 and Remark 3.3, ¢« and the associated rho-
function p are both K-invariant. From now on consider fixed these u and p.
As K is open-compact, 0 = u(K H) < oo. Suppose u(K H) = 1. Let (0, %)
be a unitary representation of H and denote by (77, #, ) the induced unitary
representation on G. Note we have applied Remark 3.3 and Notation 3.4.
Assume there exist a sequence {t,},~0 of G and 1, n, € 7, with t, — oo
and |(7, (t,)n1, n2)| = 0, thus the representation (75, #,) is not Cy. To the
sequence {#,},-0 apply Lemma 3.8 and then Lemma 3.9. By Remark 3.10 it
is enough to evaluate the integrals

(1 1/2
/ (M) du(xH),
W(IKHNHKH p(x)

where f|, f> € G are fixed and t,, — o0.
First of all, fix #,. Apply Lemmas 3.11 and 3.12 to ¢,,, f1, f>. One obtains

-1 12
/ (3942) du(xH)
n(AKENLKH N P(X)
= C/ AH(hi,n)_l/2 d,lL(fzki’nH),
Llics, fokinH

where the constant C > 0 depends only on K, p, fi and f,; the set [,, and
kin, hin, with i € I,, depend on t,, fi and f,. As noticed above, for i #*
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j € I, sofor f2k; ,H, f>k;,H, one can have AH(h,;,,)_l/2 = AH(hj,n)_l/z.
Therefore, the function A (h; ,)~'/? it might be integrated on a bigger subset
than f>k; , H, and thus on a subset that might not have measure zero. We want
to show that integral tends to zero whenn — o0. This would be a contradiction
of our assumption |(r, (¢,)n1, n2)| - O.

REMARK 3.14. Let K < G be open-compactand G be unimodular. Suppose
we have been able to evaluate the intersections gKH N KH, for g € G. It
would remain to evaluate the values of A;/ ?. These values strictly depend
on the structure of the group H. Because of this, we restrict ourself to the
case when G is a closed subgroup of Aut(9) and H is a closed subgroup
of Aut(9)g, with & € 9. In this case the values of the function A;/ > are
determined by the hyperbolic elements of H, the structure of those being very
well understood.

4. Vanishing results for the universal group G

In this section we consider parabolically induced unitary representations of the
universal group G. Recall by [3] G is unimodular when F is primitive. We split
this study in two parts: when H < (¢ does not contain hyperbolic elements,
and the general case, when H < G does contain hyperbolic elements. By [7]
((I:g is a closed, non-compact subgroup of G, for every & € 07 .

4.1. The non-hyperbolic case

REMARK 4.1. Let £ € 07 . If H < Aut(J )¢ is a closed subgroup not con-
taining hyperbolic elements then H is unimodular. This is because H can
be written as a countable union of compact subgroups. Indeed, by [9] as H
contains only elliptic elements, each element of H fixes pointwise an infinite
geodesic ray of  with endpoint &. Thus every element of H is contained in
some H, for some vertex x of J and H, is compact (whence unimodular).

LEMMA 4.2. Let x € T and & € 09 . Let K < Aut(9 ), be closed and let
H be a closed, non-compact subgroup of Aut(J )g, not containing hyperbolic
elements. Let g € Aut(9)*. IfgK HNK H # (), then there exists k, € K with
gKHNKH C kgKiy xH, where x, € [x, §) has the properties dg (x, xg) =
%dg(x, g(x)) and kg sends [x, x,] into the first half of the geodesic segment
[x, g(x)].

Proor. From gKHNKH # 0, g = k'hk,forsomeh € Handk', k € K.
We want to determine the domain in K of the variable k’. From g = k'hk we

have:
dy(x, g(x)) =dg(x, K'h(x)) = dg(x, h(x)). ()
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As h is not hyperbolic, denote by x;, the first vertex of the geodesic ray
[x, &) fixed by /4. From equation (2) we obtain ds(x, x;) = %dy(x, g(x)),
thus x;, is a precise point on the geodesic ray [x, £) determined only by the
element g and not by the non-hyperbolic element 4. So take x, := x;. Because
K'([x, h(x)]) = [x, g(x)], k" sends the geodesic segment [x, x,] into the first
half of the geodesic segment [x, g(x)]. We conclude k' € kK [x.x,]» Where
ke € K is a fixed element sending [x, x,] into the first half of the geodesic
segment [x, g(x)].

THEOREM 4.3. Let £ € 09, x € I, G be a closed, non-compact, unim-
odular subgroup of Aut(9)% and suppose the index in K := G, of Giy¢
is infinite. Let H be a closed, non-compact subgroup of G¢, not containing
hyperbolic elements and let (o, ') be a unitary representation of H. Then the
induced unitary representation (7, #y) on G is Cy.

