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PARABOLICALLY INDUCED UNITARY
REPRESENTATIONS OF THE UNIVERSAL

GROUP U(F)+ ARE C0

CORINA CIOBOTARU

Abstract
We prove that all parabolically induced unitary representations of the Burger-Mozes universal
group U(F)+, with F being primitive, are C0. This generalizes the same well-known result for
the universal group U(F)+, when F is 2-transitive.

1. Introduction

Let T be a d-regular tree, with d ≥ 3. LetG := U(F)+ ≤ Aut(T ), with F ≤
Sym{1, . . . , d} being primitive, be the universal group introduced by Burger
and Mozes in [3, §3]. Given a (strongly continuous) unitary representation
π :G → U(H ) on a (infinite-dimensional) complex Hilbert space (H , 〈·, ·〉),
we are interested in studying the matrix coefficients cv,w:G → C given by
cv,w(g) := 〈π(g)v, w〉, for every v, w ∈ H . We say (π, H ) is a C0 unitary
representation of G if for any of its associated matrix coefficients cv,w, the
subset {g ∈ G | |cv,w(g)| ≥ ε} is compact in G, for every ε > 0; equivalently,
limg→∞ |cv,w(g)| = 0, for every v, w ∈ H , where ∞ represents the one-point
compactification of the locally compact group G.

It is a general fact [2, Appendix C, Proposition C.4.6] that the left regular
unitary representation ofG is C0. When F is 2-transitive (if and only if G is 2-
transitive on the boundary ∂T ) Burger and Mozes [3] showed the Howe-Moore
property ofG: every unitary representation ofG, without non-zeroG-invariant
vectors, is C0. Still, for F being just primitive, but not 2-transitive, it is difficult
to predict when a (non-trivial) unitary representation of G is C0 or not. Apart
from [2, Proposition C.4.6] and the general criterion proven in [6] (and the
references therein) providing a unified proof of the Howe-Moore property for
all known examples, there are no other known techniques to prove that a unitary
representation of a locally compact group is C0.
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When F is primitive, [7] shows G has a weakening of the Howe-Moore
property, namely the relative Howe-Moore property with respect to any horo-
spherical stabilizer G0

ξ := {g ∈ G | g(ξ) = ξ, g elliptic} with ξ ∈ ∂T . This
relative property was introduced and studied in [8]. Another result of [7] shows
when F is primitive but not 2-transitive, that the stabilizerGv inG of a non-zero
vector v ∈ H of a unitary representation (π, H ) of G without non-zero G-
invariant vectors, either is compact or if it is not compact then it equalsG0

ξ , for
some ξ ∈ ∂T . It is then natural to ask whether the unitary representations ofG
induced from closed subgroups of the stabilizerGξ := {g ∈ G | g(ξ) = ξ} for
ξ ∈ ∂T are C0 or not. The following vanishing result gives the answer to this
question. For the theory of induced unitary representations we use notation
and the results from [2, Appendices B and E].

Theorem 1.1. Let F ≤ Sym{1, . . . , d} be primitive and ξ ∈ ∂T . Let H be
a closed subgroup ofG stabilizing ξ and let (σ, K ) be a unitary representation
of H . Then the induced unitary representation (πσ , Hσ ) on G is C0.

We emphasise Theorem 1.1 covers the known case when F is 2-transitive
(that case being covered by the Howe-Moore property). Still, the proof of
Theorem 1.1 is very different from the general one proving the Howe-Moore
property. This is firstly, because the group G, when F is primitive but not 2-
transitive, does not verify the general criterion given in [6]. Secondly, if F is
primitive but not 2-transitive, it is a direct consequence the quotient G/Gξ is
not compact anymore and not isomorphic to the boundary ∂T , for any choice
of ξ ∈ ∂T . Moreover, by [7], Gξ is a closed, still non-compact subgroup, for
every ξ ∈ ∂T .

To prove Theorem 1.1, we follow the lines of the standard argument that
the left regular unitary representation is C0. The novelty of the article is the
control of the integral given by Remark 3.10 in terms of indices of subgroups
and we distinguish three cases in the calculation of the asymptotics of that
integral.

2. Some properties of G

For the definition and the main properties of the Burger-Mozes universal groups
the reader can consult Burger-Mozes [3], Amann [1], Ciobotaru [5].

To fix the notation, let dT (·, ·) be the usual metric on T . Let Aut(T )+
be the group of all type-preserving automorphisms of T and by definition
G ≤ Aut(T )+. For every pair of points x, y ∈ T ∪ ∂T , [x, y] is the unique
geodesic between x and y in T ∪∂T . For G ≤ Aut(T ) and x, y ∈ T ∪∂T we
define G[x,y] := {g ∈ G | g fixes pointwise the geodesic [x, y]}. In particular,
Gx := {g ∈ G | g(x) = x}. For ξ ∈ ∂T we have already defined Gξ and G0

ξ .
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Note Gξ can contain hyperbolic elements; if this is the case then G0
ξ � Gξ .

If H ≤ Gξ and x ∈ T then Hx evidently equals H[x,ξ ]. For a vertex x ∈ T

and an edge e in the star of x, set K := Gx and let Tx,e be the half-tree of
T emanating from the vertex x and containing the edge e. For a hyperbolic
element γ ∈ Aut(T ), we write |γ | := minx∈T {dT (x, γ (x))}, which is called
the translation length of γ . Set Min(γ ) = {x ∈ T | dT (x, γ (x)) = |γ |}.

Remark 2.1. As F is primitive, given an edge e′ ∈ E(T ) at odd distance
from e, one can construct, using the definition of G, a hyperbolic element
in G translating e to e′. Moreover, every hyperbolic element in G has even
translation length, as G has only type-preserving automorphisms.

Lemma 2.2 (The KA+K decomposition). Let F be primitive. Let x ∈ T be
a vertex and e an edge in the star of x. ThenG admits a KA+K decomposition,
where A+ := {γ ∈ G | e ⊂ Min(γ ), γ (e) ⊂ Tx,e} ∪ {id}.

Proof. Let g ∈ G. If g(x) = x, then g ∈ K . If not, consider the geodesic
segment [x, g(x)] in T ; denote by e1 the edge of the star of x belonging to
[x, g(x)]. By type-preserving, [x, g(x)] has even length. As F is also transitive,
there is k ∈ K with k(e1) = e; therefore, kg(x) ∈ Tx,e. By Remark 2.1, there
is a hyperbolic element γ ∈ G of translation length equal to the length of
[x, g(x)], translating the edge e inside Tx,e and with γ (x) = kg(x); thus
γ −1kg ∈ K . Note the KA+K decomposition of an element g ∈ G is not
unique.

Lemma 2.3. Let F be primitive and let H be a closed, non-compact and
proper subgroup of G. Then, for every x ∈ T , Hx does not have finite index
in Gx .

Proof. By Caprace-De Medts [4, Proposition 4.1] the subgroup F is prim-
itive if and only if every proper open subgroup of G is compact. H cannot be
an open subgroup of G, as otherwise H would be compact, contradicting the
hypothesis. Suppose there is an x ∈ T with [Gx : Hx] < ∞. As Hx is closed
in Gx and of finite index, Hx is open in Gx and so also in G. This means H is
open in G, obtaining a contradiction.

3. Induced unitary representations

We follow [2, Appendices B and E] where all the definitions, notation, proofs
and complementary definitions can be found (see also [5]). Fix, in this section,
G to be a locally compact group and H ≤ G a closed subgroup. All Haar
measures used in this paper are considered to be left invariant. We denote
by dx, respectively, dh the Haar measure on G, respectively, H . We endow
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G/H with the quotient topology: the canonical projection p: G → G/H is
continuous and open.

Definition 3.1 (See [2, Appendix B]). A rho-function of (G, H) is a con-
tinuous function ρ: G → R∗+ satisfying the equality

ρ(xh) = 	H(h)

	G(h)
ρ(x) for all x ∈ G, h ∈ H, (1)

where 	G, 	H are the modular functions on G, respectively on H .

By [2, Theorem B.1.4], there is a correspondence between rho-functions
of (G, H) and continuous G-quasi-invariant regular Borel (CGQIRB) meas-
ures on G/H (see [2, Appendix A.3]), where continuous means the Radon-
Nikodym derivative of μ is continuous.

