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WEAK TYPE ESTIMATES FOR FUNCTIONS OF
MARCINKIEWICZ TYPE WITH FRACTIONAL
INTEGRALS OF MIXED HOMOGENEITY

SHUICHI SATO

Abstract

We prove the endpoint weak type estimate for square functions of Marcinkiewicz type with frac-
tional integrals associated with non-isotropic dilations. This generalizes a result of C. Fefferman
on functions of Marcinkiewicz type by considering fractional integrals of mixed homogeneity in
place of the Riesz potentials of Euclidean structure.

1. Introduction

Let B = diag(ay, ..., a,) be ann x n real diagonal matrix such thata; > 1 and
1 < j < n. Define a dilation group {A,};~¢ on R” by A; = exp((log?)%B) =
diag(t“', ..., t"). We see that |A,x| is strictly increasing as a function of ¢

on Ry = (0, 00) for x € R", x # 0, where |x| denotes the Euclidean norm.
Define a norm function p(x), x # 0, to be the unique positive real number ¢
such that |A,-1x| = 1 and let p(0) = 0. Then p(A;x) = tp(x),t > 0, x € R”,
and the following properties of p(x) and A, are known (see [2], [4], [9]):

(A) p € CZR"\ {0});

B) p(x +y) = p(x)+ p(y):

(©) p(x) < 1lifandonlyif [x] < 1;

D) x|l = p(x)if x| < I

B) x| = px)if [x] = 1;

(F) we have a polar coordinates expression for the Lebesgue measure:
(o]
rwdi= [ [ raorue doo .
R 0 Jet
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where y = trace B = Z;':l aj and p is a strictly positive C* function
on the unit sphere §"~! = {|x| = 1} and do is the Lebesgue surface
measure on S" 1.

Define a Riesz potential operator by

L(NHE) = QupE) £ ©). (1.1)

for 0 < o < y, where the Fourier transform f is defined as
fO = f@e ™ Dax, (x.6) = x8.
R ,
j=1

withx = (xq,...,x,), & = (&1, ..., &,) (see also Remark 8.1 in Section 8 for
the definition of 1,,). Let || f|| , denote the L” norm of a function f in L?(R").
Let #(R") be the Schwartz class of rapidly decreasing smooth functions on
R”". Then the following result is known (see [3, Theorem 4.1]).

THEOREM A. Let1 < p < 00,0 <a <y/p,1/p—1/q = a/y. Suppose
that f is in & (R") and supp(f) does not contain the origin. Then

1P, < CIfI, -

Define

1/2
Dy (f)(x) = ( I () x +y) — Ia(f)(X)|2P(y)_y_2“ dy) .

RIX
In this note we shall prove the following.

THEOREM 1.1. Let0 < o < 1 and pg = 2y /(y +2«). Suppose that py > 1.
Then
(1) the operator Dy is bounded on L? (R") if pg < p < 00;
(2) Dq is of weak type (po, po):

Zulgﬁp‘)l{x €R": Do (f)x) > BH = CII Sl (1.2)

where | E| denotes the Lebesgue measure of a set E.

We note that py > 1foralla € (0, 1) ifn > 2. See Remark 8.2 in Section 8
for the optimality of Theorem 1.1. When A,x = tx and p(x) = |x|, part (1) is
dueto Stein [21] and part (2) is stated in Fefferman [10], a proof of which can be
found in Chanillo-Wheeden [5]. The proof of [5] uses properties of harmonic
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functions by extending I, (f) as a harmonic function on the upper half space
[R’f’l = R" x (0, 0o) and results are stated in weighted settings. Also, see [20]
for results related to part (1) with A, = diag(¢, ..., t,t?),y =n+1,n > 2.

In 1938, a square function, now called the Marcinkiewicz function, was
introduced by Marcinkiewicz [12] in the setting of periodic functions on
R!, which can be used to investigate differentiability of functions and char-
acterize function spaces including Sobolev spaces. A generalization of the
Marcinkiewicz function to higher dimensions can be found in [21], where
also D, (f), a variant of the Marcinkiewicz function, is considered when
p(x) = |x|. We refer to [1], [11], [15], [16], [17], [18] and [19] for relev-
ant, recent results on the relations between functions of Marcinkiewicz type
and Sobolev spaces.

To prove part (1) for p € (po, 2], we first prove L? boundedness of D,
by applying the Fourier transform and the result for p € (pg, 2) follows from
the Marcinkiewicz interpolation theorem between the L? boundedness and the
weak type boundedness of part (2).