Proor. By Remark 3.3 and because H and G are unimodular, itis enough to
consider the case when the rho-function p is the constant function 1 on G. Thus,
the measure ¢ on G/ H associated with the rho-function 1 on G is G-invariant.
As K is open and compact with respect to the locally compact topology on G,
we have 0 # u(K H) < oo. Assume there exist a sequence {t,},-0 of G and
n, N2 € H#y with 1, — oo and |{r, (t,)n1, n2)| = 0. To the sequence {¢,},-0
apply Lemma 3.8 and then Lemma 3.9. Moreover, by Remark 3.10 it is enough
to evaluate u(t,(h; KH) N h;. K H), where h; and h;. are considered to be fixed
and t, — oo. Note u(t,(h; KH) N h;.KH) = M((h})_lt,,hiKH NKH).

If (h;.)_lt,lh,vKH N KH # () apply Lemma 4.2 to g, := (h})_lt,,hi. We
obtain g, KHNKH C kg, Gx x,,1H, Where xg, € [x, §) with one of the prop-
erties being d 4 (x, x,,) = %dg(x, g,(x)). Ast, — oo, we also have g, — 00
(h;, h} being fixed); in addition, d s (x, x,,) — oo when n — oo. To evaluate
(g KH N K H) it is enough to compute w(ky, Gy x,,1H) = w(Gix x,, 1H),
where dg (x, xg,) — 00 as g, — 00. We claim limg, , oo 4(Gix x,, 1 H) = 0,
giving a contradiction. Indeed, there are two cases that should be considered:
either for every y € (x, &) the index of G, ,) in K is finite or there exists
y € (x, &) with the index of G|, ,in K is infinite. Consider the first case; so the
index in K of G 4,1 s finite for every g,. Moreover, since [K : G|, ¢g] = 00,
[K : G, ] > 00as g, - 00. As u(KH) < oo, p is G-invariant, and
so K-invariant, the claim follows. Consider the second case; so there exists
N > 0 such that for every n > N we have the index of G[x,xg"] in K is infinite.
By Lemma 3.6 applied to K’ = Gy x,,1, we have u(Gy x,,1H) = 0, for every
n > N. The theorem follows.

COROLLARY 4.4. Let F be primitive andlet& € 09 . Let H be a closed, non-
compact subgroup of Gg, not containing hyperbolic elements and let (o, )
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be a unitary representation of H. Then the induced unitary representation
(s, ) on Gis Cy.

Proor. The hypotheses of Theorem 4.3 are fulfilled: let K := G, and by
Lemma 2.3 applied to Gg we have [K : K[, g] = oo.

4.2. The hyperbolic case

Let £ € 97 . In this subsection we consider H a closed subgroup of Aut(J ),
containing hyperbolic elements. This implies H is not compact.

4.2.1. Structure and modular function of parabolic subgroups.

LEMMA 4.5. Let £ € 09 and H < Aut(J )¢ be a closed subgroup containing
hyperbolic elements. Then there exists a hyperbolic element y € H, of at-
tracting endpoint &, that is minimal, in the sense any other hyperbolic element
vy’ € Hiswritteny' = y"h, wheren € Z, |n||y| = |y'| and h € HﬂAut(T)g.

Proor. Let Hyp(H) = {y € H | y ishyperbolic}. Let hyp, :=
min, ¢y (|y]). Note hypy exists and hypy > 1. Let fix y € H with |y| =
hypy. Fix also a vertex x in Min(y). Moreover, consider the attracting en-
dpoint of y is &; if not take . Let y’ € Hyp(H) and let x, be the first
vertex of [x, &) contained in Min(y’). By minimality |y’| is a multiple of |y|.
If the attracting endpoint of " is &, then y ™"y’ (x,) = x,,, where n|y| = |y’|.
Thus, y* = y"h, where h € H,,.If y’" has § as a repelling endpoint, then
Yy (v) ' (x)) = (¥) ' (xy), where n|y| = |y'|. Thus y’ = y~"h, where
now A is in H(y/)—l(xy,).

LEMMA 4.6. Let £ € 07 and H < Aut(J ); be a closed subgroup contain-
ing hyperbolic elements. Let y be a hyperbolic element of H with attracting
endpoint & and let x be a vertex of Min(y). Then 1/(d — D! < Ax(y) =
1/[Hy ) : H] < 1. In particular, H is unimodular if and only if H, = H,,
for every y € Min(y).

Proor. By Remark 4.1, for every h € H N Aut(f/—)g, Ag(h) = 1. Note
the following facts. Firstly, H, = H, ¢ < H, () are compact subgroups and
secondly, the index [H,, () : H,] < (d — 7!, where d is the regularity of the
tree 7 . Moreover, H, () = y Hyy~!. Let dh denote the left Haar measure on
H.Then dh(H, () = dh(yHyy™") = dh(H,y™") = Ay(y"")dh(H,). As
Ag(h) = 1forh € HﬁAut(?)g,wehavedh(Hy(x)) =dh(H,)-[H,«) : Hy].
From the above two equalities we obtain 1 < A ay™hH = [Hy : He] <
(d — D In particular, | = Ay (y~") = [H, () : H,]ifand only if H, = H,,
for every y € Min(y); thus H, = H; for every y € Min(y), where &_ is the
repelling endpoint of y.
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LEMMA 4.7. Let§ € 0.9 and H < Aut(J )¢ be a closed subgroup contain-
ing hyperbolic elements. Let y be a hyperbolic element of H with attracting
endpoint & and x be avertex of Min(y). Then we have the following properties:

(1) [Hy(x) tH = [Hyz(x) : Hy(x)];
(2) [Hynxy : Hel = [Hyn-n(xy : Hel - [Hym(yy © Hyl for every 0 <m < n;
(3) [Hym(y) : H] < [Hyn(y) : Hy] for every 0 <m < n.