Definition 3.2. Let (σ, K ) be a unitary representation of H . Suppose
G/H is endowed with a CGQIRB-measure μ, with associated rho-function
ρ on G. The induced unitary representation (πσ,μ, Hσ,μ) of G is defined as
follows. For every g ∈ G, we define the unitary operator πσ,μ(g) on A by
πσ,μ(g)(ξ)(x) := (ρ(g−1x)/ρ(x))1/2ξ(g−1x), where ξ ∈ A and x ∈ G, and
where A is a specific dense subset of the Hilbert space Hσ,μ. For a complete
definition see [2, Appendix E]. Moreover, by [2, Proposition E.1.4], this is a
unitary representation of G on the Hilbert space Hσ,μ.

Remark 3.3. By [2, Proposition E.1.5], induced unitary representations
do only depend on the unitary representations (σ, K ) of H and not on the
CGQIRB-measures on G/H . If (πσ,μ1 , Hσ,μ1) is C0 the same is true for
(πσ,μ2 , Hσ,μ2).

Notation 3.4. By Remark 3.3 it is legitimate to write (πσ , Hσ ) for the
unitary representation of G induced from the unitary representation (σ, K )

of H .

Lemma 3.5. For every compact subgroup K of G there exists a CGQIRB-
measure μ on G/H which is left K-invariant.

Proof. By [2, Theorem B.1.4] let μ1 be a CGQIRB-measure on G/H

with ρ1: G → R∗+ its associated rho-function. Let ρ: G → R∗+ be the function
defined by g ∈ G 
→ ρ(g) := ∫

K
ρ1(kg) dk, with dk the Haar measure

on K . Then ρ is continuous, satisfies equation (1) from Definition 3.1 and
so ρ is a rho-function and left K-invariant. By [2, Theorem B.1.4], let μ be
the CGQIRB-measure on G/H associated with ρ. As the Radon-Nikodym
derivative of μ satisfies dy
μ

dμ
(xH) = ρ(yx)

ρ(x)
, for every x, y ∈ G and because ρ

is left K-invariant, we obtain μ is left K-invariant.
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Lemma 3.6. Let K ≤ G be compact. Consider on G/H a CGQIRB-measure
μ which is left K-invariant and suppose μ(KH) �= 0. If K ′ < K is a compact
subgroup of infinite index in K , with H ∩ K ≤ K ′, then the index of K ′ in K

is uncountable and μ(K ′H) = 0. In particular, if H ∩ K has infinite index in
K then the index of H ∩ K in K is uncountable and μ(H) = 0.

Proof. By Lemma 3.5, we know G/H admits a CGQIRB-measure μ

which is left K-invariant. By the definition of a regular Borel measure
μ(KH) < ∞. Suppose the index of K ′ in K is countable; there exist {kn}n∈N ⊂
K \K ′ with K = ⊔

n∈N knK
′. Then KH = ⊔

n∈N knK
′H . Indeed, if knK

′H ∩
kmK ′H �= ∅ for some n �= m we would have knk

′ = kmk′′h, for some
h ∈ H and some k′, k′′ ∈ K ′; so h ∈ H ∩ K ≤ K ′ and thus knK

′ = kmK ′,
which is a contradiction. Therefore, write μ(KH) = ∑

n∈N μ(knK
′H) =∑

n∈N μ(K ′H), as μ is countably additive and left K-invariant. Because
μ(K ′H), μ(KH) < ∞ we conclude μ(K ′H) must be zero and so μ(KH)

is zero too, which contradicts the hypothesis. Therefore, the index of K ′ in K

must be uncountable. By the countable additivity of μ, K-invariance of μ and
μ(KH) �= 0, one easily obtains μ(K ′H) = 0.

Remark 3.7. By [2, Theorem B.1.4] let μ be a CGQIRB-measure on G/H

with associated rho-function ρ. Let K be a compact subset of G. Then, for
every g ∈ G,

g
μ(KH) = μ(g−1KH) =
∫

G/H

1KH (xH) dg
μ(xH)

=
∫

KH

ρ(gx)

ρ(x)
dμ(xH) ≤ Cg

∫
KH

1KH (x) dμ(xH) = Cg · μ(KH),

where Cg ≥ maxx∈K{ρ(gx)/ρ(x)}.
Lemma 3.8. Let (σ, K ) be a unitary representation of H . Assume the in-

duced unitary representation (πσ , Hσ ) on G is not C0. Then there exist η′
1, η

′
2 ∈

span({ξf,v | f ∈ Cc(G), v ∈ K }), δ > 0 and a sequence {tk}k>0 ⊂ G, with
tk → ∞, such that |〈πσ (tk)η

′
1, η

′
2〉| > δ, for every k > 0.

Proof. Follows from span({ξf,v | f ∈ Cc(G), v ∈ K }) is dense in Hσ .

Lemma 3.9. Let K be an open-compact neighborhood in G of the identity.
Let (σ, K ) be a unitary representation of H and η1, η2 ∈ span({ξf,v | f ∈
Cc(G), v ∈ K }). Consider on G/H a CGQIRB-measure μ, with associated
rho-function ρ on G.

Then there exist a constant C > 0, numbers N1, N2 ∈ N and elements
{hi}i∈{1,...,N1}, {h′

j }j∈{1,...,N2} ⊂ G, all of them depending only on η1 and η2,
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such that

|〈πσ (t)η1, η2〉| = |〈η1, πσ (t−1)η2〉|

≤
N1,N2∑
i,j=1

∫
t (hiKH)∩h′

j KH

∣∣∣∣
(

ρ(t−1x)

ρ(x)

)1/2

〈η1(t
−1x), η2(x)〉K

∣∣∣∣ dμ(xH)

≤ C

N1,N2∑
i,j=1

∫
t (hiKH)∩h′

j KH

(
ρ(t−1x)

ρ(x)

)1/2

dμ(xH)

for every t ∈ G. Moreover, we have

∫
t (hiKH)∩h′

j KH

∣∣∣∣
(

ρ(t−1x)

ρ(x)

)1/2

〈η1(t
−1x), η2(x)〉K

∣∣∣∣ dμ(xH)

=
∫

hiKH∩t−1(h′
j KH)

∣∣∣∣
(

ρ(ty)

ρ(y)

)1/2

〈η1(y), η2(ty)〉K

∣∣∣∣ dμ(yH).

Proof. Using Notation 3.4 we simply refer to (πσ,μ, Hσ,μ) as (πσ , Hσ ).
Let t ∈ G. As η1, η2 ∈ span({ξf,v | f ∈ Cc(G), v ∈ K }), they only

depend on a finite number of functions from Cc(G). Denote by A, B ⊂ G the
union of the support of those functions defining η1, respectively, η2. A and
B are compact subsets of G. Cover A, respectively, B, with open sets of the
form hK , where h ∈ A, respectively, h ∈ B. From these open covers extract
finite ones covering A, respectively, B. By making a choice and fixing the
notation, consider A ⊂ ⋃N1

i=1 hiK and B ⊂ ⋃N2
j=1 h′

jK , where hi, h
′
j ∈ G and

N1, N2 ∈ N. We obtain:

|〈πσ (t)η1, η2〉| =
∣∣∣∣
∫

G/H

(
ρ(t−1x)

ρ(x)

)1/2

〈η1(t
−1x), η2(x)〉K dμ(xH)

∣∣∣∣
≤

N1,N2∑
i,j=1

∫
t (hiKH)∩h′

j KH

∣∣∣∣
(

ρ(t−1x)

ρ(x)

)1/2

〈η1(t
−1x), η2(x)〉K

∣∣∣∣ dμ(xH).

To obtain the last inequality of the lemma and the constant C, we use the
following. Recall η1, η2 ∈ span({ξf,v | f ∈ Cc(G), v ∈ K }). We claim
the scalar product 〈η1(t

−1x), η2(x)〉K is a bounded function in x ∈ G and this
upper-bound depends neither on t nor on the domains {t (hiKH)∩h′

jKH }hi ,h
′
j
.