The proof of part (2) we give in this note is motivated by the proof of the
weak type estimate for the Littlewood-Paley function g5 in [10]. The proof
in [10] uses some properties of the Poisson kernel

‘ T+ 1/2)

Plx,1) =c, (|x|2 + 12)(mn+D/2 o = gm+h/2 7

associated with harmonic functions on the upper half space [R{’JFH (see [23,
Chapter I]). One of them is related to the formula

/Oo Pox f0)* dt = T(@) Lo (f) (%), (1.3)
0

where T, £ (£) = @ |E) " (&), P,(x) =" P(x/1) = P(x, 1), with P(x) =
P(x, 1). Also, some regularities on P (x, t) are used, although properties of
harmonic functions, like that applied in [5] to prove the special case of The-
orem 1.1(2) mentioned above, are not used in an essential way. In proving
Theorem 1.1(2), we are able to successfully generalize the methods of [10]
for the estimate of g} to the present situation, where results from differential
equations, like those connected with harmonicity, are not readily available. Our
proof of Theorem 1.1(2) in this note is new even in the case of the Euclidean
norm setting.
To prove part (2) of Theorem 1.1, we consider the function K defined by

K(x) = / e 2mPE) 2milxE) g (1.4)
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as a substitute for the Poisson kernel P (x) and consider the function K, * f (x),
where K;(x) = t*VK(Aflx). Then we have an analogue of (1.3) for the
general 1, (f) in (1.1) (see (4.3) below). Also, we have some results analogous
to the regularities for P (see Lemma 3.1 below). We shall apply these results
to estimate the bad part arising from the Calderén-Zygmund decomposition
derived from the Whitney type decomposition of open sets in homogeneous
spaces (see [6], [7]). To treat the good part we shall apply the L? boundedness
of D,.

In Section 2, we shall state the Calderén-Zygmund decomposition of f €
LP(R"), 1 < p < oo, at height 87, § > 0, needed for the proof of The-
orem 1.1(2). Some properties of functions related to K in (1.4) will be shown
in Section 3.

We shall prove the L? boundedness of D, in Section 4. part (2) of The-
orem 1.1 will be shown by applying the L? boundedness and the Calderén-
Zygmund decomposition in Sections 4 through 6. We shall show part (1) of
Theorem 1.1 for p > 2 in Section 7 by proving weighted L? estimates for D,,
with A|-weights. Finally, we shall have some concluding remarks in Section 8.

2. Results for the Calderon-Zygmund decomposition

For x € R" and r > 0. Let B(x, r) be the ball centered at x with radius
r defined by p: B(x,r) = {y € R" : p(x — y) < r}. Then we have the
following (see [7] and also [6]).

LEMMA 2.1. Let O be an open bounded set in R" and N > 1. Then there
exists a sequence {B(c;, rj)};2, of balls for which we have:

(1) 0= U;’il B(cj, rj);

(2) there exists C > 0 such that Z;; XB(;.Nr;) < C, where xg denotes the
characteristic function of a set E;

(3) there exists C; > 1 such that B(cj, CiNr;) N (R"\ O) # {.
Applying this we can prove the next result (see [6]).

LEMMA 2.2. Let B > 0, f € L?, 1 < p < 00. Suppose that f is compactly
supported. Let N > 1. Then there exists a sequence {B(c;, r;)};2, of balls
such that

() X xB;.nry < C;

(2) 12 < CBPIfIIE, where @ = J;Z, B(cj, 1));
B) If()] =CB,ifx € R*\

4) |B(cj, rp|™! fB(Cj’,j) [f ()P dx < CBP.
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Proor. Define the Hardy-Littlewood maximal function

1

M(f)(x) = sup — / )] dy,
X€EB |B| B

where the supremum is taken over all the balls B which contain x. Let
Q={xeR":M(fI") > p"}.

Then €2 is open and bounded. Clearly, we have part (3). By Lemma 2.1 with

Q2 in place of O, we have a sequence {B(c;, rj)}j?’il of balls as in Lemma 2.1.

So we have part (1). Also, part (2) holds true since it is known that M is of
weak type (1, 1).
By part (3) of Lemma 2.1, there exist h = C{N > 1 and y € R" \ @ such
that y € B(cj, hr;). Thus
1

— | f)IPdx <h"M(|fI”)(y) < h"B?,
|B(cj, )| JBic;ry)

which implies part (4).
Lemma 2.2 is used to prove the following (see [6]).

LEMMA 2.3. Let B, f € L?, p, N and {B(cj, Vj)}j'il be as in Lemma 2.2.

Then there exist a bounded function g and a sequence {b;};2, of functions in
L? such that

() f=g+ 272 b

(2) g0 =CB;

3 lgl, =Clfl,

4) bj(x) =01ifx € B(cj, 1)) forall j, where E¢ denotes the complement
of a set E;

(5) [bj(x)dx =0forall j;

©6) Ibj115 < CBPIB(cs. )| forall j;

(7 2721 IB(cj, )| < CBPIfIID.

ProoF. Define a function /; on R" by

XB(c;.r) (%)
%) )
D=1 XBer) (X)

and h;(x) =0, if x € Q°, where Q = U;il B(cj, r;). Let

hj(x) = if xeQ,

e ¢]

1
8(x) :Z<|B<cj,r,~>|

j=1

S hi(y) dy>XB<cj,rf>(x) + f(0) xqe(x)

B(cj.rj)
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and

1

bi(x) = hj(x) =
j(X) S(x) J(X) (|B(C],r/)| B(cj,ry)

FOh;(y) dy) XB(c;.r) (X).

Then by the definitions and Lemma 2.2 we easily have the assertions (1)
through (6). Also, since {B(c;, r;)}72, is finitely overlapping, by part (2) of
Lemma 2.2 we have part (7). This completes the proof.

3. Some estimates for Fourier transforms

In this section we prove some estimates for the Fourier transform of the function
e~271P®) and its derivatives needed in proving Theorem 1.1.

