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THE GENERALIZED AHLFORS-HEINS THEOREM IN
CERTAIN d-DIMENSIONAL CONES

MATTS ESSEN and JOHN L. LEWIS

1. Notation.

Let 2 be an open set in R?, d =2, and let 02 be its boundary. The
closure of a set D is denoted by D. In cartesian coordinates a point z
is denoted by (z,,...,zz). Let |z| be the Euclidean norm of z. Also let
e(z) be the radial projection of x onto the unit sphere. If the function u
is defined in 2 and y € 02, we define

u(y) = limsupu(z), z->y, ze.
We also introduce
M(r) = M(r,u) = supu(x), |z|=r, x€L,
and M(r)*=max {M(r),0}.

A system of spherical coordinates for x is given by
r=|x|, x =rcosb, z;= rH i1 sing,,
and if d > 2,

x; = rcosf; [[;=1sinf;, 2=<i<d-1.

Here, 0<6;_; <2, and if d>2, then 00,57, 1<¢=<d—2. Relative to
this system, the Laplace operator 4 may be written

0
1.1 A = pl-d a-1 {2
(1) r or (r 8) ro,

where the Beltrami operator J is given by

2 3
6= 2T 5 26, (TT"-1 aok)

Here 7= J=1(sm0j)d 1= T,=1, and if d>2, T,C--I]_,:,l(ssm@,)2 2<
ksd-1.
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If « is given, 0 < <=, and d 2 3, let K(«) be the cone {z: 06, <«}.
If d=2 let K(«) be the sector {z:|6,|<«}. We also introduce the polar
cap

S(x) = K(x)n{z: |z|=1}.

If f is a function defined in K(«), we shall write f(r,0) for the value of f
at the point whose spherical coordinates are r and 6,=0. Moreover, if
f(x)=f(y) whenever x and y have the same r,0,, coordinates we shall
write f(r,0,) for the value of f at any point x whose first two spherical
coordinates are r and 0,.

Consider in S(x) the boundary value problem

(1.2) ég+pug =0, g =0 on 0S(x),

where we assume that g is continuous in S(x) and that d¢ is continuous
in S(e«). The classical theory of the problem (1.2) goes back to Bouligand
(see J. Lelong-Ferrand [10] for further references). Let x4, >0 be the first
eigenvalue and y, the unique corresponding eigenfunction satisfying

(1.3) ¥1(1,0) = 1.
Next let o be the positive root of the equation
(1.4) ele+d—2) = u .

We also consider for fixed 14, 0 <A< 1, and for the same class of functions
as in (1.2) the boundary value problem

69 +oApd+d—2)g =0, g =1 on 08(x).

This problem has a unique solution which we denote by u;. We note
that y,(x)=v,(y) whenever z,y € S(x) have the same r,0,, coordinates,
as follows from the symmetry of S(«x). Using this fact and the minimum
principle (see [3, p. 326]) we find that

(1.5) 1 < yi(x) < 9,(1,0) = C(A), =zelS(x), z+(1,0,...,0).
With C(4) as in (1.5), we define
Hy@) = C(Aypfe@)lz”, =zeK(x).

It follows from (1.1) that H, is harmonic in K(x). Moreover, from (1.5)
we see that

(1.6) H,(1,0) =1,
(1.7) H,(y) = C()H,(ly|,0) = C(A)M(ly|.H,;), yeoK(x).
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2. The main result.

Let u be subharmonic in K(«x) and suppose for given 4, 0 <A< 1, that
u satisfies either
(2.1) u(y) = C(A)u(]yl.0), yeodK(x), u(0) =0,

or the following conditions:

(2.2) u(y) < CA)M(lyl), yeoK(x)-{0},
(2.3) uly) < oo, yeoK(x).

Here C(2) is as in (1.5). Then we shall prove

THEOREM 1. Let A be given, 0<A<1. Let uz= — oo be subharmonic tn
K(x) and satisfy (2.1). If

liminf r~2eM(r) < o,

r—>00

then for some f, — oo < f < oo, we have
(A). Ezcept when e(x) € S(x) belongs to a set of capacity zero,

(2.4a) lim, . r—eu(re(z)) = Bye(@)

(B). There is an exceptional set F, of spheres whose radii r; and distances
R, from the origin satisfy 33> (ryR;)4< oo, for which

uniformly in K(x)—F,.