Indeed, for simplicity, consider η1 = ξf1,v1 and η2 = ξf2,v2 , where f1, f2 ∈
Cc(G) and v1, v2 ∈ K . In this case we have:
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∣∣〈ξf1,v1(t
−1x), ξf2,v2(x)〉K

∣∣
=

∣∣∣∣
∫

H

∫
H

〈f1(t
−1xh1)σ (h1)(v1), f2(xh2)σ (h2)(v2)〉K dh1dh2

∣∣∣∣
≤

∫
H

∫
H

|f1(t
−1xh1)| · |f2(xh2)| · ‖v1‖K · ‖v2‖K dh1dh2 < C,

where C is a constant which does not depend on t , but depends on η1, η2. From
here the conclusion follows. Note the last assertion of the lemma follows using
the change of variables y := t−1x and the positivity of ρ.

Remark 3.10. Lemma 3.9 can be used in the following way. In order to
show that induced unitary representations are C0, it is enough to evaluate
integrals of the form

∫
tn(f1KH)∩f2KH

(
ρ(t−1

n x)

ρ(x)

)1/2

dμ(xH),

where f1, f2 ∈ G are considered to be fixed and tn → ∞.

Lemma 3.11. Let K ≤ G be open-compact. Let g, f1, f2 ∈ G with
g(f1KH) ∩ f2KH �= ∅. Then g(f1KH) ∩ f2KH = ⊔

i∈I f2kiH , for some
{ki}i∈I ⊂ K/(K ∩H) pairwise different. In addition, for every i ∈ I , there is a
unique kki

∈ K/(K ∩H) and a unique hi ∈ H with gf1kki
= f2kihi ∈ f2kiH .

Proof. Let x ∈ gf1KH ∩ f2KH . Then there exist k, k′ ∈ K and h, h′ ∈
H , with x = gf1kh = f2k

′h′; so xh−1 = gf1k = f2k
′h′h−1. By taking

k′ ∈ K/(K ∩ H) we obtain the first part of the lemma. Suppose there are
k, k′ ∈ K/(K ∩ H) and h, h′ ∈ H with k /∈ k′H and gf1k = f2kih, gf1k

′ =
f2kih

′ ∈ f2kiH . From here we have k = k′ and h = h′. Note for i �= j ∈ I ,
we might have hi = hj .

Lemma 3.12. Let K ≤ G be open-compact and G be unimodular. Consider
on G/H a CGQIRB-measure μ, with associated rho-function ρ on G. Let
g, f1, f2 ∈ G. Then there is a constant C > 0, depending only on K , ρ and
f1, f2 with

∫
gf1KH∩f2KH

(
ρ(g−1x)

ρ(x)

)1/2

dμ(xH) ≤ C

∫
⊔

i∈In
f2kiH

	H(hi)
−1/2dμ(f2kiH),

where I , ki and hi are given by Lemma 3.11.

Proof. Suppose gf1KH ∩ f2KH �= ∅, as otherwise the conclusion is
trivial.
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By Lemma 3.11, gf1KH ∩ f2KH = ⊔
i∈I f2kiH , for some {ki}i∈I ⊂

K/(K ∩ H) pairwise different. Let x ∈ gf1KH ∩ f2KH . Then, by the same
Lemma 3.11, x = gf1kki

h = f2kihih, for some h ∈ H and some i ∈ I .
Therefore,

(
ρ(g−1x)

ρ(x)

)1/2

=
(

ρ(f1kki
h)

ρ(f2kihih)

)1/2

=
(

ρ(f1kki
)	H (h)

ρ(f2ki)	H (hih)

)1/2

.

As the map ρ is continuous on G and K is compact, there exists a constant
C > 0 with 0 < (ρ(f1k)/ρ(f2k

′))1/2 ≤ C, for every k, k′ ∈ K . We obtain
(ρ(g−1x)/ρ(x))1/2 ≤ C	H(hi)

−1/2, for x ∈ f2kiH . The conclusion follows.

Note for i �= j ∈ I , so for f2kiH, f2kjH , one can have 	H(hi)
−1/2 =

	H(hj )
−1/2. Therefore, the function 	H(hi)

−1/2 might be integrated on a big-
ger subset than f2kiH , and thus on a subset that might not have measure zero.
We summarise below our general strategy to prove induced unitary represent-
ations on locally compact groups are C0.

Remark 3.13 (The strategy: first step). Let K ≤ G be open-compact and
G be unimodular. Consider on G/H a CGQIRB-measure μ, with associated
rho-function ρ on G. By Lemma 3.5 and Remark 3.3, μ and the associated rho-
function ρ are both K-invariant. From now on consider fixed these μ and ρ.
As K is open-compact, 0 �= μ(KH) < ∞. Suppose μ(KH) = 1. Let (σ, K )

be a unitary representation of H and denote by (πσ , Hσ ) the induced unitary
representation on G. Note we have applied Remark 3.3 and Notation 3.4.
Assume there exist a sequence {tn}n>0 of G and η1, η2 ∈ Hμ with tn → ∞
and |〈πσ (tn)η1, η2〉| � 0, thus the representation (πσ , Hσ ) is not C0. To the
sequence {tn}n>0 apply Lemma 3.8 and then Lemma 3.9. By Remark 3.10 it
is enough to evaluate the integrals

∫
tn(f1KH)∩f2KH

(
ρ(t−1

n x)

ρ(x)

)1/2

dμ(xH),

where f1, f2 ∈ G are fixed and tn → ∞.
First of all, fix tn. Apply Lemmas 3.11 and 3.12 to tn, f1, f2. One obtains

∫
tn(f1KH)∩f2KH

(
ρ(t−1

n x)

ρ(x)

)1/2

dμ(xH)

≤ C

∫
⊔

i∈In
f2ki,nH

	H(hi,n)
−1/2 dμ(f2ki,nH),

where the constant C > 0 depends only on K , ρ, f1 and f2; the set In and
ki,n, hi,n, with i ∈ In, depend on tn, f1 and f2. As noticed above, for i �=
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j ∈ In, so for f2ki,nH, f2kj,nH , one can have 	H(hi,n)
−1/2 = 	H(hj,n)

−1/2.
Therefore, the function 	H(hi,n)

−1/2 it might be integrated on a bigger subset
than f2ki,nH , and thus on a subset that might not have measure zero. We want
to show that integral tends to zero when n → ∞. This would be a contradiction
of our assumption |〈πσ (tn)η1, η2〉| � 0.

Remark 3.14. Let K ≤ G be open-compact and G be unimodular. Suppose
we have been able to evaluate the intersections gKH ∩ KH , for g ∈ G. It
would remain to evaluate the values of 	

−1/2
H . These values strictly depend

on the structure of the group H . Because of this, we restrict ourself to the
case when G is a closed subgroup of Aut(T ) and H is a closed subgroup
of Aut(T )ξ , with ξ ∈ ∂T . In this case the values of the function 	

−1/2
H are

determined by the hyperbolic elements of H , the structure of those being very
well understood.

4. Vanishing results for the universal group G

In this section we consider parabolically induced unitary representations of the
universal groupG. Recall by [3]G is unimodular when F is primitive. We split
this study in two parts: when H ≤ Gξ does not contain hyperbolic elements,
and the general case, when H ≤ Gξ does contain hyperbolic elements. By [7]
G0

ξ is a closed, non-compact subgroup of G, for every ξ ∈ ∂T .

4.1. The non-hyperbolic case

Remark 4.1. Let ξ ∈ ∂T . If H ≤ Aut(T )ξ is a closed subgroup not con-
taining hyperbolic elements then H is unimodular. This is because H can
be written as a countable union of compact subgroups. Indeed, by [9] as H

contains only elliptic elements, each element of H fixes pointwise an infinite
geodesic ray of T with endpoint ξ . Thus every element of H is contained in
some Hx for some vertex x of T and Hx is compact (whence unimodular).

Lemma 4.2. Let x ∈ T and ξ ∈ ∂T . Let K ≤ Aut(T )x be closed and let
H be a closed, non-compact subgroup of Aut(T )ξ , not containing hyperbolic
elements. Let g ∈ Aut(T )+. If gKH ∩KH �= ∅, then there exists kg ∈ K with
gKH ∩KH ⊂ kgK[x,xg ]H , where xg ∈ [x, ξ) has the properties dT (x, xg) =
1
2 dT (x, g(x)) and kg sends [x, xg] into the first half of the geodesic segment
[x, g(x)].