LEMMA 3.1. We have the following estimates:

K@) < C(1+p) 77 G.D
where K is as in (1.4),

Q)| < CA+p)7 7, (3.2
where O(x) =— / 2rp(E)e PO TNE) g

£ o2 ®) 28 g
[er

< C(+ px)) 7, l<k<n, (3.3)

amawhmkhmﬂdﬂscu+pu»ﬂ*ﬂh1sksn,(3@
Rn

Ek%-[e*hp(é)ez”i(x,é) d&
Rﬂ

<C+p@) 7174 1<k t<n. (3.5

To prove this lemma we need the following two estimates for the derivatives
of functions involving homogeneous functions (Lemmas 3.2, 3.3).

LEMMA 3.2. Let b = (by, ..., b,) be a multi-index of non-negative integers
bj, 1 < j < n. Let H be homogeneous of degree m € R with respect to the
dilation A; with H € C*(R" \ {0}). Then we have

10" H (&) < Cop&)" P, & e R"\ {0},

where 3" = 87" ... 8P with ; = 3/0&; and a = (ay, .. ., ay).
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Proor. Differentiating in &’ both sides of the equality
"H(E) = H@t"Eg[, ..., t"E), >0,
which follows from the homogeneity, and putting t = p(§), & = A;(lg)é €
St=1 we get the estimates as claimed.

LEMMA 3.3. Choose ¢ € Cg° such that ¢(§) = 1if p(§) < 1/2 and
supp(¢p) C B(0,1). Let F € C®(R). Let e, =0o0r 1,1 <k <n,m e R
Then we have

18° G E¢ P ()" F (0 (€)@ ()] < Cpp ()" Faatanmiod,

Proor. Applying Lemma 3.2 with H = p, we observe that

18°(F (p(£)p(£))] < CppE)' =P, b #0. (3.6)

By Leibniz’ formula we have

3" (§&( 0 (E)"F(p(€)e(§))
= Y Cow[d"EE pE™M][” (FpE)eE)].

b+b"=b

Since S(§) = &£, p(§)™ is homogeneous of degree exax + €,a, + m, by
Lemma 3.2 and (3.6) we see

B2 (SEF(pE)eEN < Y. Cyar

b'+b"=b
< Cp (é)m+€kak+€ﬂw*<a,b)

4 C Z p(S)m+6kak+65a[7(a,b/)p(%-)17((1,[1”)’

h/+h//=h,
b”;é()

3" S(&)[|0” (F(p(€)g(&)))|

for & € B(0, 1) \ {0}. This completes the proof.

Applying Lemma 3.3 and integration by parts, we can prove the following
estimate, from which Lemma 3.1 readily follows.

LEMMA 3.4. Let G(§) = §°6, p(§)" F (p (&))@ (&) be as in Lemma 3.3. We
assume that m > —y. Then

/ G(£)e¥ 88 dg| < C(1 4 p(x)) ™7 ~mewm—ear
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Proor. Let ® € C3°(R,) be such that supp(®) C {1/2 <r <2}, >0
and Y%, ®(2/p(£)) = 1 on B(0, 1) \ {0}. Decompose

[ c@emeaas =y 20 [ Gl e @pene e as,
n J:() n
We write x = A,x’ = (p(x)4x], ..., p(x)%x) with x’ € S"~!. We may
assume that |x{| = max;<;<, IxJ’. | without loss of generality. Then applying
integration by parts

2_”’/ G(Ay-1§)P(p(§))e sl ds‘

<car Y- f 2 | G (Ayi8) |01 D (p(E))] (27 p(x)) " d.

h=h'+h"

By Lemma 3.3 with b = (%, 0, ..., 0), we have

2-Jv

/ G(ArH)P(p(§)eri ) dg‘

< c2 Y / 2—ja1h'z—j(m+€kak+€eaz—h’al)2jhalp(x)—hal dg
h=h'+h" 1/2<p(§)=<2

< C2j(ha1_m_€kak_€i,a(/,_)/)p(x)—hal ]

Thus if ha; —m — €ar — €pag —y > 0, p(x) > 1,

Z =iy
0<j<log, p(x)
< Cp(x) Z 0 (hay—m—e ar—ecar—y) 3.7
0<j<log, p(x)

S Cp (x)—m—ekak—qa@—y .

/n G(Ayi§)D(p(§))e™ i) g

Also, by Lemma 3.3 with b = 0 we see that

Z =iy

Jj>log, p(x)
< C Z 2](—m—€kak—éeae—y) (3_8)

Jj>log p(x)

S C,O (x)—m—ekak—ezag—y .

/ G (Ar-1£)® (p(§))e? ! A rx)dé
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Combining (3.7) and (3.8), we get the desired result, since the estimate for
p(x) < 1is obvious.

PrOOF OF LEMMA 3.1. Let ¢ be as in Lemma 3.3. Decompose

e 2PE) — 27 p(E)A(=27p ()@ (&) + (&) + e TP E (1 — (8)),

where A(s) = (¢ — 1)/s. To prove (3.1), it suffice to show that

/ " p(EVA(=2mp(E)@E)e?™ 8 dg| < C(1 + p(x) V7,

which follows from Lemma 3.4 with m = 1, ¢, = 0 and ¢, = 0. The other
estimates can be shown similarly by applying Lemma 3.4 suitably.