THEOREM 2. Let u be subharmonic in K(x) and satisfy (2.2) and (2.3)
for fized A, 0<A<1. If

(2.5) u(xy) > 0 for some xy € K(x),

and if liminf, | r~%M(r)< oo, then (A) and (B) of Theorem 1 hold for
some f satisfying 0 < f < co.

Theorems 1 and 2 have an important limiting case as 4 — 1. Indeed,
if we put C(1)=lim, ,,C(1)=0, and if yp, is as in (1.3), then our result is
also true for A=1. In order to describe earlier work, let us say that an
author has considered the case «; < « if he has proved that the limit in
(2.4b) exists, apart from an exceptional set, uniformly in each cone
K(x,), 0 <oy <ox.

The case A=1, &, <, was considered in R? by Ablfors and Heins [1].
The extension to the case A=1, o; =«, was given by Hayman [12]. In
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higher dimensions the case A=1, &, <, was first treated by J. Lelong-
Ferrand ([9], [10], [11]). The extension to the case A=1, «;=«, is due
to Azarin [2].

In the sequel, we shall suppose that d >3 since this simplifies our
notation. Actually in R2 Theorems 1 and 2 hold for 0<i<2 if C(A)=
cos (4zA). The case 0 <A< 2, ; <, may be found in Essén [6] and Lewis
[17]. The extension to the case 0<A<2, x;<«, may be obtained by
essentially the same arguments as those used when d > 3.

A preliminary version of Theorem 1 in R® is given in Essén [8]. An
outline of the proof of Theorem 2 in the case d=3 is in [7]. We have
only been able to prove that Theorem 2 is true in a circular cone. We
would like to mention that Theorem 1 is valid in more general cones.
The proof is, apart from a few steps, similar to the proof of Theorem 2
which is given in the present paper. We also note that Dahlberg [4]
has considered subharmonic functions which satisfy the hypotheses of
Theorem 2 in more general cones. For the cones K(«), his conclusion is
that r—%M(r) tends to a positive limit as r — co. This conclusion also
follows from our result, as is easily seen.

In general we do not have an explicit formula for the constant C(4).
However, if d=2, then as mentioned above C(4)=cos$sd. If d>2 and
«=4n, we can use the Poisson integral formula for K(}x) to conclude
that

C(A) = 20440571 (7 t4-2+4(1 +82)-92 4t ,

where o, is the surface area of the d dimensional unit sphere. In terms of
the I' function,
(2.6) og = 2n4%[(d/2) ,

C(A) = mI(3d-1))(3d—1+4) L (F(1-2)*.

In the proofs, methods developed by the authors in R? are used (see
[6], [17]). There is one important new feature: the use of the technique
of Azarin [2] and Hayman [12], which gives a more precise description
of the exceptional set.

3. A harmonic majorant.

We first note that Theorem 1 is a consequence of Theorem 2. Indeed,
let % be as in Theorem 1. If B is large enough, the function u,=u+ BH,
satisfies (2.2), (2.3), and (2.5). Since u(0) <0, we see that u, satisfies the
hypotheses of Theorem 2. It follows that (A) and (B) of Theorem 1 are
true for %, and there upon for ». Hence it suffices to prove Theorem 2.
We shall want the following lemma.
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LeMMA 1. Let b be subharmonic and bounded above tn K(x)n{x: |x| < R},
O0<R<oo. If

ky) = CAM(lyl,h)*, O<|yl<R, yeoK(«x),

then M(r,h)* is a nondecreasing function which is also a convex function
of =% on (0,R). In particular, sf dM(r,h)*[dr is the left hand derivative
of M(r,h)*, then r3-2d M(r,h)*[dr is a nondecreasing function on (0, R).