Proof. From gKH ∩KH �= ∅, g = k′hk, for some h ∈ H and k′, k ∈ K .
We want to determine the domain in K of the variable k′. From g = k′hk we
have:

dT (x, g(x)) = dT (x, k′h(x)) = dT (x, h(x)). (2)
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As h is not hyperbolic, denote by xh the first vertex of the geodesic ray
[x, ξ) fixed by h. From equation (2) we obtain dT (x, xh) = 1

2 dT (x, g(x)),
thus xh is a precise point on the geodesic ray [x, ξ) determined only by the
element g and not by the non-hyperbolic element h. So take xg := xh. Because
k′([x, h(x)]) = [x, g(x)], k′ sends the geodesic segment [x, xg] into the first
half of the geodesic segment [x, g(x)]. We conclude k′ ∈ kgK[x,xg ], where
kg ∈ K is a fixed element sending [x, xg] into the first half of the geodesic
segment [x, g(x)].

Theorem 4.3. Let ξ ∈ ∂T , x ∈ T , G be a closed, non-compact, unim-
odular subgroup of Aut(T )+ and suppose the index in K := Gx of G[x,ξ ]

is infinite. Let H be a closed, non-compact subgroup of Gξ , not containing
hyperbolic elements and let (σ, K ) be a unitary representation of H . Then the
induced unitary representation (πσ , Hσ ) on G is C0.

Proof. By Remark 3.3 and because H and G are unimodular, it is enough to
consider the case when the rho-function ρ is the constant function 1 on G. Thus,
the measure μ on G/H associated with the rho-function 1 on G is G-invariant.
As K is open and compact with respect to the locally compact topology on G,
we have 0 �= μ(KH) < ∞. Assume there exist a sequence {tn}n>0 of G and
η1, η2 ∈ Hσ with tn → ∞ and |〈πσ (tn)η1, η2〉| � 0. To the sequence {tn}n>0

apply Lemma 3.8 and then Lemma 3.9. Moreover, by Remark 3.10 it is enough
to evaluate μ(tn(hiKH)∩h′

jKH), where hi and h′
j are considered to be fixed

and tn → ∞. Note μ(tn(hiKH) ∩ h′
jKH) = μ((h′

j )
−1tnhiKH ∩ KH).

If (h′
j )

−1tnhiKH ∩ KH �= ∅ apply Lemma 4.2 to gn := (h′
j )

−1tnhi . We
obtain gnKH ∩KH ⊂ kgn

G[x,xgn ]H , where xgn
∈ [x, ξ) with one of the prop-

erties being dT (x, xgn
) = 1

2 dT (x, gn(x)). As tn → ∞, we also have gn → ∞
(hi , h′

j being fixed); in addition, dT (x, xgn
) → ∞ when n → ∞. To evaluate

μ(gnKH ∩ KH) it is enough to compute μ(kgn
G[x,xgn ]H) = μ(G[x,xgn ]H),

where dT (x, xgn
) → ∞ as gn → ∞. We claim limgn→∞ μ(G[x,xgn ]H) = 0,

giving a contradiction. Indeed, there are two cases that should be considered:
either for every y ∈ (x, ξ) the index of G[x,y] in K is finite or there exists
y ∈ (x, ξ) with the index of G[x,y] in K is infinite. Consider the first case; so the
index in K of G[x,xgn ] is finite for every gn. Moreover, since [K : G[x,ξ ]] = ∞,
[K : G[x,xgn ]] → ∞ as gn → ∞. As μ(KH) < ∞, μ is G-invariant, and
so K-invariant, the claim follows. Consider the second case; so there exists
N > 0 such that for every n ≥ N we have the index of G[x,xgn ] in K is infinite.
By Lemma 3.6 applied to K ′ = G[x,xgn ], we have μ(G[x,xgn ]H) = 0, for every
n ≥ N . The theorem follows.

Corollary 4.4. Let F be primitive and let ξ ∈ ∂T . Let H be a closed, non-
compact subgroup of Gξ , not containing hyperbolic elements and let (σ, K )
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be a unitary representation of H . Then the induced unitary representation
(πσ , Hσ ) on G is C0.

Proof. The hypotheses of Theorem 4.3 are fulfilled: let K := Gx and by
Lemma 2.3 applied to G0

ξ we have [K : K[x,ξ ]] = ∞.

4.2. The hyperbolic case

Let ξ ∈ ∂T . In this subsection we consider H a closed subgroup of Aut(T )ξ
containing hyperbolic elements. This implies H is not compact.

4.2.1. Structure and modular function of parabolic subgroups.

Lemma 4.5. Let ξ ∈ ∂T and H ≤ Aut(T )ξ be a closed subgroup containing
hyperbolic elements. Then there exists a hyperbolic element γ ∈ H , of at-
tracting endpoint ξ , that is minimal, in the sense any other hyperbolic element
γ ′ ∈ H is written γ ′ = γ nh, where n ∈ Z, |n||γ | = |γ ′| and h ∈ H ∩Aut(T )0

ξ .

Proof. Let Hyp(H) := {γ ∈ H | γ is hyperbolic}. Let hypH :=
minγ∈H (|γ |). Note hypH exists and hypH ≥ 1. Let fix γ ∈ H with |γ | =
hypH . Fix also a vertex x in Min(γ ). Moreover, consider the attracting en-
dpoint of γ is ξ ; if not take γ −1. Let γ ′ ∈ Hyp(H) and let xγ ′ be the first
vertex of [x, ξ) contained in Min(γ ′). By minimality |γ ′| is a multiple of |γ |.
If the attracting endpoint of γ ′ is ξ , then γ −nγ ′(xγ ) = xγ ′ , where n|γ | = |γ ′|.
Thus, γ ′ = γ nh, where h ∈ Hxγ ′ . If γ ′ has ξ as a repelling endpoint, then
γ nγ ′((γ ′)−1(xγ ′)) = (γ ′)−1(xγ ′), where n|γ | = |γ ′|. Thus γ ′ = γ −nh, where
now h is in H(γ ′)−1(xγ ′ ).

Lemma 4.6. Let ξ ∈ ∂T and H ≤ Aut(T )ξ be a closed subgroup contain-
ing hyperbolic elements. Let γ be a hyperbolic element of H with attracting
endpoint ξ and let x be a vertex of Min(γ ). Then 1/(d − 1)|γ | ≤ 	H(γ ) =
1/[Hγ(x) : Hx] ≤ 1. In particular, H is unimodular if and only if Hx = Hy ,
for every y ∈ Min(γ ).

Proof. By Remark 4.1, for every h ∈ H ∩ Aut(T )0
ξ , 	H(h) = 1. Note

the following facts. Firstly, Hx = H[x,ξ ] ≤ Hγ(x) are compact subgroups and
secondly, the index [Hγ(x) : Hx] ≤ (d − 1)|γ |, where d is the regularity of the
tree T . Moreover, Hγ(x) = γHxγ

−1. Let dh denote the left Haar measure on
H . Then dh(Hγ (x)) = dh(γHxγ

−1) = dh(Hxγ
−1) = 	H(γ −1)dh(Hx). As

	H(h) = 1 for h ∈ H∩Aut(T )0
ξ , we have dh(Hγ (x)) = dh(Hx)·[Hγ(x) : Hx].

From the above two equalities we obtain 1 ≤ 	H(γ −1) = [Hγ(x) : Hx] ≤
(d −1)|γ |. In particular, 1 = 	H(γ −1) = [Hγ(x) : Hx] if and only if Hx = Hy ,
for every y ∈ Min(γ ); thus Hy = Hξ− for every y ∈ Min(γ ), where ξ− is the
repelling endpoint of γ .
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Lemma 4.7. Let ξ ∈ ∂T and H ≤ Aut(T )ξ be a closed subgroup contain-
ing hyperbolic elements. Let γ be a hyperbolic element of H with attracting
endpoint ξ and x be a vertex of Min(γ ). Then we have the following properties:

(1) [Hγ(x) : Hx] = [Hγ 2(x) : Hγ(x)];

(2) [Hγ n(x) : Hx] = [Hγ n−m(x) : Hx] · [Hγ m(x) : Hx] for every 0 ≤ m ≤ n;

(3) [Hγ m(x) : Hx] ≤ [Hγ n(x) : Hx] for every 0 ≤ m ≤ n.

Proof. Note assertion (3) is a consequence of assertion (2) and the latter one
follows from assertion (1) and from Hx ≤ Hγ m(x) ≤ Hγ n(x), for 0 ≤ m ≤ n.
The first assertion follows as Hγ(x) = γHxγ

−1 and Hγ 2(x) = γHγ(x)γ
−1.