ProOF. Note assertion (3) is a consequence of assertion (2) and the latter one
follows from assertion (1) and from H, < Hyn(,) < Hyn(y), for0 < m < n.
The first assertion follows as H,) = yHyy ™' and H,2) = yH, )y .
Moreover, for every coset hH, of H,(,/H, we have yhy 'y H,y~! is a
coset of H,2(,y/H,, (. and vice versa. The lemma is proved.

For F < Sym({l, ..., d} and ¢ an edge of  we abuse notation and use F,
to denote the stabiliser in F of the colour from {1, ..., d} of the edge e.

LEMMA 4.8. Let F be transitive and let y € G be hyperbolic. Denote by
&y, & € 0T the attracting and respectively, the repelling endpoints of y . Take
x € (§_,&}), the edges e_, ey in the star of x with e, € [x,&.), e_ € (§_, x]
and K = G,. Then we have:

(1) [(G[y(x),éﬂ : (G[x,§+]] = A(Ger (]/_1) = [K : (G[x,y"(x)]] . kl/d, where d
is the regularity of 9 and ki is the number of orbits of the edge e_ in
{1,...,d} under the stabilizer subgroup F, < F;

(2) [(G[x,g_] . (G[y(x),g_]] = A((;,L ()/) = [K : (G[x,y(x)]]-kz/d where k2 is
the number of orbits of the edge e in {1, ...,d} under the stabilizer
subgroup F, < F;

3) [K : Gp-1pn.x] = [K 2 Gyl =[Gy e, @ Grrg,l - d/ki[4] =
[Greg 1t Gryye ] - d/ka.

ProOF. First, it is easy to see that
YGy-1 017 ™ = Gyy-10.a) = Gyl
Let m be the left Haar measure on G. Then we have
m(K) = m(Gpry01) - [K 2 Grey o] = m(Gpy-10,0) - [K 2 G101

By a standard computation we have m (G, ,x)) = AG(V_I)m((G[V—l(x)Yx]).
As G is unimodular we obtain

Ac(y ™) - [K : Gyl = [K 2 Gpepoon] = [K - Gry-1(x),x1]- 3)

Let us prove assertion (1) of the lemma. First, by Lemma 4.6 applied to
G, we have [Gpy6,1 ¢ Gl = A, ¥ ™) = [Gprg,) t Gp10.6,1]- As



PARABOLICALLY INDUCED UNITARY REPRESENTATIONS 125

y is translating along the axis (§_, &), Fy(,) is isomorphic to F,_, thus the
number of F),,)-orbits of y(e_) in {1, ..., d} is the same as the F,_ -orbits
of e_ in {1,...,d}, which is k;. As F is transitive on {1, ..., d}, we have
[K : G-1x] = d - [Ge_ @ Gpy-1(x),41]- Also as G has Tits’ independence
property [3], [1], [Gr g1 0 Gpp-1¢x),6,1] = k1 - [Ge_ : Gpp-1(x),41]. We conclude

indeed (K : Gpepei0] - Ko
(G .61 ¢ Greggl = p

and part (1) of the lemma is proved. The assertion (2) of the lemma goes in the
same way. The assertion (3) of the lemma is a consequence of assertions (1), (2)
and relation (3).

4.2.2. The evaluation of gK H N K H. By Remark 3.13, the next step is the
evaluation of gK H N K H. This is because we need to integrate the modu-
lar function A,:,l/ > on the intersection gHKHN LKH = | |, fakiH, for
g, f1, f» € G. We are able to evaluate gK H N K H for the universal group
G and not in a more general case. This is due to the K AT K decomposition
of G proven in Lemma 2.2, making our task easier. That decomposition might
not hold in a more general situation. Using the K AT K decomposition, we
only evaluate gK H N K H when g € A™. This is given by the next technical
proposition. We state the proposition as generally as possible, making use of
the following general definition.

DEFINITION 4.9. Let G be a closed subgroup of Aut(J )™, x € I and e be
an edge of the star of x. Set K := G, and define

AT :={y € G| e CMin(y), y(e) C Ty.}U{id}.

Let & be an endpoint in 0.7, .. Define the map proj, ¢: AT — (x,&] by
proj, £1(g) is the vertex or the endpoint § with the property [x, &, +1N[x, §] =
[x, proj, £(g)], where &, . is the attracting endpoint of g. As g € AT, note
proj, £(g) is indeed a point in (x, §]. Let now g € G be a hyperbolic ele-
ment translating the vertex x. Consider its K-double coset KgK and set
proj, ¢ (KgK) := man’eAngK{PrOj(x,g](g’)}-

PRrOPOSITION 4.10. Let G be a closed subgroup of Aut(9) " and let& € 0T .
Assume G¢ contains hyperbolic elements. Let H < G¢ be a closed subgroup
containing also hyperbolic elements. Let y be a minimal hyperbolic element
of H given by Lemma 4.5, with attracting endpoint &, and let x be a vertex of
Min(y). Set K := G,. Choose the edge e in the star of x and define A" such
thaty € A™.