4. Outline of Proof of Theorem 1.1 for p € [py, 2]

We first prove L? boundedness of D, for 0 < a < 1. (We notice that more
general weighted estimates will be shown in Section 7; see Proposition 7.1.)
By the Plancherel theorem we have

1D ()] = /R p(y) (fR ())& + ) = L(H)[ dx) dy
= / ” p(yrH“( l@me@) i e - 1)\2ds) dy
=en™ | |f(s>|2( /R e 1 pyy dy) d,
where £ = A~ L &. By (D) of Section 1 we have

iy, 2 —y— Yy
/ [0 =1 ()T dy < f 4mp(y)p(y) " dy < oo,
p(N=1 p(»=1

since o < 1. Also, we have

/ |20 1P p(y) 72 dy < / 4p(y) 777> dy < oo,
Pz =1

for @ > 0. Combining results, we see that

ID(HI3 < CIFI3=ClfI3,

which proves the L? boundedness.
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To prove (1.2), we may assume that f is bounded and compactly supported.
Let > 0, po =2y /(y +2a). We apply Lemmas 2.2 and 2.3 with these f, 8
and with N = 2, p = po. Then we have the sequence {B(c;, r;)};Z, of balls of

Lemma 2.2 and the decomposition f = g+ b, b = Z;’il bj, of Lemma 2.3.
It suffices to prove

{x € R" : Da(8)(x) > BY < CB~ | flI}y 4.1

and

{x € R" : Do (b)(x) > B} < CB~™ I fl - 4.2)

The estimate (4.1) easily follows from the L? boundedness of D,, as follows. By
Chebyshev’s inequality along with (2) and (3) of Lemma 2.3, since 1 < pg < 2,
we have

[{x € R" : Do(g)(x) > B} < B2 Du()l3
<CBliglz < CB™lglie < CB~™IIfIR.

It remains to prove (4.2). Let K be as in (1.4) and
vix,t) = K, xb(x), V(x,t) =K, *I,(b)(x).
Then

V(x,t) = ﬁ /OOO v(x, t+5)s* ' ds. 4.3)

We have

1o (B)(x + y) — Lo (D) (x)]
=V +y, p(0) — Lu(d)(x + )| (4.4)
IV, p(0) = LB+ V(X + 3, p(0) = Vx, p(M)I.

Let

IO =T@? [ [V ol =) = LG oy — )7 dy,
[Rll

JO@) =T@)? | |V, p(y —x) = L(B)@)|*p(y —x) 7 dy,
Rll

I9@) =T@? | V. p(y—x) = V. p(y — )’y — x)77 > dy.
[Rn
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By (4.3), we can rewrite

00 p(y—x)
J P (x) =/ / dt/ dov(y,s +0)1* ' ds
n1JO 0

o8] p(y—x)
JP(x) :/ / dt/ dov(x, s +1)t* tds
n1J0 0

where ) = 9/0s. Let Q) = Uj B(cj,2rj), 2 = Uj B(cj, 4rj). Since |Q2;| <
CB=Po | fl|£e bos by (4.4), the estimate (4.2) follows from the inequalities

2
p(y —x)7V 2 dy,

2
p(y —x)7 " dy,

/ JV@)dx < CB™ | fII%, (4.5)

25

/ J@@)dx < CBF™ | fII%, (4.6)
25

/ JPxydx < CB™ N fI1R. (4.7)
25

This will prove part (2) of Theorem 1.1. As mentioned in Section 1, part (1)
for p € (po, 2) follows by the Marcinkiewicz interpolation theorem between
the estimate in part (2) and the L? boundedness. This will complete the proof
of Theorem 1.1 for p € [po, 2].

We shall prove (4.5), (4.6) in Section 5 and (4.7) in Section 6.

5. Proofs of the estimates (4.5) and (4.6)

We first prove the estimate (4.5). Let x (r) = x(0.17(r)- Then

TV () = f// (p(y—x))

x(?)lt — s Bu(y, 1) di ds

2
p(y —x)7 " dy.

We have
tAp(y—x)
f (t — ) ds = Wo(t, p(y — X)), (5.1)
0

where |
Wolt,s) = —(t% = (t — (t A9)Y), t,5>0,
o
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with a A b = min(a, b). We note that W, > 0 and fooo We(t, 1)dt/t < oo
when 0 < o < 1. Using (5.1), we write

2

TV = ply —x) 7 dy.

o0
| Wt o3 = xpucr
R [J0
Define v;(y, t) = b; * K,(y) and B; = B(cj, r}), Ej = B(cj, 2r;). Let

TO(x) = p(y —x)7 2y,

/ W, p(y —x)) Y dov;(y, 1) dt

J: yeB‘

where ) j:yeie means that the summation is over all j such that y € EIC similar
yeB; ,
notation will be used in what follows, and let

13" x) =T (@) f ‘ > Koy

jiyeB;

p(y x)V T dy.

