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Abstract

The noncommutative Fourier transform o (U) = V~!, 6(V) = U of the irrational rotation C*-
algebra Ay (generated by canonical unitaries U, V satisfying VU = ¢?"?UV) is shown to
have the following K-inductive structure (for a concrete class of irrational parameters, containing
dense G;’s). There are approximately central matrix projections eq, ep, f that are o-invariant
and which form a partition of unity in K¢ of the fixed-point orbifold Aj, where f has the form

f =g+0(g) +0%(g) + o3(g), and where g is an approximately central matrix projection as
well.

1. Introduction

In this paper we prove that the noncommutative Fourier transform of the ir-
rational rotation C*-algebra Ay has a K-inductive structure for at least a large
class of irrationals 8 (containing concrete dense G;’s) — see Theorem 1.2. Let
us explain this.

Let & denote the collection of C*-algebras (which we regard as building
blocks) consisting of matrix algebras, matrix algebras over the unit circle,
or finite direct sums of these. By a %-type algebra we mean one that is C*-
isomorphic to an algebra in the collection . For example, the Elliott-Evans
structure theorem [3] states that the irrational rotation C*-algebra Ay can be
approximated by unital C*-subalgebras of the form M, (C(T)) & M, (C(T)),
which are in the class 4.

DEFINITION 1.1. Let o be an automorphism of a unital C*-algebra A. We
say that « is K-inductive if, for each € > 0 and each finite subset S of A, there
exist a finite number of A-type building block C*-subalgebras By, ..., B, of
A with respective unit projections ey, . .., e,, such that

(1) B; and e; are a-invariant for each j,

(2) llejx — xej|| < €,Vx € § and each j,
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(3) ejxe; is to within distance € from B;, Vx € S and each j,
@) lei] + -+ +len] = [1]in Ko(A®).

Here, A“ is the fixed-point subalgebra of A (i.e., the C*-orbifold under «).
Note that the equality of K-classes in condition (4) is stronger than simply
requiring it to hold in Ky(A). A projection e is a matrix projection in A when it
is approximately central and is the unit of a subalgebra B = M,,(C) (for some
n), and the cut downs exe are close to B for each x in any prescribed finite
subset S C A.

The rotation C*-algebra (or noncommutative 2-torus) Ay is the universal
C*-algebra generated by unitaries U and V enjoying the Heisenberg relation

VU = &m0 v.

The noncommutative Fourier transform (NCFT) of Ay is the canonical order
four automorphism (or symmetry) o given by

o(U)=V"", o(V)=U.

We will simply say ‘Fourier transform’, and drop the adjective ‘noncommut-
ative’. (The conneglion between this C*-Fourier transform and the classical
Fourier transform f is aptly expressed in terms of the C*-inner product equa-
tion o ((f, g)p) = {f, g)p as in [8], but we will not need this fact here.) The
Elliott Fourier Transform problem, which is still open, is the problem of de-
termining the inductive limit structure of the Fourier transform of the irrational
rotation C*-algebra Ay with respect to o -invariant basic building blocks con-
sisting of finite dimensional algebras and circle algebras. (Or, more generally,
in terms of type I C*-subalgebras.)

The main result of this paper is the following theorem, where ¥ is any of
the dense Gjs-sets in (0, 1) constructed in Section 2.5 below.

THEOREM 1.2 (Structure Theorem). For each irrational number 0 in the
dense Gs-set 9, the noncommutative Fourier transform o of Ay is a K-inductive
automorphism with respect to matrix algebras. More specifically, for each
€ > 0 and each finite subset S of Ay, there are three B-type building block
matrix C*-subalgebras

Bi =M, (CQ), B =M,(C), Bi=M®&oM)®*(M)®o*M),
M = My (C), for some integers €, m and n, with respective unit projections

el, e, f=g+to(g+oi(g)+a(g)
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where g is the unit projection of M with go’(g) = 0 (for j = 1,2, 3), such
that
(1) By, By, Bz and ey, e; are o-invariant,
(2) llejx — xej|l < €and|lgx —xg|l <€, forallx € Sand j = 1,2,
(3) ejxej and gxg are to within distance € from B; and M, respectively, for
allx € Sandeach j =1, 2.

Further, there exist o -invariant unitaries w and 7 in Ay satisfying the equation

e1 +wew* +zf7F = 1. (1.1)

This equation (1.1) is equivalent to condition (4) in the above definition
since the orbifold Ag has the cancellation property.