Moreover, for every coset hHx of Hγ(x)/Hx we have γ hγ −1γHxγ
−1 is a

coset of Hγ 2(x)/Hγ (x) and vice versa. The lemma is proved.

For F ≤ Sym{1, . . . , d} and e an edge of T we abuse notation and use Fe

to denote the stabiliser in F of the colour from {1, . . . , d} of the edge e.

Lemma 4.8. Let F be transitive and let γ ∈ G be hyperbolic. Denote by
ξ+, ξ− ∈ ∂T the attracting and respectively, the repelling endpoints of γ . Take
x ∈ (ξ−, ξ+), the edges e−, e+ in the star of x with e+ ∈ [x, ξ+), e− ∈ (ξ−, x]
and K := Gx . Then we have:

(1) [G[γ (x),ξ+] : G[x,ξ+]] = 	Gξ+ (γ −1) = [K : G[x,γ −1(x)]] · k1/d, where d

is the regularity of T and k1 is the number of orbits of the edge e− in
{1, . . . , d} under the stabilizer subgroup Fe+ ≤ F ;

(2) [G[x,ξ−] : G[γ (x),ξ−]] = 	Gξ− (γ ) = [K : G[x,γ (x)]] · k2/d where k2 is
the number of orbits of the edge e+ in {1, . . . , d} under the stabilizer
subgroup Fe− ≤ F ;

(3) [K : G[γ −1(x),x]] = [K : G[x,γ (x)]] = [G[γ (x),ξ+] : G[x,ξ+]] · d/k1[4] =
[G[x,ξ−] : G[γ (x),ξ−]] · d/k2.

Proof. First, it is easy to see that

γG[γ −1(x),x]γ
−1 = Gγ ([γ −1(x),x]) = G[x,γ (x)].

Let m be the left Haar measure on G. Then we have

m(K) = m(G[x,γ (x)]) · [K : G[x,γ (x)]] = m(G[γ −1(x),x]) · [K : G[γ −1(x),x]].

By a standard computation we have m(G[x,γ (x)]) = 	G(γ −1)m(G[γ −1(x),x]).
As G is unimodular we obtain

	G(γ −1) · [K : G[x,γ (x)]] = [K : G[x,γ (x)]] = [K : G[γ −1(x),x]]. (3)

Let us prove assertion (1) of the lemma. First, by Lemma 4.6 applied to
Gξ+ we have [G[γ (x),ξ+] : G[x,ξ+]] = 	Gξ+ (γ −1) = [G[x,ξ+] : G[γ −1(x),ξ+]]. As
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γ is translating along the axis (ξ−, ξ+), Fγ(e+) is isomorphic to Fe+ , thus the
number of Fγ(e+)-orbits of γ (e−) in {1, . . . , d} is the same as the Fe+ -orbits
of e− in {1, . . . , d}, which is k1. As F is transitive on {1, . . . , d}, we have
[K : G[γ −1(x),x]] = d · [Ge− : G[γ −1(x),x]]. Also as G has Tits’ independence
property [3], [1], [G[x,ξ+] : G[γ −1(x),ξ+]] = k1 · [Ge− : G[γ −1(x),x]]. We conclude
indeed

[G[γ (x),ξ+] : G[x,ξ+]] = [K : G[x,γ −1(x)]] · k1

d

and part (1) of the lemma is proved. The assertion (2) of the lemma goes in the
same way. The assertion (3) of the lemma is a consequence of assertions (1), (2)
and relation (3).

4.2.2. The evaluation of gKH ∩ KH . By Remark 3.13, the next step is the
evaluation of gKH ∩ KH . This is because we need to integrate the modu-
lar function 	

−1/2
H on the intersection gf1KH ∩ f2KH = ⊔

i∈I f2kiH , for
g, f1, f2 ∈ G. We are able to evaluate gKH ∩ KH for the universal group
G and not in a more general case. This is due to the KA+K decomposition
of G proven in Lemma 2.2, making our task easier. That decomposition might
not hold in a more general situation. Using the KA+K decomposition, we
only evaluate gKH ∩ KH when g ∈ A+. This is given by the next technical
proposition. We state the proposition as generally as possible, making use of
the following general definition.

Definition 4.9. Let G be a closed subgroup of Aut(T )+, x ∈ T and e be
an edge of the star of x. Set K := Gx and define

A+ := {γ ∈ G | e ⊂ Min(γ ), γ (e) ⊂ Tx,e} ∪ {id}.
Let ξ be an endpoint in ∂Tx,e. Define the map proj(x,ξ ]: A

+ → (x, ξ ] by
proj(x,ξ ](g) is the vertex or the endpoint ξ with the property [x, ξg,+]∩[x, ξ ] =
[x, proj(x,ξ ](g)], where ξg,+ is the attracting endpoint of g. As g ∈ A+, note
proj(x,ξ ](g) is indeed a point in (x, ξ ]. Let now g ∈ G be a hyperbolic ele-
ment translating the vertex x. Consider its K-double coset KgK and set
proj(x,ξ ](KgK) := maxg′∈A+∩KgK{proj(x,ξ ](g

′)}.
Proposition 4.10. Let G be a closed subgroup of Aut(T )+ and let ξ ∈ ∂T .

Assume Gξ contains hyperbolic elements. Let H < Gξ be a closed subgroup
containing also hyperbolic elements. Let γ be a minimal hyperbolic element
of H given by Lemma 4.5, with attracting endpoint ξ , and let x be a vertex of
Min(γ ). Set K := Gx . Choose the edge e in the star of x and define A+ such
that γ ∈ A+.

Let g ∈ A+. Assume proj(x,ξ ](KgK) = proj(x,ξ ](g). Assume there also
exist k2 ∈ K \ {H ∩ K}, k1 ∈ K and h ∈ H with k1gk2 = h = γ nh0, where
h0 ∈ H ∩ G0

ξ and n ∈ Z.
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Then 0 ≤ |n| ≤ dT (x, g(x))/|γ | and k1 ∈ G[x,xh], where xh ∈
[x, proj(x,ξ ](g)] is with dT (x, xh) = 1

2 (dT (x, g(x)) + sign(n)|γ n|), where
sign(0) = 0.

Proof. Denote by e the edge of the star of x with ξ ∈ ∂Tx,e. In particular,
A+ is defined using x and e. Let ξ+ and ξ− be the attracting and the repelling
endpoints of g. As k2 is not fixing ξ , we denote xk2 the vertex of the geodesic
line (ξ−, ξ) with the property [x, k2(ξ)) ∩ (ξ−, ξ) = [x, xk2 ]. We have three
cases: either xk2 ∈ [x, ξ) or xk2 ∈ (x, g−1(x)) or xk2 ∈ [g−1(x), ξ−).

Suppose xk2 ∈ [x, ξ). Because k1gk2(ξ) = ξ , k1gk2(e) is an edge of Tx,e

and the orientation of k1gk2(e) induced from e points towards the boundary
∂Tx,e, like e. Therefore, k1gk2 ∈ A+. As k1gk2 ∈ H , we have h = k1gk2 ∈
A+ ∩ H . As by hypothesis proj(x,ξ ](KgK) = proj(x,ξ ](g), we conclude g ∈
A+∩H . In addition, by Lemma 4.5 we have h = γ nh0, where h0 ∈ K∩H ; thus
|g| = |h| = n|γ |. As k1gk2(ξ) = ξ and because g is hyperbolic, with attracting
endpoint ξ and with x ∈ Min(g), k1 must fix at least the vertex g(x) ∈ (x, ξ).
Therefore, k1 ∈ G[x,xh], where xh = g(x) and the conclusion follows.

Suppose xk2 ∈ [g−1(x), ξ−). Then gk2(e) is an edge of Tx,e and the orienta-
tion of gk2(e) induced from e points outwards the boundary ∂Tx,e, thus towards
e. Becausexk2 ∈ [g−1(x), ξ−), by applying k1 togk2, k1(Tx,e)∩Tx,e = {x} and
the edge k1gk2(e) points towards the edge e. Therefore k1gk2 must be a hyper-
bolic element (of H ) translating the vertex x outwards the half-tree Tx,e. Con-
sequently, ξ is the repelling endpoint of k1gk2, as k1gk2(ξ) = ξ . Otherwise say-
ing, ξ is the attracting endpoint of the hyperbolic element (k1gk2)

−1 = h−1 ∈
H and x ∈ Min(h−1). We have |h| = |h−1| = dT (x, g(x)) = |n||γ |. Although
we can say more, we do not impose any restriction for k1, so k1 ∈ G[x,xh] where
xh = x. The conclusion of the proposition is still valid in this case.