Let g € A™T. Assume proj £/ (KgK) = proj, £(g). Assume there also
existko € K\{HNK}, ki € Kand h € H with kigk, = h = y"hy, where
hoeHﬂGgandnEZ.
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Then 0 < |n| < dg(x,gx))/|ly| and ki € Gy, Where x, €

[x, proj, £ (g)] is with dz (x,x4) = 3(dg(x, g(x)) + sign(n)|y"|), where
sign(0) = 0.

ProOOF. Denote by e the edge of the star of x with & € 0.9 ,. In particular,
AT is defined using x and e. Let &, and &_ be the attracting and the repelling
endpoints of g. As k; is not fixing &, we denote x;, the vertex of the geodesic
line (&_, &) with the property [x, k2(§)) N (§_, &) = [x, xx,]. We have three
cases: either x;, € [x, &) or xi, € (x, g '(x)) or Xk, € [g7'(x), &E).

Suppose xx, € [x, &). Because k1 gk, (§) = &, kigka(e) is an edge of I,
and the orientation of k; gk, (e) induced from e points towards the boundary
0., like e. Therefore, ki gk, € A*. As kigk, € H, we have h = k gk, €
AT N H. As by hypothesis proj, ¢1(KgK) = proj, £(g), we conclude g €
ATNH.Inaddition, by Lemma4.5 we have h = y"hg, where hy € KNH ; thus
|g| = |h| = n|y|. Askigk,(§) = & and because g is hyperbolic, with attracting
endpoint £ and with x € Min(g), k; must fix at least the vertex g(x) € (x, &).
Therefore, k; € Gy .x,], Where x, = g(x) and the conclusion follows.

Suppose xi, € [g~"(x), &_). Then gks(e) isan edge of I . and the orienta-
tion of gk, (e) induced from e points outwards the boundary 97 ., thus towards
e. Because xy, € [g7!(x), £_), by applying k; to gka, k1 (T..)NT .. = {x}and
the edge k; gk, (e) points towards the edge e. Therefore k| gk, must be a hyper-
bolic element (of H) translating the vertex x outwards the half-tree 7 .. Con-
sequently, & is the repelling endpoint of k; gk, as k; gka(§) = &. Otherwise say-
ing, £ is the attracting endpoint of the hyperbolic element (k;gk,) ™! = h~! €
Handx € Min(h~"). Wehave |h| = [h~!| = dg(x, g(x)) = |n||y|. Although
we can say more, we do not impose any restriction for k1, so k; € G, x,) where
xp, = x. The conclusion of the proposition is still valid in this case.

Suppose now x;, € (g7'(x), x). We claim g(xy,) € [x, proj(x,gj(g)]. In-
deed, supposing the contrary we have proj, ¢(g) € (x, §(xx,)). Then g(xx,) ¢
[x, &). As the geodesic ray [x,, k2(§)) is sent by g into the geodesic ray
[g(xk,), gka(§)), [g(xk,), gk2(§)) does notintersect [x, §). However, by apply-
ing k1, wemusthave k; g(xy,) € [x, §),ask;gko(§) = &. Thisis acontradiction
with proj, £(KgK) = proj, ¢(g) and the claim follows. As ki gk2(§) = §,
from the latter claim we immediately have k; € Gy g(x,)- From here we
deduce the following two facts:

(1) the segment [x, kz_l (xx,)), where kz_] (xk,) € (x,&),issentby h = ki gk,
into the segment (g (xx,), k1g(x)] C Ix.. \ {[x, &)}, and the orientation
1s reversed;

(2) the edge k;gk,(e) belongs to I, . and the orientation of ki gk, (e) in-
duced from e would point outwards the boundary a7, ., thus towards
e. Therefore, either k; gk, is elliptic, or k; gk, is hyperbolic in H, with
translation length strictly smaller than d o (x, g(x)).
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Our next claimis £ is elliptic if and only if d & (x, x4,) = %dg(x, g '(x)). Sup-
pose h = ki gk» is elliptic. Then by the above fact (1) we know the segment
h([x, ky ! (xx,))) does not intersect [x, §). As h € H is elliptic, & fixes the mid-
point of the segment [k; ' (xy,), h(ky ' (xi,))] = [k ' (xx,), g(xx,)]. We deduce
ky ' () = hiky ' (x,)) = g(xi,), from where d s (x, xi,) = 1d(x, g7 (x)).
Suppose now dg (x, xi,) = %dg‘ (x, g7 '(x)), so we need to prove 4 is elliptic.
Indeed, k; ' (xi,) = g(xt,). As ki € Gy g(x,)» We conclude h(ky ' (xy,)) =
kigka(ky ! (xXK,)) = 8(xi,) = k5 ! (xx,), so h is elliptic. The equivalence follows.