Then JO < 2]1(1) + 27D since
o0
/ Wo(t, p(y — )dou(y, 1) dr
0

/ Wo(t, p(y =x)) D Bov;(y, 1) d1

J: yeB‘

/ Welt, p(r =) Y (0, 1)

j}GB

= [t otr -0 X awtrnar
JyeB‘
+ Y (Koo * La (b)) = La(b) ().

j:yeﬁj
To estimate J 1(1), we show that

| Z 3ovj(y,t)\ < CB/t.

jiyveBs
This can be seen as follows. Let E(x) = (1 + p(x))~”~'. Note that if y € ch

supE;(y —2)<C 1nf E:(y —2).

Z€B;
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Therefore, by Lemma 2.2(1), Lemma 2.3 and (3.2),
scrt Y swEG -2 [l

‘ > dovi(y. 1)
~.2€B;

J: veB‘ JiyeB;

<Cr™' )" (sup Ei(y — 2))BIB;

Z€B;

..~ RC
J-}ij

<ct'p ) / x8, ) E(y — 2)dz

j:yeE/’.’
Ct 'BIE|;.
Thus

[ W6 -50 X gt

<Cﬁ/ Wa (2, p(y—X))—

J: veB‘
= CBp(y —x)“/ We (2, 1) T’
0
and hence
/ IV (x) dx
< C,B/ / ( Wo(t, p(x)p(x)~" “dx)‘ > dovj(y. )| dydt.
n [RVI EB(-
We note that
Wo(t, p(x)px) 7 dx = [ We(l, p(x))p(x)""*dx < o0,
RIZ RIZ

if 0 < o < 1. This implies that

/ JP(x)dx < CB //
o .

Since [b; =0,if y € E;, by (3.4) and Taylor’s formula we see that

dydst.

Z dov; (y, 1)

eB‘

180v; (v, ) =t Q% bj(y)| = 17" / (Q:(y —2) — Q:(y — ¢)))bj(2) dz

<czt—1 S+ =) T / |z = epilIb; (@)l dz

k=1
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=

IA

ar ,—1—a;— - —y—1l-a
C rj"t I—a V(l—{—t l,o(y—cj)) v k/ |bj(z)| dz
k=1 B;
. ax —a _ —y—1l—a
CBY ri (1 + 1 oy —c)+r)) " Bl
k=1

A

where the penultimate inequality follows from the estimate |x;| < Cp(x)%.
Therefore, [g, J 1(1) (x) dx is bounded by

Ccp? Z|B |fo . rie I (14 l(p(y—c])+r]))_y_l_akdydt.

It is easy to see that the last integral is equal to
// L+ 077 %(p(y) + D77~ dydt.
[R1+l
Thus, by Lemma 2.3(7) with p = py, we have
/ IV (x)dx < CB? ZIB | < B ILIR. (5.2)
Next, we evaluate J, @) . By Lemma 2.2(1), we see that

2
p(y —x)" 2 dy

<Ccy / |MIub)) ()P (y — x) 77> dy.
Letx € Q5. Then by the L? boundedness of the maximal operator M, we have

L) <CY plx—cp) 7 f |M (1) (»)* dy

j B(cj,2rj)
<CY plx =) T Lubj 3
J
So, from Theorem A and Lemma 2.3(6) with p = py it follows that

B <CY ple—ep) T biln, < C Y plx — ) BBy
- .
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Consequently,

/ LY @)ydx < CB Y |B,~|2/P0/ px —c)) " dx
2 j P

(x—cj)=4r;

< CB* Y |BjIPmr
J
<CB* ) IBjl,
j
and hence Lemma 2.3(7) implies
[ aveax < e, 53)
2

The estimate (4.5) follows from (5.2) and (5.3), since J( < 2]1(1) + 2]2(1).
Let us prove the estimate (4.6) next. In the same way as in the case of J (),
we can write

JP(x) = /
[Rn

Interchanging the order of integration on the left-hand side of (4.6), we have

/ JP(x)dx
s

-J. s

For x € Qf, we note that dyv(x, 1) = ) 5 dovj(x, ). Thus we can prove
J

2
p(y —x)7 " dy.

/ Wa(t, p(y —x))30 K, % b(x) dt
0

2
p(y —x)7" " dxdy.

foo W (t, p(y — x))dov(x, 1) dt
0

(4.6) in the same way as (5.2).

6. Proof of the estimate (4.7)
We note that
Vix+y,p(y)—Vx, o)

1 o0
= m A (f * Kt+p()’)(x + y) — f * Kt—i—p(y)()C))[a_l dt.

Thus we have

JV(x) = /
[Rn

/oo(b * K (y) — b * K;(x))

0

p(y—x))
1

2

dt| p(y —x)7V > dy.