We may schematically display the K-inductive structure of the NCFT on
Ay in terms of building blocks as “e @ e @ o P o P o P o” where each bullet
e represents a o-invariant matrix algebra and the open bullets o are matrix
algebras that are cyclically permuted by the NCFT.

The notion of K-inductive is a natural extension of Huaxin Lin’s notion
of tracially AF for C*-algebras [4] to automorphisms. The one difference is
that whereas tracially AF means that there are plenty of finite dimensional
projections whose complements are equivalent to some projection in a pre-
scribed hereditary C*-subalgebra, in the case of K-inductive the complement
is required to have a rather specific structure —i.e., is required to be invariantly
equivalent to other projections of a building block nature.

We believe that a similar result can be proved for any irrational 8. Our
choice of the classes ¥ of irrationals makes our computations far more access-
ible by avoiding number theoretic complications (and helps to make the paper
shorter). A similar approach to that presented in this paper would probably also
show that the cubic and hexic transforms of Ay — namely the canonical order
3 and 6 automorphisms studied in [1], [2], [10] — are K-inductive automorph-
isms as well, with respect to matrix algebras possibly including circle algebra
building blocks. The hoped-for conclusion, then, is that all the canonical finite
order automorphisms (the only orders being 2, 3, 4, and 6) are K-inductive
automorphisms for all irrational 6.

2. The framework
2.1. Continuous field of Fourier transforms

We write U, and V, for the continuous sections of canonical unitaries of the
continuous field {4, : 0 < ¢ < 1} of rotation C*-algebras such that V,U, =
e(t)U,V;, where we have used the now common notation

e(r) 1= ¥,
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(The unitaries U;, V; generate A, for each ¢.) When dealing with a specific
irrational rotation algebra Ay we often write its unitary generators simply as U
and V instead of Uy and Vj. On the field { A, } there is a field of noncommutative
Fourier transforms o, given on the fiber A, by

o(Up) = V,_l’ o (V;) = Uy;.

Often we omit the subscript on o; and simply write ¢ since there will be no
risk of confusion.

2.2. Basic matrix approximation

We will use the following result from [9, Theorem 1.5] (a result that was
originally rooted in [8]).

THEOREM 2.1 ([9, Theorem 1.5]). Let 6 > 0 be an irrational number and
p/q > 0 be a rational number in reduced form such that 0 < q(q6 — p) < 1.
Let o be the Fourier transform of Ag. Then there exists a Fourier invariant
smooth projection e in Ag of trace T (e) = q(q6 — p) and a Fourier equivariant
isomorphism

n:eAge > M, ® Ay such that no = (X ® o')n, (2.1)

where ¥ and o' are Fourier transform automorphisms of M, and Ay, respect-
ively, given by

S(u) = v, >(v) = u*, o'(a) = b*, o'(b) =a,

where M, = C*(u,v) and u,v are order q unitary matrices with vu =
e(p/q)uv, and Ay is generated by unitaries a, b with ba = e(8")ab, where
0’ = (c6 +d)/ (g0 — p) is an irrational number in the GL(2, Z)-orbit of 6.
(Here, c and d are integers such that cp +dq = 1.)

Furthermore, given a sequence of rational approximations p/q of 0 such
that 0 < q(q0 — p) < k < 1 for some fixed number k, the projection e
is a matrix projection: e is approximately central and n(eUe), n(eVe) are
close to order q unitary generators of M, and which is Fourier invariant — the
approximations here go to 0 as g — oo.

It is easy to see that a similar result to this theorem applies for rational
approximations of 6 such that 0 < g(p — gf8) < 1 — simply by replacing 6
by 1 — 6 and using the canonical isomorphism A;_g = Ay which canonically
intertwines the Fourier transform.

Since 6 will be fixed throughout the paper, we will write e; for the above

canonical projection of trace g20 — pq, since it has positive label (or ‘charge’),
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and write e, for the canonical projection of trace pg — g6 with negative label
(see (2.3)). According to the last assertion of Theorem 2.1, we can have Fourier
invariant matrix projections of both these types.

2.3. Covariant projections

In [11] (but also somewhat evident in [8]) we showed that the Fourier invariant
projections e; of Theorem 2.1 are instances of one and the same continuous
field €(¢) of projections of the continuous field {A,} of rotation algebras such
that T(&'(¢)) = t. The relation is canonically furnished by equation (2.2) for
e; and (2.3) for its negative charge counterpart e, .