For h elliptic, we resume the following: k1gk, € H N Gg, son = 0,
and k] € G[x,xh]’ where Xp 1= g(xkz) € [)C, proj(x,é](g)]y with dﬂ’(x’ g(xkz)) =
1dg(x, g(x)). If h = ky gk is hyperbolic, then d 7 (x, xi,) # 3dg (x, g7 (x)).

Suppose dg(x, x,) < %dg(x,g_l(x)), this implies %dg(x,g(x)) <
dg(x, g(xx,)). Moreover, using the above fact (1) and /4 is hyperbolic fix-
ing £, we conclude & is the attracting endpoint of & and % translates the vertex
kz_l(xkz) € (x,8)tok1g(xr,) = g(xr,) € (x,§). By Lemma 4.5, h = y"hy,
for some hy € H N GY, and n is such that n|y| = |h| = ds(x, g(x)) —
2dg (x, k3 '(x,)) < dg(x, g(x)). In addition, k; € Gy}, Where x;, =
g(xt,) € [x, proj, 1(g)] and indeed dy (x, x;) = 5(dg(x, g(x)) — [¥"]) +
ly"l.

Suppose now d(x, xi,) > 3dg (x, g7'(x)), this implies 1d(x, g(x)) >
ds(x, g(xk,)). As before, using the above fact (1) and 4 is hyperbolic fixing
£, we conclude £ must be the repelling endpoint of 4 and h~! translates the
vertex g(xx,) € Min(h) N (x, &) to kz_l(xkz) € (x,&). By Lemma 4.5, we
have that h = y™"h¢, for some hy € H N Gg, and n > 0 is such that
nly| = |h| = dgs(x, g(x)) — 2ds(x, g(xk,)) < dg(x, g(x)). In addition,
ki € Gix.x,)» where x, = g(xi,) € [x, proj, ¢(g)] and indeed d (x, x;) =
%(dy (x, g(x)) — |y~"]). The proposition is proven.

When H is unimodular, we obtain the following.

COROLLARY 4.11. Let G be a closed subgroup of Aut(J)" and let & €
0J . Assume Gg contains hyperbolic elements. Let H < G; be a closed,
unimodular, subgroup containing also hyperbolic elements. Let y be a minimal
hyperbolic element of H given by Lemma 4.5, with attracting endpoint &, and
let x be a vertex of Min(y). Set K := G,. Choose the edge e in the star of x
such that y € AT,

Let g € A™. Assume proj £)(KgK) = proj, ¢(g). Assume there also
existky e K\{HNK}, ky € K and h € H with kigk, = h = y"hg, where
hp € HN Gg andn € Z. Then ho € K N H and |n| = dgs(x, g(x))/|y|. If
n > 0thenk, € Gy y,}, Wwhere x;, € [x,&]is withdg(x, x;) = dg(x, g(x)).
Ifn < 0O then k;l € kGiy yn(x)), where k € K with [x, g(x)] = k([x, y"(x)].
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ProoF. We keep all the notation from the proof of Proposition 4.10. As H is
unimodular, by Lemma 4.6 we have H, = H, = H;_, for every y € Min(y),
where £_ € 0. is the repelling endpoint of y. This proves iy € K N H and so
dg(x, h(x)) = dy (x, g()) = g (x, y"(x)) = Inlly|. If n > 0, by applying
Proposition 4.10, we directly obtain k; € G|y y,}, Where x;, € [x, proj(x,ﬂ(g)]
is with dg(x, x;) = ds(x, g(x)). It remains the case n < 0. By the proof
of Proposition 4.10, the case n < 0 with do(x, g(x)) = |n||y| can occur
only when x;, € [g7'(x), £_). Let us compute g(€) = (k1) 'y"ho(ky) "' (&).
As xp, € [g7'(x), &), we have (ko) 7'(§) ¢ 0T;.. Then ho(ky)~' (&) is
still a point in {07 \ 0TI .} as hg € H, g. By applying y" to ho(ky) ™1 (&)
and because n < 0 we have y"ho(k2) "' (&) in {0 \ 0T () ()} Note
8(€) € Tg).0) © Txer as g € AT, By applying k; to g(£§) we must have
ki([x, g(x)]) = [x, y"(x)]. We obtain kl_1 € kGix,yn(x)), where k € K with
[x, g(0)] = k(lx, y" (x)D).

4.2.3. The proof. We are now ready to prove parabolically induced unitary
representations on the universal group G, induced from closed subgroups H <
Gg containing hyperbolic elements, are Cy. We distinguish two cases: either
H is unimodular or H is not unimodular.

REMARK 4.12 (The strategy: second step). Let G be a closed subgroup of
Aut(9)", & € 0 and H be a closed subgroup of G containing hyperbolic
elements. Applying Remark 3.13 it remains to integrate the modular function
A;/z ontheintersectiont,(f1KH)Nf,KH = I—lieln fokinH, fort,, f1, o €
G. In order to do that, we need to investigate more closely the set {h; ,}icy,
given by Lemma 3.11. Even if 4; , is uniquely determined by &; ,, for every
i € I,, we might still have two h; ,, hj,, with i # j € I, belonging to the
same right coset of H/(H N Gg), thus Ay (hin) = Au(hj,) by Remark 4.1.