'U—p@—xW‘x<
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Let

Aj(x,y) = /0 (/(Kt(y —2) — K;(x —2))bj(2) dz)
= ply — 0y (M) dr,

with y € EJC By (3.3) and Taylor’s formula, if z € B; and p(x — y) <t we
have

IK:i(y —2) = Ki(x — 2)|

=C Z e = xele ™7 (141 p(y — cj))_y_l_ak
k=1

A s —Ak—Y —1 —y—l-a
fckZ:]:p(y—x)*t ”gj(lﬂ p(y —2)) -
Therefore if p(x — y) < t, by Lemma 2.3(6),

’ / (K (v — 2) = K/ (x — )by (2) d

< CIB Z’O(y _ x)letaky/ (1 4 fl,o(y _ Z))—y—l—ak dZ,

k=1 B;

and hence Lemma 2.2(1) implies that

2

n

<CB)Y Ciply —x)"1™

/(Kt(y —2) — Ki(x —2)bj(2) dz

jiyeBs k=1
with Cy = fRn(l + p(2))"7 "% dz. Consequently,
- o a—1
> i = €Y Ciptr - [ (= pr—0) T ar
k=1 p(y—x)

j:yeEf
= Choty =0 (G [ = e,
k=1 !

Thus we have
> 1A )] < CBp(y — %)% (6.1)

JiyeBs
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Let J' (x) be

[ fo S (0 — vy, 1)
E

N T 3 (M)dt
and let

2
p(y —x)77 " dy

12 (x) = I(a)?
RH

D Kooy * La(b)(y)
Jebi — Ky * L (0) (%)

px —y) 77 dy.

Then J® <272 + 272 . From (6.1) we see that J\*’ (x) is majorized by

/ 2 W0 = v, 0)

R —
B (—p(yt x)>dt

Let

p(y —x)"""*dy.

R, y,x,2) =K (y —2) — K:(x — 2).
Then
vi(y, 1) — vj(x, 1) =/R(t, Y, X, 2)bj(2) dz
= /(R(t,y,x,z) — R(t,y,x,¢;))bj(2) dz.
By (3.5) and Taylor’s formula, we have
|R(t,y,x,2) = R(t, y, x, ¢;)|

<CY Y pla—e) plx — P74 U417 p(y — ) 77T

k=1 (=1

ifze Bi,p(x—y)<tandy € Ej".Also, we note that

/ p(xX) VT — p(x)|* (@) d

_ g / ()7 (L = p ()™ dx.
px)<l1
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Using these results and Lemma 2.3(6), we see that

/ I (x) dx
Rn

<Y [ B (e =)y

k=1 (=1 + j:yegjq
n n
g _ —y—1—a;—
< CﬂZZZZIBAf/WHr;‘w yma T (1 () 4r)) T M dy i
k=1 (=1 | +

The last integral equals
J[ s o) ¢y ayar,
Rrrrl
Thus, by Lemma 2.3(7) with p = py we have
[ aPwax = cg sy (62)
1 - po* .
We next evaluate J2(3). We note that

|Kp—y) * Lo (b)) ()| < CM(Isbj)(y), for w=y,x.

Therefore, if x € Qf and pp = 2y/(y + 2w), using the Schwarz inequality
and Lemma 2.2(1), we see that

2
p(y —x)77 " dy

Py <c / ‘2 XBie,.2r) ()M (Ieb)) ()
R” .
J

<Ccy |M (Lb)) () Pp(y — x) 77 2 dy
] B(cj,er)

<CY plx—c) "™ f |M (Ib))(y)* dy.
j B(cj,2rj
Consequently, the L? boundedness of the maximal function M, Theorem A

and Lemma 2.3(6) with p = po imply

I @) <CY ple—ep) T biln, < C Y pl — ) BB
J J
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Thus, applying Lemma 2.3(7) with p = pg, we see that

| Pwar ey g [ plx — )72
Q(:

5 j p(x—cj)>4r;

< CY BB ror; (6.3)
J

<CY BBl <CBIfIL.
J

Combining (6.2) and (6.3), we have (4.7).

7. Proof of part (1) of Theorem 1.1 for p > 2

Let A, be the weight class of Muckenhoupt consisting of those weights w
which satisfy M (w)(x) < Cw(x) a.e. Applying the methods of [8] we prove
the following.

PROPOSITION 7.1. Let w € Ay. Suppose 0 < a < 1. Then we have

”DDl(f)”Z’u) E C ||f||2,u) ’

where || f ||, ,, is the normin L3, defined as || f 5., = ([ | f () [Pw(x) dx)'/.
Let ~ |
om(z) = /(271,0(5))“"q>(2’"p(§))62ﬂt(z,$> de

with @ € Cy°(R4) which is identically 1 on the support of ®, where ® is as
in the proof of Lemma 3.4. To prove Proposition 7.1, we need the following.

LEMMA 7.2. The estimates
|om(2)] < Cp(2)*77, (7.1)
1850m ()] < Co(2)* "™, 1<s<n, (7.2)
hold with a positive constant C independent of m € Z (the set of integers).

Proor. To prove (7.1), we write

Pn(2) =277 / Q2mp(E) ™ D(p (€)™ =) de.