Proor. For a corresponding lemma in R2, see Lewis [16, Lemma 1].
For d > 2 the proof is essentially the same. It follows from the convexity
that if 0<f<s, then (M(s)*— M(t)*)/(t*~?—s?-¢) is increasing in each
variable separately and locally bounded. Thus the last part of the lemma
follows by applying Heins [13, p. 79, ex. 1].

We now claim that

(3.1) 0 < sup,_ or*M(r) £ C(A)~'liminf, , jrM(r) < oo,
where M(r)=M(r,u). To prove (3.1) consider
h#) = u(x)— R-*C(2)~ M(R)* H,(x)

when z € K(x)n{z: x| < R}. It follows from (2.2), (2.3), and (1.7) that A
satisfies the hypotheses of Lemma 1. Hence M(r,h)* is nondecreasing.
Since

hz) =0, xzeK(x)n{x: |x|=R},

h is nonpositive and hence
r~%e M(r) £ C(A)! R-* M(R)*

when 0<7r< R. Since (2.5) holds, (3.1) is proved.

Next we shall study a particular harmonic majorant of . For this
purpose, let g(:,y) denote Green’s function for K(x) with pole at y.
Also let 0g(z,y)/on denote the inner normal derivative of g(z, -) evaluated
at the point y € 0K(x). We note for a >0 that

(3.2) g(ax,ay) = a*Y(x,y), z,ye€K(x),

(3.3) og(ax,ay)[on = a'l~2og(x,y)[on, yecoK(x), xe€ K(x),

(3.4)  |yl%g(z,y)[on = Og(x,y[ly|*)[on, yeoK(x)—{0}, x€S(x).

In (3.4) we have used the Kelvin transformation (see Helms [14, p. 36]).
Let o denote Lebesgue measure on 0K(x). Let the measure u be de-

fined on 0K(«) by
t4-2dt du(y) = do(y), |yl =¢.
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From the symmetry of K(«) it follows for fixed x € K(«) that

B(t,0,) = Si)K(a)ﬂ{[gI:t} ag(e(x),y)/an du(y)

depends only on ¢ and the 0, coordinate of z. If |z|=r, it follows from
(3.3) that

(3.5) SaK(a)n(|y|=t) og(x,y)[on du(y) = r'=2B(tr,0,) .
Moreover, using (3.4) we obtain
(3.6) t4B(t,0,) = B(1/t,0,) .

We now want to prove that there is a harmonic majorant of » in K(«x)
whose value at y € 0K(«) is C(A) M(|y|)*. For this purpose consider for
a given positive integer n the unique, bounded, harmonic function v,
in K(x) whose boundary values are

va(y) = CA)M(ly))*, O<lyl<n, yeoK(x),
=0 , lyl>n,  yedK(x).

It is well-known (see Helms [14, p. 76]) that

v'n(x) = C(l)((d_ 2)Gd)—1 saK(a)n(|y|<n) M(|y|)+ag(x:3/)/a" d(’(?/) )

where o4 is given by (2.6). In terms of the notation in (3.5), and with
v,(x)=1v,(r,0,), the above integral may be written

(3.7)  w,(r,0,) = AA) 5 M(t)* B(t|r,0,)r' %132 dt
— A(4) (3 M(rs)* B(s, 0,)s?2ds ,
as n — oo, Here A(A)=C(A)/{(d — 2)a4}. The sequence {v,}7° is nondecreas-

ing and so either v=1lim,,_, v, is harmonic or identically + co. The latter
possibility cannot occur since it follows from (3.1) that

v, £ H;sup, oreM(r) < oo.
It is also clear that v is a harmonic majorant of « as follows from a
Phragmen-Lindel6f type argument (see Heins [13, p. 111]). We omit the

proof.
Finally we show that

(3.8) v(r,0) = M(r,v), 0 <r<oo.