The evaluation of the set of all right cosets [h;,] € H/(H N (Gg) fol-

lows from Proposition 4.10. Indeed, for simplicity set g, := f{ltn fi- By
Lemma 2.2, one can write g, = ky,k’, where k, k' € K and y, € A" and
there is a liberty to choose such y, € A" and k, k" € K. We can choose y,
with proj, ¢ (Kg,K) = proj, ¢(va). Fix such y,, k, k" with g, = ky, k" and
Proje, ) (K8aK) = Proje, ¢, (7a)-

THEOREM 4.13. Let F be primitive and let & € 0. Let H be a closed,
unimodular, subgroup of Gg, containing hyperbolic elements and let (o, i)

be a unitary representation of H. Then the induced unitary representation
(s, 7#,) on G is C.

Proor. By Lemma 4.5, let ¥ be a minimal hyperbolic element of H. Fix
for what follows a vertex x € Min(y) and set K := G,. By Lemma 4.6,
H, = Hy = Hjz_g), for every y € Min(y), where £_ € 0.7 is the repelling
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endpoint of y. By Lemma 3.5 and Lemma 3.3, we can consider, without loss
of generality, the rho-function p equals the constant function 1 on G. In this
particular case, the measure u on G/H associated with the rho-function 1
on G is G-invariant. Apply Remark 3.13 and then Remakr 4.12, keeping all
the notation there. By Lemma 3.11 and Corollary 4.11, applied to y,,, we
have, for every i € I, ki, guki,, = ki kvuk'ki,, = hin = y™ho, with
|m;| = dg(x, v, (x))/|ly| and hy € H N K. Evaluate now the solutions for the
equation

kignka = kiky,k'ka = h, “)
for a given right coset [h] € {[h;,] | i € I,} C H/(HN (Gg) and where
kik € K and k'k, € K \ (K N H). Note for any element &7 € H satisfying
equation (4) we have

dgy(x, h(x)) = dg(x, ga(x)) = dg (x, yu (X)) = Im[dg7(x, ¥y (X)),  (5)

where h = y™hy, with hy € H N K = H,. Apply again Corollary 4.11. We
obtain for a given right coset [k = y™'] € {[h; ] | i € [,} C H/(H N Gg) we
have: (1) if m > 0 then kl_1 € kG x,1, where x;, € [x, §] with dg(x, x3) =
ds(x, ya(x)); (2) if m < 0 then kf] € kk3Gpy ym(x), where k3 € K with
[x, vu ()] = k3([x, y™ (x)]).

To resume, for a fixed n > 0 we have:

/ Ap(hin) 7 du( ok H)
I_]ig1,, fzki.nH

:/ Ldp(fokinH)
Uier, fokinH

< / 1du( ok Gy, H) +/ Ldp(f2kk3 Gy ym ey H)
kG H kk3 Gy ym oy H

= u(fok Gy v, H) + w( f2kk3 Gy o H).

Ast, — oo asn — oo, we also have g, — oo; thus by relation (5)
dy(x, ) = dy(x, ya(0) = [m|dy(x, y(x)) — oo, when n — 0. By
hypothesis, Gg, Gz are closed, non-compact and proper subgroups of G. By
Lemma 2.3 applied to G and Gg_, we have [K : G, g]] = 00 = [K : Gy g 4]
Therefore [K : Gy yny)] — 00 asm — oo and [K: Gy x,1] — 00, when
n — o00. By the G-invariance of t and because we have supposed u(KH) = 1
we claim:

w(fokGpe y H) + pn( f2kk3 Gy ymon H) = Gy ) H) + (G, ypm (o) H)
= [K:Gpeyrion]l '+ K : Gyl —— 0. (6)

t,—>00
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Indeed, we only need to prove if K = |_|j k;Giy,y), for some y € (§_, &), then
KH = L]j k; Gy y1H . Suppose thisis not the case, then there exist j; # j, with
(kjl(Gl[x,y]H)ﬂ(ka(G[x’y]H) 75 @.So kjlk = kak/h,fOI’ somek, k' e (G][x,y] <K
andh € H. Thenh e KNH = Hg & C (Gl[x,y]. Thus kj](G[x,y] = ka(GJ[x,y]v
which is a contradiction. The claim follows. Relation (6) is a contradiction of
our initial assumption | {7, (¢,)n1, n2)| - 0 and the theorem stands proven.

THEOREM 4.14. Let F be primitive and let & € 09 . Let H be a closed, non-
unimodular, subgroup of Gg, containing hyperbolic elements and let (o, K')
be a unitary representation of H. Then the induced unitary representation
(s, 7)) on G is C.