Suppose now xk2 ∈ (g−1(x), x). We claim g(xk2) ∈ [x, proj(x,ξ ](g)]. In-
deed, supposing the contrary we have proj(x,ξ ](g) ∈ (x, g(xk2)). Then g(xk2) /∈
[x, ξ). As the geodesic ray [xk2 , k2(ξ)) is sent by g into the geodesic ray
[g(xk2), gk2(ξ)), [g(xk2), gk2(ξ)) does not intersect [x, ξ). However, by apply-
ing k1, we must have k1g(xk2) ∈ [x, ξ), as k1gk2(ξ) = ξ . This is a contradiction
with proj(x,ξ ](KgK) = proj(x,ξ ](g) and the claim follows. As k1gk2(ξ) = ξ ,
from the latter claim we immediately have k1 ∈ G[x,g(xk2 )]. From here we
deduce the following two facts:

(1) the segment [x, k−1
2 (xk2)), where k−1

2 (xk2) ∈ (x, ξ), is sent by h = k1gk2

into the segment (g(xk2), k1g(x)] ⊂ Tx,e \ {[x, ξ)}, and the orientation
is reversed;

(2) the edge k1gk2(e) belongs to Tx,e and the orientation of k1gk2(e) in-
duced from e would point outwards the boundary ∂Tx,e, thus towards
e. Therefore, either k1gk2 is elliptic, or k1gk2 is hyperbolic in H , with
translation length strictly smaller than dT (x, g(x)).



PARABOLICALLY INDUCED UNITARY REPRESENTATIONS 127

Our next claim is h is elliptic if and only if dT (x, xk2) = 1
2 dT (x, g−1(x)). Sup-

pose h = k1gk2 is elliptic. Then by the above fact (1) we know the segment
h([x, k−1

2 (xk2))) does not intersect [x, ξ). As h ∈ H is elliptic, h fixes the mid-
point of the segment [k−1

2 (xk2), h(k−1
2 (xk2))] = [k−1

2 (xk2), g(xk2)]. We deduce
k−1

2 (xk2) = h(k−1
2 (xk2)) = g(xk2), from where dT (x, xk2) = 1

2 dT (x, g−1(x)).
Suppose now dT (x, xk2) = 1

2 dT (x, g−1(x)), so we need to prove h is elliptic.
Indeed, k−1

2 (xk2) = g(xk2). As k1 ∈ G[x,g(xk2 )], we conclude h(k−1
2 (xk2)) =

k1gk2(k
−1
2 (xk2)) = g(xk2) = k−1

2 (xk2), so h is elliptic. The equivalence follows.
For h elliptic, we resume the following: k1gk2 ∈ H ∩ G0

ξ , so n = 0,
and k1 ∈ G[x,xh], where xh := g(xk2) ∈ [x, proj(x,ξ ](g)], with dT (x, g(xk2)) =
1
2 dT (x, g(x)). If h = k1gk2 is hyperbolic, then dT (x, xk2) �= 1

2 dT (x, g−1(x)).
Suppose dT (x, xk2) < 1

2 dT (x, g−1(x)), this implies 1
2 dT (x, g(x)) <

dT (x, g(xk2)). Moreover, using the above fact (1) and h is hyperbolic fix-
ing ξ , we conclude ξ is the attracting endpoint of h and h translates the vertex
k−1

2 (xk2) ∈ (x, ξ) to k1g(xk2) = g(xk2) ∈ (x, ξ). By Lemma 4.5, h = γ nh0,
for some h0 ∈ H ∩ G0

ξ , and n is such that n|γ | = |h| = dT (x, g(x)) −
2 dT (x, k−1

2 (xk2)) < dT (x, g(x)). In addition, k1 ∈ G[x,xh], where xh =
g(xk2) ∈ [x, proj(x,ξ ](g)] and indeed dT (x, xh) = 1

2 (dT (x, g(x)) − |γ n|) +
|γ n|.

Suppose now dT (x, xk2) > 1
2 dT (x, g−1(x)), this implies 1

2 dT (x, g(x)) >

dT (x, g(xk2)). As before, using the above fact (1) and h is hyperbolic fixing
ξ , we conclude ξ must be the repelling endpoint of h and h−1 translates the
vertex g(xk2) ∈ Min(h) ∩ (x, ξ) to k−1

2 (xk2) ∈ (x, ξ). By Lemma 4.5, we
have that h = γ −nh0, for some h0 ∈ H ∩ G0

ξ , and n > 0 is such that
n|γ | = |h| = dT (x, g(x)) − 2 dT (x, g(xk2)) < dT (x, g(x)). In addition,
k1 ∈ G[x,xh], where xh = g(xk2) ∈ [x, proj(x,ξ ](g)] and indeed dT (x, xh) =
1
2 (dT (x, g(x)) − |γ −n|). The proposition is proven.

When H is unimodular, we obtain the following.

Corollary 4.11. Let G be a closed subgroup of Aut(T )+ and let ξ ∈
∂T . Assume Gξ contains hyperbolic elements. Let H < Gξ be a closed,
unimodular, subgroup containing also hyperbolic elements. Let γ be a minimal
hyperbolic element of H given by Lemma 4.5, with attracting endpoint ξ , and
let x be a vertex of Min(γ ). Set K := Gx . Choose the edge e in the star of x

such that γ ∈ A+.
Let g ∈ A+. Assume proj(x,ξ ](KgK) = proj(x,ξ ](g). Assume there also

exist k2 ∈ K \ {H ∩ K}, k1 ∈ K and h ∈ H with k1gk2 = h = γ nh0, where
h0 ∈ H ∩ G0

ξ and n ∈ Z. Then h0 ∈ K ∩ H and |n| = dT (x, g(x))/|γ |. If
n > 0 then k1 ∈ G[x,xh], where xh ∈ [x, ξ ] is with dT (x, xh) = dT (x, g(x)).
If n < 0 then k−1

1 ∈ kG[x,γ n(x)], where k ∈ K with [x, g(x)] = k([x, γ n(x)]).
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Proof. We keep all the notation from the proof of Proposition 4.10. As H is
unimodular, by Lemma 4.6 we have Hx = Hy = Hξ− , for every y ∈ Min(γ ),
where ξ− ∈ ∂T is the repelling endpoint of γ . This proves h0 ∈ K ∩H and so
dT (x, h(x)) = dT (x, g(x)) = dT (x, γ n(x)) = |n||γ |. If n > 0, by applying
Proposition 4.10, we directly obtain k1 ∈ G[x,xh], where xh ∈ [x, proj(x,ξ ](g)]
is with dT (x, xh) = dT (x, g(x)). It remains the case n < 0. By the proof
of Proposition 4.10, the case n < 0 with dT (x, g(x)) = |n||γ | can occur
only when xk2 ∈ [g−1(x), ξ−). Let us compute g(ξ) = (k1)

−1γ nh0(k2)
−1(ξ).

As xk2 ∈ [g−1(x), ξ−), we have (k2)
−1(ξ) /∈ ∂Tx,e. Then h0(k2)

−1(ξ) is
still a point in {∂T \ ∂Tx,e} as h0 ∈ H[x,ξ ]. By applying γ n to h0(k2)

−1(ξ)

and because n < 0 we have γ nh0(k2)
−1(ξ) in {∂T \ ∂Tγ n(x),γ n(e)}. Note

g(ξ) ∈ Tg(x),g(e) � Tx,e, as g ∈ A+. By applying k1 to g(ξ) we must have
k1([x, g(x)]) = [x, γ n(x)]. We obtain k−1

1 ∈ kG[x,γ n(x)], where k ∈ K with
[x, g(x)] = k([x, γ n(x)]).

4.2.3. The proof. We are now ready to prove parabolically induced unitary
representations on the universal groupG, induced from closed subgroups H ≤
Gξ containing hyperbolic elements, are C0. We distinguish two cases: either
H is unimodular or H is not unimodular.