Using (3.7), the last part of Lemma 1, and the Monotone Convergence
Theorem, we first find that

rd-19u(r, 0,)[or = A(A) {7 (r8)3-1{d M (rs)*|d(rs)}B(s, 0,) ds .
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By Lemma 1, the function 74-1d M(r)*/dr is nondecreasing and so has a
derivative almost everywhere on (0,c). From this fact, the above
equality, and the Fatou Lemma, we deduce

0 0
el [,,d_1_v(,~,01)] 20 0<r<oo.
or or

Since v is harmonic it follows from (1.1) that dv <0. (3.8) is now an im-
mediate consequence of the symmetry of » and the minimum principle
[3, p. 326].

4. A convolution inequality.
Since v is a harmonic majorant of u, we have from (3.7) and (3.8) that

(4.1) reM(r)+ £ r%y(r,0) = A(A) {3 (rs)~% M (rs)* B(s,0)s?+e-2 dg .

After the change of variables r =%, s=¢¥, we obtain

(4.2) D(x) £ DxL(x), xeR,
where
(4.3) D(x) = e~z Y (e®)t,

L(z) = A(A) exp{(1 —d —2g)x}B(e~%,0),
(o L(z) dz = H,(1,0) = 1
(see (1.6)).
The above convolution inequality has been studied by Essén ([5], [6]).
In particular if L satisfies

(4.4) = yL(y) dy + 0,
then it follows from Essén [5] that
(4.5) lim, , P(x) = lim,_,  r~%*M(r)t exists,

(4.6) (2 (P—D*L)(y) dy = (© t-1-R[M(5)* —(t,0)] dt > —oo.

(4.4) follows from the fact that L(—=z)> L(z), >0 (see (3.6)).

In the next section, we shall need the following lemma of Azarin [2,
Lemma 1]. If f and & are nonnegative functions in K(«x), let us say that
f~h if there exist positive constants C; and C, such that C,f<h < C,f.

LemwMma 2. Let p, and o be as in (1.3) and (1.4). If 0 < 2|z| £ |y|, we have

(@) py(e@))pi(e@)(zl/ly)tlyl>¢ ~ g(x,y), =,yeK(x),

(b) wy(e(@))(Ppy(e(@))/on)(|2|/ly])2ly|*-* ~ 3g(x,y)[on,
z€ K(x), y€oK(x),
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while if 0<2|y| = |z|,

(©) wile@)vle@)lyl/lx])|zI*2 ~ g(z,y), =ye K(«),

() i(e(@)(pi(e(®))/on)(y)/12])|2|>~2y| -t ~ Bg(=,y)/on ,
rxe K(x), yeoK(x) .

Proor. For completeness we indicate how the lemma can be proved
for d26. Consider the expansion of g in terms of normalized eigen-
functions {@,}7° of (1.2) which has been given by J. Lelong-Ferrand
[10, p. 341]. If the corresponding eigenvalues are {u,};°, there exists a
constant 4 only depending on « and d such that

(i) 0<p,=AnG-972
(ii) p,(2) ~ @y() &~ dist(x,08(x)), x€8(x),
(i) |pn(®)l S Au, P dist(z,88()).

Lemma 2 is an immediate consequence of (i), (ii), and (iii). If 2<d <5
similar estimates are valid (see section 8).

As to proofs (i) and (ii) are well-known (see [3]). As to (iii), this in-
equality is valid for the normalized eigenfunctions of any uniformly
elliptic operator with Holder continuous coefficients. A proof is given
in section 8. We do not know if the exponent occurring in (iii) is best
possible.

5. An estimate of the Riesz mass.
Using (3.1) and (4.5), we see that

(6.1) lim, ,r?M(r)=8, 0<f <.

From the definition of v and a Phragmén-Lindel6f argument, it follows
that

(5.2) lim,,_, o [|z| 2 v(z) — BC(A)y,(e(x))] = 0

uniformly in K(x). Hence it suffices to prove (A) and (B) of Theorem 1
for — p=wu—w. The function p is nonnegative and superharmonic in K(«x).
Moreover from Lemma 1 and (2.5) we see that for r large enough, there
exists z, € K(x), |z,|=r, such that u(x,)=M(r,u)=M(r)t. Hence for
such values of 7,

(53) p(xr) = v(x,) - 'u‘(xr) s ofr, 0) - M(r)+ .