From this we easily have (7.1) when p(z) < 2™. Suppose 2" < p(z). Then
we can prove (7.1) in the same way as (3.7) by applying integration by parts.
The estimates in (7.2) can be shown similarly.
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PROOF OF PROPOSITION 7.1. We may assume that f € & (R"). We also
assume that > 0 ®(2/p(&)) = 1 for & € R" \ {0}. Define the operator A j

j=—00
by
A (f)E) = @QIpE) f(&), for jel
Let

T (f)(x) = ( > f X225 p())
k=—00

172
NI (A ) + ) — Ia(Aj+kf)(X)|2p(y)7y72a dy) .

Then we have
o0

Dy (f)(x) = Z T;(f)(x). (7.3)
j=—00
If we put S; = {27771 < p(&) < 27/}, the Plancherel theorem implies

ITHB=C Y [ana@ ponem) 7

k=—o00

: ( / 1f@PpE) 1 — e2”f<>‘f>|2ds) dy. (1.4
Sjtk
If 28 < p(y) < 2F1 & € S; 14 and j > 0, we see that
1= <21y Iyl <C Y p pE)™ <C Y 277 <c2.
=1 =1 =1

Also, |1 — ez’”@"f)l < 2. Therefore by (7.4) we have

I;(HI3 <C Y €2 min(1,27%) / |f &) dg

k=—o00 Sjtk (7.5)

< C2%%min(1,27%) || £12,

where the last inequality follows from the bounded overlap of {S;} and the
Plancherel theorem.
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Next, when 2% < p(y) < 2K+l we decompose
Io(Aj Y +y) — 1o (Aj i f)(x)

= /p(z)zz'f“ (D42 = ¥) = Pjr(@)) Ajr f (x + 2) dz 06

+ / (Bj+x (@ = ¥) = Pjr(@)) Ajr f (x + 2) dz,
p(z)<2k+2

where p,, is as in Lemma 7.2.
If 28 < p(y) < 2" and p(2) = 2¥2, by (7.2)

Pk @=) =P @ < C Y Iyelp@ 7T < C Y p(n)“p )T
=1 =1

By this and an elementary computation concerning the maximal operator M,
we see that the first integral on the right-hand side of (7.6) is majorized by

cy 2k f PRV A 1 f (x + 2)|dz < C2M(Aj 14 f)(x).
=1 4

(Z)sz+2

Similarly, if 2¥ < p(y) < 2%*!, (7.1) implies that the second integral on the
right-hand side of (7.6) is bounded by

/ @Ay D)z
p(z)<2k+

+ - PN Ak f (x + )] dz
p(2)=<

< C2YM(Aj )(x + y) + C2M(Ajy ) (x).

Using these estimates in (7.6), we see that

o (Ajsx £)(X + ) — Lo (Aj i £)(X)]
< C2M(Aj 1 )(x +y) + C2*M (A4 ) (x)

when 28 < p(y) < 2k+1,
Thus

T (f)(x)?

=C Y [ aua@ pon M@ G4 M W) dy
k=—00
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and hence, if w € A,

f T;(f)(x)*w(x) dx

<C > ( IM(Aj ) f )M (w) (x) dx

ko0 R”

+ |M(A,-+kf><x>|2w(x>dx)
[Rn
<C Y | 1A f@PwE) dx,
k=—00 R

where the last inequality follows from the defining property of the A weights
and the L2 boundedness of M with w € A;. Thus the Littlewood-Paley in-
equality in L2 implies

1T (2w = Clfllgw - (1.7)

Interpolating between (7.5) and (7.7) with change of measures, and noting
that for any w € A there is § > 0 such that w'*? € A, we have

1T (Nl < €27V £,

withsomee > Oforw € A},if 0 < o < 1. This implies the desired inequality
in Proposition 7.1 via (7.3).

Now we can prove part (1) of Theorem 1.1 for p > 2. Choose a non-negative
function g such that [|g|l(,», = 1 and | Do (NIl = [ |Da(f)(x)[*g(x) dx,
where (p/2)" denotes the exponent conjugate to p/2. For s > 1, let M(g) =
M(g*)'/*. Then g < M,(g) a.e. and it is known that M,(g) € A;. Thus by
Proposition 7.1 we have

f Da(f) () Pg(x) dx < / |Da(F)(0) M (8) () dx
<c / £ () 2M, () () dx.

Applying Holder’s inequality to the last integral with 1 < s < (p/2)’, by
L?/2" boundedness of M, we see that

f |Do(f)(0)1Pg(x) dx < C I FI15 IMs(Dll(pyy < C IS

Combining results, we can get the desired estimate.
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8. Remarks
We conclude this note with three remarks.

REMARK 8.1. Let 0 < o < y. The Fourier transform of 27 p(£))™* is a
function %, (x) which is homogeneous of degree a — y with respect to A, and
lies in C*°(R" \ {0}) (see [3] and [13, Chapter 1]). Thus we have

L(NHx) = | Z(x—2)f(@)dz, [feFR.
[Rn

REMARK 8.2. Let 0 < a < 1, po = 2y/(y + 2«) and py > 1 as in the
hypotheses of Theorem 1.1. Then, if 1 < p < pg, D, is not of weak type
(p, p). Since Dy, is bounded on L?(R"), by taking into account the interpola-
tion of Marcinkiewicz, to show this it suffices to prove that D, is not bounded
on L”(R") when 1 < p < po.