Proor. By Lemma 4.5, let y be a minimal hyperbolic element of H . Fix for
what follows a vertex x € Min(y) and set K := G,. Apply Remark 3.13 and
then Remark 4.12, keeping all the notation there. By Lemma 3.11 and Proposi-
tion4.10, applied to y,,, we have, forevery i € I, k;, ”1 gnky,, =k, nlkynk/ ky,, =
hin = y™ho, with 0 < |m;| < dg(x, y,(x))/|y| and kg € H N GY. Evaluate
now the solutions for the equation

kignks = kiky,k'ko = h, (7N

for a given right coset [h] € {[h;,] | i € I,} C H/(HN (Gg) and where
kik € K and k'k, € K \ (K N H). Note for any element h € H, satisfying
equation (7), we have

dg(x, h(x)) = dg(x, g (x)) = dg(x, yu(X)). ®)

Apply again Proposition 4.10. For a given right coset [ = y"'] € {[h; ] |
iel,} C H/(HN (Gg) we have: (1) if m > 0 then kl_1 € kG x,1, where
Xm € [x,&]is with dg(x, x,,) = %(dg(x,gn(x)) +mlyl); 2)itm =0
then kl_1 € kG x,1, Where xp € [x, ] is with dg(x, x9) = %dg(x, g, (x));
(3)if m < 0 then k' € kG, .,), where x,, € [x,£] is with g (x, x,,) =
%(dg(x, gn(x)) — |m] - |y]). To resume, for a fixed n > 0 and for N :=
dgz(x, ga(x))/|yl, we have:

f Ay du( fkin H)
L fakinH

—1

=y f A (™ dp(fk Gy H) + 1 fok G sy )
' G H

m=—

iely

N
+ Z/k Ag(y™ 2 dp( kG x, H)
m=1

Groom
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-1
= u(fokGreagH) + Y Ap() ™ u(fokGpy o, H)

m=—N

N
+ ) AR ok Gy, ).

m=1

Note by Remark 3.7 there is a constant C; > 0 depending only on f,k, K
and the rho-function of pw, with w(fHkGp . H)Ag(y)™? <
Ci1u(Gpy oy, H) A (y)~™/%, for every m € [—-N, N]. Thus:

/ Ap (i) A fokin H)
lics, fokinH

-1
< a( Yo Au) T 1(Gpe, H) + M((G[x,onH))

m=—N

ielp

N
+C (Z A(y)™? M(G[x,xm]H))

m=1
-1

= cl( > Au) K Gy, )T K G[X,xo]rl)

m=—N
N
+C (Z Ap(y)™? K : @[x,xm]]l).
m=1

The last equality follows because [K: Gy, y,1]7" = (G, 1H), for every
m € {—N, N}. Indeed, we only need to prove if K = | |; k; Gy, y), for some
yel[x,&],then KH = |_|j kG, 1 H . Suppose this is not the case, then there
exist j; # jp with (kle[x’y]H) N (ka(G[X’y]H) # (. So kjlk = kak/h, for
some k, k' € G,y < Kandh € H. Thenh € KN H = Hy g C Gy y.
Thus k;, G, 1 = kj, Gy, y), which is a contradiction. Note as 7, — oo when
n — oo, we also have g, — o0; thus by (8) do(x, x) = %dg(x, g, (x)) =
%dg(x, ¥n(x)) — oo when n — oo. By hypothesis, G¢ is a closed, non-
compact and proper subgroup of G. By Lemma 2.3 applied to Gz we have
[K : G z] = oo. Therefore we must have [K : Gy, ¢))] — o0 when
£ — o0, and [K: Gy x,1]] = oo when n — oco. Apply Lemma 4.15 below and
we will contradict our initial assumption {7, (¢,)n1, #2)| - 0 and the theorem
stands proven.

LEMMA 4.15. Using the same notation as in the proof of Theorem 4.14 we
have:
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(1) imy oo Yl y Ap() ™2 (K : Gy, 17! =0,
(2) imy_oo Yoh_ i Ay ()™ - [K : Gyl ™! = 0.

ProoOF. Recall
N :=dg(x,g:(x)/ly| and 3dg (x,g:(x)) = 3d(x, ya(x)) > 00

as n — 00. Moreover, if m > 0 then do(x, x,,) = %(dg(x, gn(x)) +mlyl)
and if m < O then d4(x, x,,) = %(dg(x, gn(x)) — |m| - |y]). By Lemma 4.6
and the hypothesis H is non-unimodular we have ¢t = Apgx(y) =
1/[H[y(x),§] : H[x’z;-]] < 1.As H < ((._ug < G we also have [H[ym(x),ég-] :
H[x,g]] < [((J‘J[ym(x)’g] : (G[X,g]], for every m > 0. By Lemma 4.8, we have
[K @ Gpyneon] = [Grneo,e) 0 Gpreql - d/ky, for every m > 0, where k; is
the number of orbits of the edge e_ in {1, ..., d} under the stabilizer sub-
group F,, < F.Let0 < £(m) := |m/2 + N/2] the integer value of
(sign(m)|y"™ ()| + [ya(X)D/ @2 - ly]) = m/2 + N/2, for every m = —N.
Thus, for every m > —N:

(K Gpxyem o] < K 2 G, 1] = [K 2 Gpy 1 signgmylym o+ coni]