Given an irrational number ¢ and integers n, k, where n # 0, one has the
canonical unital *-morphism

Cne: Apik = Ag, {n,t(Unzt—k) = Utn’ é.n,t(vnzt—k) = th'
This map clearly intertwines the Fourier transform
Utgn,t = é‘n,to-nztfk-
For rational approximations p/q < 6 such that 0 < ¢?0 — pg < 1, we have
the projection N 5
e, =84.08(q70 — pq) € Ag (2.2)

whose trace is g% — pq. This is what we mean by saying that e; is covariant
(that it arises from the projection field &(¢) in a natural manner). We could
also write down negatively charged projections in Ay defined by

e, = vip1-o%(ab — b*0) (2.3)
of trace ab — b%0 € (0, 1), where v is the canonical isomorphism
V:Aj_g —> Ay, v(Ui—g) = Vo, v(Vi_g) = Us. (2.4)

(In the mathematical physics literature related to string theory and noncom-
mutative geometry, the Connes-Chern number —52, for a projection of trace
ab—Db?0, isreferred to as the “charge” of the projection, or that of its associated
instanton.) We will need to use the parity automorphism y of Ay defined by

y(U) =-U, y(V)=-V

because it commutes with the Fourier transform and has the nice effect of
flipping the signs of two of the topological invariants below (namely, ¥
and v,,), while preserving the others. (In fact, y is the only nontrivial of the
toral action automorphisms that commutes with the Fourier transform o.)
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2.4. Topological invariants

With Uy and Vj denoting the canonical unitaries satisfying
VoUy = e(0)Uy Vy
and the Fourier transform defined by
oUp) =Vg'  o(Ve) =Us

the following are the basic unbounded “trace” functionals defined on the ca-
nonical smooth dense *-subalgebra Ag°:

ViUV = e(=3(m +n)?)8 ™" YUy Vg) = e(—5mn)85's5,
VUGV = e(=30m +n)?)8 ™"yl (UF'Vy) = e(—5mn)85 857",
6
2

0wV = e(—Lmn)sr "1,
U (Ug' V) ( ) 2 2.5)
where 8° is the divisor delta function defined to be 1 if a divides b, and 0 other-
wise. These maps were calculated in [6] and used in [7], [8], [11]. (Sometime
0 is omitted from the notation Wfk when there is no risk of confusion.)

The functionals v/, ; are o-invariant o-traces and v,; are o-invariant o2-
traces. Recall that if « is an automorphism of an algebra A (usually a pre-C*-
algebra like A$°), by an a-trace we understand a complex-valued linear map
Y defined on A satisfying the condition

¥(xy) = ¥(a(y)x)

for each x, y in A; and we say that v is o -invariant when Yo = . (Clearly,
a o-trace is automatically o-invariant if its domain contains the identity, but a
o2-trace need not be o -invariant.) These unbounded linear functionals induce
trace maps on the smooth C*-orbifold A;”? = AZ° N A, thereby inducing
homomorphisms on K -theory v..: Ko(Ag) — C.

In [6] it was shown that {iro, Y11} is a basis for the 2-dimensional vector
space of all o-traces on AJ°, and that {yr9, Y21, Y2} is a basis for the 3-
dimensional vector space of all o-invariant o 2-traces on AJ°.

The unbounded traces v, along with the canonical bounded trace T com-
prise the associated Connes-Chern character group homomorphism for the
fixed-point algebra A7 :

T: Ko(AJ) — C°,  T(x) = (z(x); Y10(x), Y11 (x); Y20 (x), Y21 (x), Y2 (x)).
For the identity one has T(1) = (1; 1, 0; 1, 0, 0). It will be convenient to write

T(x) = (z(x); Top(x))



K-INDUCTIVE STRUCTURE 311

where

Top(x) := (Y10(x), ¥i1(x); Y0 (x), Y21 (x), Y2 (x))

consists of the discrete topological invariants of x. Indeed, in view of [6]
and [7], the values of the unbounded traces on projections, and on K¢(Ag), are
quantized, with o, ¥1; having range the lattice subgroup Z + Z((1 —i)/2)
of C; 0, ¥ range %Z; and ¥, range Z. (Cf. Lemma 2.3 below which gives
the topological invariants for the field & (¢).)

It is straightforward to check that the parity automorphism y changes the
signs of ¥r1; and rp;:

Yy = —vu1, Yy = —V¥n

and it keeps the other yj; unchanged. Thus,

Top(y (x)) = (Y10(x), =¥11(x); Y20(x), Y21(x), =¥ (x)).