To see this, we prove that if D, is bounded on L?(R") with 1 < p < 2,
then p > po. Let A(x) ={y € R" : 1/2 < p(y —x) < 1}. Let n be anon-zero
element in % (R") with supp(n) C {a < p(&) < b} for some a, b > 0. Then

12
Da()(x) > ( /A ) - 1a<n><x>|2dy)

1/2 1/2
> (/ | Lo () (x + y)lzdy> - (/ Ila(n)(X)lzdy>
A(0) A0)

1/2
= </ [1o, (1) (x +y)|2dy> — A" L () (x)].
A(0)
Therefore
12
(/ L (M) dy) < Dy(n)(x) + Cl1u () (x)]. (8.1
A(x)
We have

r/2 /2
(f |1a<n)(y>|2dy) <c / (/ |1a(n><y>|2dy> dx  (82)
n n Ax)

Let S(x,r) ={y e R" : |x —y| < r}forx € R" and r > 0. To see (8.2),
we consider a covering of R": [J7Z, A(xP) = R, for all x) € S(cj, 1),
Jj=12,...,where S(cj, T) N S(ck, T) =W if j # k. Then we see that

) r/2 © ) p/2
Iy d < Iy d
(Rn| )] y) <;(/A o DO y)

1
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for all x) € S(cj,1),j=1,2,...,since p/2 < 1. It follows that

r/2 o0 p/2
(/ |1a(n>(y>|2dy> <Y inf (/ |Ia<n>(y>|2dy)
" i xDeS(e;,r) \JAxW)
o p/2
<oy [ (/ |Ia<n><y>|2dy) dx
=1 78,0 \NJAW)

p/2
scff (/ |1a<n><y>|2dy) dx,
\JAw)

which proves (8.2). By (8.1) and (8.2), we have
(Ml = C I Da(l, + C [l L], -
Thus if [|Dy(m)|l, < C lInll,, we have
(Ml = Clinll, + C L, -
Using this with 7, in place of n and homogeneity, we readily see that

t2V2 < crvtv/e oty p=h < oy AY/p

for all t € (0, 1), which implies that p > 2y /(y + 2«) as claimed.

REMARK 8.3. Define the Littlewood-Paley function

00 AN
gQ<f)(x)=</0 |Qt*f(x)|27) ,

where Q is as in (3.2). Then it is known that

callfll, =lgoDlp =ec2lifll,, 1<p<oo,

with positive constants c¢i, ¢, independent of f (see [14]). Also, we can show
that
8o(f)(x) < CaDu(f)(x), 0<a<l, (8.3)

for f € S (R"), similarly to [22, p. 162, 6.12], which implies the reverse
inequality of ||Da(f)||p <C ||f||p in part (1) of Theorem 1.1.
Here we give a proof of (8.3) in more detail for completeness. Let

Un(x,1) = K % L,(f)(x) = f fE)QrpE)) e mr©2mitE) g
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where K is as in (1.4). Then

I Uq(x, 1) = f FE)@mp (&) e 2mr®)2milx8) g,
where dy = d/9t, and
/:o 8§Ua(x, t+s)s %ds
= ( fo ey ds) f f&@rp@E)e PO ag

1
=T =) 20 fx).

Using this, we see that

00 di\ 12
(/ 10, % f(0)? —t)
0 t
:l"(l—oe)_l(/oot
0

=r(1—a)‘<foo
0

By Minkowski’s inequality, this is bounded by

00 00 1/2
rd—o)! / (s—1™ (f 1262791820, (x, st)|2dt> ds
1 0

00 00 1/2
=ra —a)‘<f (s — 1)~os 2+ ds) (f 132"‘|8§Ua(x,t)|2dt> .
1 0

Thus

2 12
dt)

/ 7 Yooy (8) |5 — 17993 U, (x, st) ds
0

oo
/ dUa(x, t +5)s ™% ds
0

2 1/2
dt) .

0 12
go(fHx) = Cy (/ t3_2a|3§Ua(X,f)|2dt) . (8.4)
0
Since [ 32K, = 0, we have

30000 = [ KOS+ 3 dy

_ / K, () (L f (x +y) — Lo f(0)) dy.
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Arguing similarly to the proof of Lemma 3.1, we see that
85K (0| < Ct+p(n)) "2

Using this, we have
|02 Ua (x, 1)] < Cfu + PN TP laf (x4 ) — L f () dy
<c / 2L f (x4 2) — L f (0] dy
p(y)<t

+ C/ PPl f(x +2) = Lo f ()| dy.
p(y)=t
It follows that
o0
f 372Uy (x, D dt < CA+T0),
0

where
2

o0
1=/ t3_2"‘</ V2L f(x +y) — Iaf(x)|dy) dt,
0 p(y)<t
00 2
= f -2 ( f PO f (x4 y) — L f )] dy) dr.
0 p(y)=t
By the Schwarz inequality
o0
I< c/ 372022y / I f(x +y) — I, f(x)|*dy dt
0 p(y)<t
o0
_ C/ L f G+ y) — Iaf(x>|2</ 1oy dt)dy
P

)
Dy (f)(x)*.

1
=C
y 4+ 2
Also,
I < Cf r”"ﬂ(/ o)y f(x +y) — Iaf<x>|2dy> dt
0 p(y)=>t
p(y)
=C / P T I f(x +y) — Iaf(x>|2(/ 12 dr) dy
0

=C

2
755 Da(D).
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Therefore

- 1/2
( / £ U (x, t)|2dr> < Co Do ()()-
0

Combining this with (8.4), we have (8.3).

11.

12.
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