Remark 4.12 (The strategy: second step). Let G be a closed subgroup of
Aut(T )+, ξ ∈ ∂T and H be a closed subgroup of Gξ containing hyperbolic
elements. Applying Remark 3.13 it remains to integrate the modular function
	

−1/2
H on the intersection tn(f1KH)∩f2KH = ⊔

i∈In
f2ki,nH , for tn, f1, f2 ∈

G. In order to do that, we need to investigate more closely the set {hi,n}i∈In
,

given by Lemma 3.11. Even if hi,n is uniquely determined by ki,n, for every
i ∈ In, we might still have two hi,n, hj,n, with i �= j ∈ In, belonging to the
same right coset of H/(H ∩ G0

ξ ), thus 	H(hi,n) = 	H(hj,n) by Remark 4.1.
The evaluation of the set of all right cosets [hi,n] ∈ H/(H ∩ G0

ξ ) fol-

lows from Proposition 4.10. Indeed, for simplicity set gn := f −1
2 tnf1. By

Lemma 2.2, one can write gn = kγnk
′, where k, k′ ∈ K and γn ∈ A+ and

there is a liberty to choose such γn ∈ A+ and k, k′ ∈ K . We can choose γn

with proj(x,ξ ](KgnK) = proj(x,ξ ](γn). Fix such γn, k, k′ with gn = kγnk
′ and

proj(x,ξ ](KgnK) = proj(x,ξ ](γn).

Theorem 4.13. Let F be primitive and let ξ ∈ ∂T . Let H be a closed,
unimodular, subgroup of Gξ , containing hyperbolic elements and let (σ, K )

be a unitary representation of H . Then the induced unitary representation
(πσ , Hσ ) on G is C0.

Proof. By Lemma 4.5, let γ be a minimal hyperbolic element of H . Fix
for what follows a vertex x ∈ Min(γ ) and set K := Gx . By Lemma 4.6,
Hx = Hy = H[ξ−,ξ ], for every y ∈ Min(γ ), where ξ− ∈ ∂T is the repelling
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endpoint of γ . By Lemma 3.5 and Lemma 3.3, we can consider, without loss
of generality, the rho-function ρ equals the constant function 1 on G. In this
particular case, the measure μ on G/H associated with the rho-function 1
on G is G-invariant. Apply Remark 3.13 and then Remakr 4.12, keeping all
the notation there. By Lemma 3.11 and Corollary 4.11, applied to γn, we
have, for every i ∈ In, k−1

i,n gnkki,n
= k−1

i,n kγnk
′kki,n

= hi,n = γ mi h0, with
|mi | = dT (x, γn(x))/|γ | and h0 ∈ H ∩ K . Evaluate now the solutions for the
equation

k1gnk2 = k1kγnk
′k2 = h, (4)

for a given right coset [h] ∈ {[hi,n] | i ∈ In} ⊂ H/(H ∩ G0
ξ ) and where

k1k ∈ K and k′k2 ∈ K \ (K ∩ H). Note for any element h ∈ H satisfying
equation (4) we have

dT (x, h(x)) = dT (x, gn(x)) = dT (x, γn(x)) = |m| dT (x, γ (x)), (5)

where h = γ mh0, with h0 ∈ H ∩ K = Hx . Apply again Corollary 4.11. We
obtain for a given right coset [h = γ m] ∈ {[hi,n] | i ∈ In} ⊂ H/(H ∩ G0

ξ ) we

have: (1) if m > 0 then k−1
1 ∈ kG[x,xh], where xh ∈ [x, ξ ] with dT (x, xh) =

dT (x, γn(x)); (2) if m < 0 then k−1
1 ∈ kk3G[x,γ m(x)], where k3 ∈ K with

[x, γn(x)] = k3([x, γ m(x)]).
To resume, for a fixed n > 0 we have:∫

⊔
i∈In

f2ki,nH

	H(hi,n)
−1/2 dμ(f2ki,nH)

=
∫

⊔
i∈In

f2ki,nH

1 dμ(f2ki,nH)

≤
∫

kG[x,xh ]H

1 dμ(f2kG[x,xh]H) +
∫

kk3G[x,γm(x)]H

1 dμ(f2kk3G[x,γ m(x)]H)

= μ(f2kG[x,xh]H) + μ(f2kk3G[x,γ m(x)]H).

As tn → ∞ as n → ∞, we also have gn → ∞; thus by relation (5)
dT (x, xh) = dT (x, γn(x)) = |m| dT (x, γ (x)) → ∞, when n → ∞. By
hypothesis, Gξ ,Gξ− are closed, non-compact and proper subgroups of G. By
Lemma 2.3 applied toGξ andGξ− , we have [K : G[x,ξ ]] = ∞ = [K : G[x,ξ−]].
Therefore [K : G[x,γ m(x)]] → ∞ as m → ∞ and [K: G[x,xh]] → ∞, when
n → ∞. By theG-invariance of μ and because we have supposed μ(KH) = 1
we claim:

μ(f2kG[x,xh]H) + μ(f2kk3G[x,γ m(x)]H) = μ(G[x,xh]H) + μ(G[x,γ m(x)]H)

= [K: G[x,γ m(x)]]
−1 + [K : G[x,xh]]

−1 −−−→
tn→∞ 0. (6)
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Indeed, we only need to prove if K = ⊔
j kjG[x,y], for some y ∈ (ξ−, ξ), then

KH = ⊔
j kjG[x,y]H . Suppose this is not the case, then there exist j1 �= j2 with

(kj1G[x,y]H)∩(kj2G[x,y]H) �= ∅. So kj1k = kj2k
′h, for some k, k′ ∈ G[x,y] ≤ K

and h ∈ H . Then h ∈ K ∩ H = H[ξ−,ξ ] ⊂ G[x,y]. Thus kj1G[x,y] = kj2G[x,y],
which is a contradiction. The claim follows. Relation (6) is a contradiction of
our initial assumption |〈πσ (tn)η1, η2〉| � 0 and the theorem stands proven.

Theorem 4.14. Let F be primitive and let ξ ∈ ∂T . Let H be a closed, non-
unimodular, subgroup of Gξ , containing hyperbolic elements and let (σ, K )

be a unitary representation of H . Then the induced unitary representation
(πσ , Hσ ) on G is C0.

Proof. By Lemma 4.5, let γ be a minimal hyperbolic element of H . Fix for
what follows a vertex x ∈ Min(γ ) and set K := Gx . Apply Remark 3.13 and
then Remark 4.12, keeping all the notation there. By Lemma 3.11 and Proposi-
tion 4.10, applied to γn, we have, for every i ∈ In, k−1

i,n gnkki,n
= k−1

i,n kγnk
′kki,n

=
hi,n = γ mi h0, with 0 ≤ |mi | ≤ dT (x, γn(x))/|γ | and h0 ∈ H ∩ G0

ξ . Evaluate
now the solutions for the equation

k1gnk2 = k1kγnk
′k2 = h, (7)

for a given right coset [h] ∈ {[hi,n] | i ∈ In} ⊂ H/(H ∩ G0
ξ ) and where

k1k ∈ K and k′k2 ∈ K \ (K ∩ H). Note for any element h ∈ H , satisfying
equation (7), we have

dT (x, h(x)) = dT (x, gn(x)) = dT (x, γn(x)). (8)

Apply again Proposition 4.10. For a given right coset [h = γ m] ∈ {[hi,n] |
i ∈ In} ⊂ H/(H ∩ G0

ξ ) we have: (1) if m > 0 then k−1
1 ∈ kG[x,xm], where

xm ∈ [x, ξ ] is with dT (x, xm) = 1
2 (dT (x, gn(x)) + m|γ |); (2) if m = 0

then k−1
1 ∈ kG[x,x0], where x0 ∈ [x, ξ ] is with dT (x, x0) = 1

2 dT (x, gn(x));
(3) if m < 0 then k−1

1 ∈ kG[x,xm], where xm ∈ [x, ξ ] is with dT (x, xm) =
1
2 (dT (x, gn(x)) − |m| · |γ |). To resume, for a fixed n > 0 and for N :=
dT (x, gn(x))/|γ |, we have:∫

⊔
i∈In

f2ki,nH

	H(hi,n)
−1/2 dμ(f2ki,nH)

≤
−1∑

m=−N

∫
kG[x,xm ]H

	H(γ m)−1/2 dμ(f2kG[x,xm]H) + μ(f2kG[x,x0]H)

+
N∑

m=1

∫
kG[x,xm ]H

	H(γ m)−1/2dμ(f2kG[x,xm]H)
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= μ(f2kG[x,x0]H) +
−1∑

m=−N

	H(γ )−m/2 · μ(f2kG[x,xm]H)

+
N∑

m=1

	H(γ )−m/2 · μ(f2kG[x,xm]H).