The Connes-Chern map T was shown to be injective [7] for a dense Gs-set
of irrationals 6, but since Ko(Aj) = Z° for all # by [2] or [5], T is injective for
all irrational 6. This allows us to conclude that since Aj has the cancellation
property for any irrational 6, two projections e and ¢’ in Aj are unitarily
equivalent by a o -invariant unitary if and only if T(e) = T(¢’).

DEFINITION 2.2. A projection f is called flat (or o-flat), when it is an
orthogonal sum of the form

f=g+0@+0*(®)+0')
for some projection g. We call such projection g a cyclic subprojection for f

since it is orthogonal to its orbit under o and its orbit sum gives f.

Another reason we call f “flat” is because its topological invariants vanish:
Top(f) = (0,0:0,0,0).

Indeed, if  is any of the two kinds of unbounded traces in (2.5), we have (can
assume g is smooth) ¥ (g) = ¥ (gg) = ¥(o/(g)g) = 0 for j = 1,2, hence
v(f)=0.

In [11] we proved that the topological invariants of the continuous section
& (t) mentioned in Section 2.3 are given as follows.

LeEmMMA 2.3 ([11, Theorem 1.7]). The topological invariants of the projection
section & (t) are

1—i 1—-i 11
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and its trace is T(£(t)) =t for each t € (0, 1).

This will allow us to calculate the topological invariants of the canonical
projections e; and e, of Theorem 2.1 using the following lemma.

LEMMA 2.4 ([11, Lemma 3.2]). Let 6, = n’6 — k where k, n are integers.
The unbounded traces on Ay, and Ay are related by ¢, ¢ according to the
equations

Ylolne = Wi + i 588, Whtus = Wah + (=SS + 85yss,
W0 Cag =i kS gt I o ) Lr VA

0 _ qon—1_6,
¢22§",9 - 82 2%'

(Lemma 2.4 is in fact easy to check by directly working out both sides on
generic unitaries Ug' V')

Combining these two lemmas and applying them to the canonical projection
e; = £,0&(q%0 — pq), we obtain its topological invariants

Top(e,) = (SE1+(=D)?2871, (451)i a8 ™" 34361, J(—1yrsd ™" 577").

(2.6)
Likewise, the topological invariants of the negatively charged canonical pro-
jection e, of trace ab — b*6 (where a, b are coprime) are

Top(ep) = (4014 (12821, (5788 b +302, L-1ag ™ a2 ).

2.7
To check the latter invariants of e, , one uses the following relations between
the unbounded traces and the canonical isomorphism v of (2.4):

0 1-6 0 16
Yiov = (Yo )", Vv = =iy )"
0 1-0 0 1-6 0 1-0
YooV =¥y Yo v ==V s Unv =¥y,
which are straightforward to check by working them out on the unitary elements

U, Vi ,. (Here, ¥* is the Hermitian adjoint ¢*(x) = ¥ (x*).)
To verify the first component of Top(e, ), for example, we compute:

Uio(ey) = Uiy 1 o&(ab — b20) = iy ¢y 1 0% (6),

where we have written 6 := ab—b2%0 = b*(1—60)— (b*> —ab). By Lemma 2.4,
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with 0 replaced by 1 — 6, and by Lemma 2.3 we get
Uiy 516 E0) = Y1E @) + i~ DSy E D),
—i -—(b*—a —i
e A L
= L1 +i%8))
= L1+ (=128,

since if b is odd the delta term vanishes and when b is even, a has to be odd
so can be removed in the power of —1. After conjugating we obtain ¥%,(e; ),
as asserted. The other invariants of e, in (2.7) are similarly checked.

2.5. Class of irrationals G

We begin with any dense set D of rational numbers % in the open interval
(0, %) where k, m > 1. We form the following integers

n=4mk+1, q=n? s=n’+4m? p=4>*Q2n+1), r=p+2n-3,
which can easily be checked to satisfy the modular equation
ps—qr =1 (2.8)

(for any k, m). Let k3, k1 be any fixed pair of positive numbers such that
1
0<K2§§<K1<1, 1 < k1 + K. (2.9

One checks (using (2.8)) directly that the following inequality

r_pa—k stk _p (2.10)
S

q* 52 q

holds for large enough k. The left inequality holds for large enough & (spe-
cifically for k such that g/s > ki, since g/s — 1 as k — o0). (Indeed,
the left inequality holds for k such that 4k> > «/(1 — k).) The middle in-
equality holds for all k, m by virtue of (2.9), and the right inequality holds
always since kp < % (The middle inequality yields the quadratic inequality
k2x* — x + k1 > 0, where x = g/s. By (2.9), the quadratic is a decreasing
function over the interval [0, 1] and is positive at the endpoints, so it is positive
on [0, 1].)