(€))
< [K . (Gl[x,yl(m)ﬂ(x)]]-

Let us prove the assertion (2). By Lemma 4.6, /2 = [Hjymq) ¢

Hiy £1]1"/?, for every m > 0. By Lemma 4.7 applied to Gg, for every 0 < m we
have
[Grymy.e1 * Gregr] < [Gpyinaei .1 © Greg (10)

Using (9) and (10), the assertion (2) becomes:

N
D AE) T IK  Gp] !
m=1 N

=Y [Hyrw.e : Huel? - [K 2 G, 1™
1

N

N
Z (Gyn e+ Gregy]! Z Gy 61 ¢ Gre gl
[K : Gy 1] [K 2 Gyt (1]

=1 m=1

IA

3

_k Z (Gt Gral _ ki N
[G [yt (x),€] - G[x,g ] —d [G[yLN/ZJ—l(x)’%-]: (G[x,g]]

_ ki
.N-A [IN/2]—-1 0.
= N AT AT
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Using (9), the assertion (1) becomes:

—1 -1
lim Ag(y)™? . [K:G = lim M2 UK G !
im Z H () [ Lx.xnl] Hm [K: Gy x,1]
m=—N 1 m=—N
< lim fhml/z . [K : G[x’y((m)(x)J]_l
N—o0
m=—N
-1
= lim (V% .1 ml/2 (K m (1]
Nﬁoo< + D MK Gy ]
m=—N+1
(—N+1)/2
i [m|/2 . -1
< lim Y0 MK Gy
m=—N+1 1
lim ml/2 (K- m -1
+ lim Yoo [K: Gp ytom (1]
m=(~N-+1)/2
(=N+1)/2 -1
: [m|/2 ; Im|/2 . -1
< Jlim > g Jim Yoo [K: Gy, piom (o]
m=—N+1 m=(—N+1)/2
< gim ML ovenn
T Nooo 0
b K Gl 30
m=(—N+1)/2
As t < 1, one has limy_oo(N + 1)/2 - t™=D/2 = (. Moreover,

My oo [K: Gy yinnm] ™ = 0and Yop_ vy 12 = 1/(1 = 11/2),
Thus limy— oo [K : Gy, yucnenm]™ - Yoy p "2 = 0.

5. The main theorem

Corollary 4.4, Theorem 4.3 and Theorem 4.14 give us the aimed result of this
article:

THEOREM 5.1. Let F be primitive and let § € 0J . Let H be a closed
subgroup of Gg and let (o, ') be a unitary representation of H. Then the
induced unitary representation (7., #,) on G is Cy.

PrOOF. It remains to consider the case when H is a compact subgroup of
Ge. This is a particular case of the well-known general fact that all unitary
representations of a locally compact subgroup that are induced from compact
subgroups are Cy. For the idea of the proof the reader can consult the book of
Bekka-de la Harpe-Valette [2, Proposition C.4.6].



134 C. CIOBOTARU

ACKNOWLEDGEMENTS. We would like to thank Pierre-Emmanuel Caprace
for addressing the question of whether parabolically induced unitary repres-
entations of G, with F being primitive, are Cy. We thank Pierre-Emmanuel
Caprace and Stefaan Vaes for pointing out a gap in an earlier version of this pa-
per and Alain Valette for further discussions. The comments of the anonymous
referee were highly appreciated. We would like to thank him/her for carefully
reading this paper.

REFERENCES

1. Amann, O., Group of tree-automorphisms and their unitary representations, Ph.D. thesis,
ETH Ziirich, 2003.

2. Bekka, B., de la Harpe, P., and Valette, A., Kazhdan’s property (T), New Mathematical
Monographs, vol. 11, Cambridge University Press, Cambridge, 2008.

3. Burger, M., and Mozes, S., Groups acting on trees: from local to global structure, Inst. Hautes
Etudes Sci. Publ. Math. (2000), no. 92, 113-150 (2001).

4. Caprace, P.-E., and De Medts, T., Simple locally compact groups acting on trees and their
germs of automorphisms, Transform. Groups 16 (2011), no. 2, 375-411.

5. Ciobotaru, C., Parabolically induced unitary representations of the universal group U (f)*
are Cy, long version arXiv:1409.2245v2, 2014.

6. Ciobotaru, C., A unified proof of the Howe-Moore property, J. Lie Theory 25 (2015), no. 1,
65-89.

7. Ciobotaru, C., The relative Howe-Moore property for the universal group U(f)™, eprint
arXiv:1612.09427, 2016.

8. Cluckers, R., Cornulier, Y., Louvet, N., Tessera, R., and Valette, A., The Howe-Moore property
for real and p-adic groups, Math. Scand. 109 (2011), no. 2, 201-224.

9. Tits, J., Sur le groupe des automorphismes d’un arbre, in “Essays on topology and related
topics (Mémoires dédi€s a Georges de Rham)”, Springer, New York, 1970, pp. 188-211.

UNIVERSITE DE FRIBOURG

CHEMIN DU MUSEE 23

FRIBOURG 1700

SWITZERLAND

E-mail: corina.ciobotaru@unifr.ch