Note by Remark 3.7 there is a constant C1 > 0 depending only on f2k, K

and the rho-function of μ, with μ(f2kG[x,xm]H)	H(γ )−m/2 ≤
C1μ(G[x,xm]H)	H(γ )−m/2, for every m ∈ [−N, N ]. Thus:

∫
⊔

i∈In
f2ki,nH

	H(hi,n)
−1/2dμ(f2ki,nH)

≤ C1

( −1∑
m=−N

	H(γ )−m/2 · μ(G[x,xm]H) + μ(G[x,x0]H)

)

+ C1

( N∑
m=1

	H(γ )−m/2 · μ(G[x,xm]H)

)

= C1

( −1∑
m=−N

	H(γ )−m/2 · [K : G[x,xm]]
−1 + [K : G[x,x0]]

−1

)

+ C1

( N∑
m=1

	H(γ )−m/2 · [K : G[x,xm]]
−1

)
.

The last equality follows because [K:G[x,xm]]−1 = μ(G[x,xm]H), for every
m ∈ {−N, N}. Indeed, we only need to prove if K = ⊔

j kjG[x,y], for some
y ∈ [x, ξ ], then KH = ⊔

j kjG[x,y]H . Suppose this is not the case, then there
exist j1 �= j2 with (kj1G[x,y]H) ∩ (kj2G[x,y]H) �= ∅. So kj1k = kj2k

′h, for
some k, k′ ∈ G[x,y] ≤ K and h ∈ H . Then h ∈ K ∩ H = H[x,ξ ] ⊂ G[x,y].
Thus kj1G[x,y] = kj2G[x,y], which is a contradiction. Note as tn → ∞ when
n → ∞, we also have gn → ∞; thus by (8) dT (x, x0) = 1

2 dT (x, gn(x)) =
1
2 dT (x, γn(x)) → ∞ when n → ∞. By hypothesis, Gξ is a closed, non-
compact and proper subgroup of G. By Lemma 2.3 applied to Gξ we have
[K : G[x,ξ ]] = ∞. Therefore we must have [K : G[x,γ 
(x)]] → ∞ when

 → ∞, and [K:G[x,x0]] → ∞ when n → ∞. Apply Lemma 4.15 below and
we will contradict our initial assumption |〈πσ (tn)η1, η2〉| � 0 and the theorem
stands proven.

Lemma 4.15. Using the same notation as in the proof of Theorem 4.14 we
have:
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(1) limN→∞
∑−1

m=−N 	H(γ )−m/2 · [K : G[x,xm]]−1 = 0,

(2) limN→∞
∑N

m=1 	H(γ )−m/2 · [K : G[x,xm]]−1 = 0.

Proof. Recall

N := dT (x, gn(x))/|γ | and 1
2 dT (x, gn(x)) = 1

2 dT (x, γn(x)) → ∞

as n → ∞. Moreover, if m > 0 then dT (x, xm) = 1
2 (dT (x, gn(x)) + m|γ |)

and if m < 0 then dT (x, xm) = 1
2 (dT (x, gn(x)) − |m| · |γ |). By Lemma 4.6

and the hypothesis H is non-unimodular we have t := 	H(γ ) =
1/[H[γ (x),ξ ] : H[x,ξ ]] < 1. As H ≤ Gξ ≤ G we also have [H[γ m(x),ξ ] :
H[x,ξ ]] ≤ [G[γ m(x),ξ ] : G[x,ξ ]], for every m ≥ 0. By Lemma 4.8, we have
[K : G[x,γ m(x)]] = [G[γ m(x),ξ ] : G[x,ξ ]] · d/k1, for every m > 0, where k1 is
the number of orbits of the edge e− in {1, . . . , d} under the stabilizer sub-
group Fe+ ≤ F . Let 0 ≤ 
(m) := �m/2 + N/2� the integer value of
(sign(m)|γ m(x)| + |γn(x)|)/(2 · |γ |) = m/2 + N/2, for every m ≥ −N .
Thus, for every m ≥ −N :

[K : G[x,γ 
(m)(x)]] ≤ [K : G[x,xm]] = [K : G[x, 1
2 (sign(m)|γ m(x)|+|γn(x)|)]]

≤ [K : G[x,γ 
(m)+1(x)]].
(9)

Let us prove the assertion (2). By Lemma 4.6, t−m/2 = [H[γ m(x),ξ ] :
H[x,ξ ]]1/2, for every m ≥ 0. By Lemma 4.7 applied to Gξ , for every 0 ≤ m we
have

[G[γ m(x),ξ ] : G[x,ξ ]] ≤ [G[γ �m/2�+1(x),ξ ] : G[x,ξ ]]
2. (10)

Using (9) and (10), the assertion (2) becomes:

N∑
m=1

	H(γ )−m/2 · [K : G[x,xm]]
−1

=
N∑

m=1

[H[γ m(x),ξ ] : H[x,ξ ]]
1/2 · [K : G[x,xm]]

−1

≤
N∑

m=1

[G[γ m(x),ξ ] : G[x,ξ ]]1/2

[K : G[x,xm]]
≤

N∑
m=1

[G[γ �m/2�+1(x),ξ ] : G[x,ξ ]]

[K : G[x,γ 
(m)(x)]]

= k1

d

N∑
m=1

[G[γ �m/2�+1(x),ξ ] : G[x,ξ ]]

[G[γ 
(m)(x),ξ ] : G[x,ξ ]]
≤ k1

d
· N

[G[γ �N/2�−1(x),ξ ]:G[x,ξ ]]

= k1

d
· N · 	Gξ

(γ )�N/2�−1 −−−→
N→∞ 0.
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Using (9), the assertion (1) becomes:

lim
N→∞

−1∑
m=−N

	H(γ )−m/2 · [K : G[x,xm]]
−1 = lim

N→∞

−1∑
m=−N

t |m|/2 · [K:G[x,xm]]
−1

≤ lim
N→∞

−1∑
m=−N

t |m|/2 · [K : G[x,γ 
(m)(x)]]
−1

= lim
N→∞

(
tN/2 · 1 +

−1∑
m=−N+1

t |m|/2 · [K : G[x,γ 
(m)(x)]]
−1

)

≤ lim
N→∞

(−N+1)/2∑
m=−N+1

t |m|/2 · [K : G[x,γ 
(m)(x)]]
−1

+ lim
N→∞

−1∑
m=(−N+1)/2

t |m|/2 · [K:G[x,γ 
(m)(x)]]
−1

≤ lim
N→∞

(−N+1)/2∑
m=−N+1

t |m|/2 + lim
N→∞

−1∑
m=(−N+1)/2

t |m|/2 · [K:G[x,γ 
(m)(x)]]
−1

≤ lim
N→∞

N + 1

2
· t (N−1)/2

+ lim
N→∞[K : G[x,γ 
((−N+1)/2)(x)]]

−1 ·
0∑

m=(−N+1)/2

t |m|/2.

As t < 1, one has limN→∞(N + 1)/2 · t (N−1)/2 = 0. Moreover,
limN→∞[K:G[x,γ 
((−N+1)/2)(x)]]−1 = 0 and

∑0
m=(−N+1)/2 t |m|/2 = 1/(1 − t1/2).

Thus limN→∞[K : G[x,γ 
((−N+1)/2)(x)]]−1 · ∑0
m=(−N+1)/2 t |m|/2 = 0.

5. The main theorem

Corollary 4.4, Theorem 4.3 and Theorem 4.14 give us the aimed result of this
article:

Theorem 5.1. Let F be primitive and let ξ ∈ ∂T . Let H be a closed
subgroup of Gξ and let (σ, K ) be a unitary representation of H . Then the
induced unitary representation (πσ , Hσ ) on G is C0.

Proof. It remains to consider the case when H is a compact subgroup of
Gξ . This is a particular case of the well-known general fact that all unitary
representations of a locally compact subgroup that are induced from compact
subgroups are C0. For the idea of the proof the reader can consult the book of
Bekka-de la Harpe-Valette [2, Proposition C.4.6].
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