It is easy to see that the difference 5 — fn—k goes to 0 for large k, m, hence
the set of rationals {p/q : k, m > 1} is dense in the open interval (0, 1), as
also is the set {r/s}.
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We can extend slightly inequality (2.10) to the following

2km — 1 — 2k
—22<r<pq2’(1<9<¥<£<—, (2.11)
m s q s q m

where 6 will be the type of irrational that we’ll be interested in. The leftmost
and rightmost inequalities here can be checked to hold for all k, m since they
follow from the equalities

rm* —s(2km — 1) = 4k>m* + m* + 2km + 1, 2kq — pm = 4k’m + 2k.

Of course, the remaining inequalities in (2.11) hold for large enough k, m
depending on choice of k1, k; satisfying (2.9).

The above leads to the construction of various dense Gs-sets of irrational
numbers 6 in (0, 1) for each choice of «i, k, satisfying (2.9) and choice of
dense set D of rational numbers in (O l) Such irrationals 6 possess infinitely
many pairs of integers k, m, and associated rational approximations if LL

satisfying (2.11). For example, based on the inner inequality in (2.11), one
takes a countable intersection of the dense unions of open intervals

=%.=( U (”"_“ ”;"2) (2.12)

N>1 k,m>N
k/meD

One could conceivably construct specific irrationals in the class 4.

3. Proof of structure theorem

We begin the proof with the following lemma. If B is a C*-subalgebra of A and
x € A, we use the standard notation d(x, B) for the norm distance between x
and B: d(x, B) = inf{||x — y| : y € B}.

LEMMA 3.1. Let 6 > 0 be an irrational number and M, N positive coprime
integers such that 0 < N(NO — M) < 1. Then for each t € (0, 1) N (Z + Z0)
such that 1
t < Z(N@ - M)

there exists a cyclic projection h (i.e., ho’/(h) =0 for j = 1,2, 3) of trace
t(h) =

If, in addition, there is a sequence of rationals M /N such that 0 < N(N6 —
M) < k < 1 for some fixed k, then for each ¢ > 0, there are N, M large
enough such that
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(1) |hU —Uh|l <€, |hV = Vh| <,
(2) there is a matrix C*-subalgebra I of Ay having h as its unit such that

dhUh,IN) < e, dhVh, M) < e.

Proor. Consider the canonical Fourier invariant projection e in Ay of trace
T(e) = N(NO — M) given by Theorem 2.1 and corresponding isomorphism

0 +d
n:eAge > My ® Ay, where 6’ = i
N6 — M

and c, d are integers such that cM + dN = 1. Write t = m + n6, for some
integers m, n, and let K = Mn + Nm and L = dn — cm. Then

(Mn + Nm)(c0 +d) + (dn —cm)(NO — M) t

KO +L = —
NO — M N6 — M

1
<_
4

sothat K6’ + Lisin (0, 1) N (Z+26¢’). By Theorem 1.6 of [9] (or Theorem 1.5
in [12]), there exists a o’-cyclic projection i’ in Ay of trace K6’ + L =
t/(NO — M), where ¢’ is the Fourier transform of Ay in Theorem 2.1. This
gives the cyclic projection

h=n"'Iy®h)

of trace ¢
t(h)= N(N0 — M) - ——— = Nt.

NO — M
Since the isomorphism 7 is Fourier covariant, as expressed by (2.1), the pro-
jection 4 is a cyclic subprojection of e.

To prove the second assertion of the lemma, assume we have an infinite
sequence of rationals M/N such that 0 < N(NO — M) < k < 1 for some
fixed «. In view of the second part of Theorem 2.1, given € > 0 there is N
large enough so that n(eUe) and n(eVe) are to within € of some elements of
the matrix algebra My. Then

M= "(My @) =hn~ ' (My)h

is a matrix C*-subalgebra of A, with identity element /. (So the algebra ) is
cyclic under 0.) As n(h) = Iy ® h’' commutes with My ® k', the cut downs
hUh = heUeh and hVh = heVeh are to within € of elements of J¢, hence
condition (2) holds, and |lex — xe|| < €, for x = U, V. To see that A is
approximately central, let x = U, V and write

hx —xh = h(ex — xe) + (ex — xe)h + hexe — exeh
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so that from |lex — xe|| < € one gets ||hx — xh| < 2¢ + ||hexe — exeh]||.
Further, since 1 is an isometry we get

lhexe — exeh|| = |[n(h)n(exe) — n(exe)n(h)|l

and since 7n(exe) is to within € of an element of My ® 1, with which n(h)
commutes, one gets ||hexe — exeh| < 2¢. Therefore, ||hx — xh| < 4€ and h
is approximately central.

REMARK 3.2. We point out that the proof of this lemma can be modified
slightly to give approximately central Fourier invariant projections 4 of trace
Nt (with the 1/4 factor removed from the hypothesis on ).

We now have the groundwork necessary in order to proceed with the proof
of Theorem 1.2.

Fix an irrational 6 in the class ¢ given by (2.12).

The inequalities (2.11) give three rational convergents of 6 and three re-
spective numbers

0 < 2km —m?0 < & 0 < pg —q%0 <k, 0 < s%0 —rs < k.

2 b
We are interested in the following approximately central canonical matrix
projections B B N

. e e

e 7 ;

with respective traces 2km —m?6, pq —q*6 and s*6 —rs. From (2.6) and (2.7),
we obtain the topological invariants of the last two to be

Top(e,) = (4. HHi777: 5, 5(=D". 1)
Top(ef) = (55, 15+ 5. 3 (=1, 1)

as g and s are odd. Since p = 0 mod 4 and rs = —1 mod 4 (see first paragraph
of Section 2.5), these become

and adding gives

Top(e, ) + Top(ye;) = (1,0: 1,0,0) = Top(1).
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Therefore
T(1) —T(e,) - T(ye)) = (1 0,0; 0,0, 0) 3.D

where the trace value 7 here is
0 =1-(pq—q0) = (0 —rs) = (1 +7rs = pg) = (s* — ¢7)0.
Computing these in terms of the parameters k, m, one gets
s2 — q2 = 8m>(2m* + n?) = 8m>*(16k*m> + 8km + 2m* + 1) = 4m*B

and
14 rs — pq = 4m?(64k>m + 8km + 24k* — 1) = 4m* A,

where
A = 64k m + 8km + 24k> — 1, B = 2(16k*m? + 8km + 2m> + 1).

Thus, we can write
70 = 4m*(A — B#).

We now claim that 7 is the trace of an approximately central flat projection

f=g+0(g+o%g) +0)

whose cyclic subprojection g is approximately central as well. First, it is
straightforward to check that

2ks —m(r +4) = 4k*m + 2k —3m > 0
is positive (for all k, m > 1), and that one has the equality
sA— Br=1.

These give the inequality

4mB —m s
from which we get
t:=m(A— Bb) < %(2k —mo) < 1. (3.2)
To be sure that A — B6 > 0, in view of (2.11) it is enough to see that

rs + K2
2

A
0 < < —.
) B
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Cross multiplying the last inequality here reduces it to k; < & (again using
sA — Br = 1) which holds since k, < } and ; < 3 follows from 25 =
B + 4m?.

To establish the claim just made, apply Lemma 3.1 with

N(N(1—-0)—M)=m2k —mb) =1(e,),

ie.,with N = mand M = m—2k, and witht = m(A — B6). The hypothesis of
this lemma that r < %(Zk — m@0) has already been checked in (3.2). Therefore,
by Lemma 3.1 there exists an approximately central cyclic projection g of trace

1(g) = mt = m*(A — B9).

[T 2]

The second part of Lemma 3.1 (where the “x” there can be taken to be % in
view of the inequalities (2.11) relating 6 and 2k /m) gives the matrix cut down
approximation for g. The corresponding flat projection is then

f=g+o(g +0(g)+(g)

with trace
T(f) = 4m*(A — BO) = 1,.

Therefore (3.1) becomes
T(e,) + T(yel) + T(f) = T(D).

where all the underlying projections e, el, g and f are approximately central
matrix projections. Since the Connes-Chern map T is injective we get the

following equality of classes in Ko (Ag)
le, 1+ [yef 1+ [f1=11]

as required by Definition 1.1. Since the orbifold C*-algebra A7 has the cancel-
lation property, this equation of K -classes gives equation (1.1) of Theorem 1.2
for some Fourier invariant unitaries w, z —namely, ¢, + wyefw*+zfz* = 1.

This completes the proof of Theorem 1.2 that the Fourier transform o is
K-inductive on the irrational rotation C*-algebra Ay.
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