From (1.5) and (5.1)(5.3), it is clear that

(5'4) ﬁmr—-»oor—‘op(xr) =0 ’
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and that for any &, 0 <8 < «, there exists 7' for which
(5.6) x, € K(6), r>T.

Using (4.6), (5.3), and (5.5), we deduce that if § is given, 0 < § < «, then
(5.8) (T w(r)yr-1-%dr < o,

where w(r)=infp(x), |z|=r, x € K(d). Using (5.4) and (5.5) we obtain as
in Azarin [2, Theorem 1], a Riesz representation formula for p:

(6.7)  p@) = Soxw 99(@,9)[on dy(y) + ke 9(2,y) dé(y), z€ K(x),

where y and & are positive Borel measures on 0K («) and K(«), respectively.
A consequence of (5.6) and Lemma 2 is that

(5.8) &, va(e®))lyl® dé(y) + $x, vi(e®))ly|2-22 dé(y) < oo,
(5.9) Szl Opy(e(y))[onlyle—2 dy(y +S£3 Opy(e(y))/only| % dy(y) < oo,
where K,=K(x)n{ly|<2T}, K,=K(«x)n{ly|=2T}, X;=0K,n0K(x) and

2y=0K3,n0K(x). Let us prove the convergence of the integral over K,
in (5.8). The other proofs are similar. Indeed,

oo > P r-1-%w(r) dr
z V7 infoe ko), ot =r I kentiyizen 902, 9) dE()Jr-% dr
2 4, ST {SK(a)n(|y|22r} vi(e))(r/lyl)ly|2-2 dé(y)}r——2 dr
2 A \x, va(e@))ly*-27 dé(y) ,
where A, and A, are positive constants.
In the third inequality we have used (a) of Lemma 2. In the fourth
inequality we have inverted the order of integration which is permissible

since all quantities involved are nonnegative.
We now introduce

] wa(e(y))ly|2-3-% dé(y), yek,,
dnly) = | Qralew))fonlyl-i-e dy(y),  y €2y,
vi(e(®))lyl dé(y), yekK,,

opy(e(y))[onlyle- dy(y), yelZ,

and define N(x,y) for x € K(x) by

_ | og(z,y)[on dy(y), yeoK(x),
N@9) W) =\ gz g) dety), ye K@)
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From (5.8) and (5.9) we see that

(5.10) VR dn(y) < o,
and
p(x) = g Nz, y) dn(y), =zeK(x).

Corresponding formulas for the case A=1 can be found in Hayman
[12, p. 117] and Azarin [2, p. 131].

We now use a method of Hayman and Azarin to prove (A) and (B)
of Theorem 1.

6. Estimates of N(x,y).
If x € K(«) is given, let
D) = {ye K(«): } < lzl/lyl=2}.

In the sequel we assume that |z| > 47T, so that D(z) = K,. We also let A
denote a positive quantity that may depend only on « and d (note that
o is a function of «), not necessarily the same at each occurrence. If o,
is given, 0 < «,; <«, A(x,) denotes a positive quantity that depends only
on &, %, and d, not necessarily the same at each occurrence.

If x € K(«) and |z| > 47T, we note that

(6.1) N(x,y) = g, y){yi(e(®))}yl?*2, yeDl),
(6.2) N(z,y) = 0g(z,y)[on{oy(e(y))[on}|y|?*+%-2, y e dD(x) N 0K («) .

We shall want the following lemma (see Azarin [2, Lemma 4]).
Lemma 3. If z € S(«), then

(6.3) 9(2,y) < Api(2)yi(e(®))lz—y|%, yeD(2),
(6.4) 0g(z,y)fon = Ay, (2)0yy(e(y))/onlz—y|-%, yeoD(z)n oK («).

Using (3.2), (3.3), and Lemma 3 we see that

(6.5) g(z,y) = Ayy(e(@))p(e(®))lz/?x—y| 2
when z € K(x), y € D(x), and
(6.6) og(x,y)[on < Ay, (e(x))opy(e(y))/on|z| |z —y|—

when y € 0D(x)NoK («x).
We shall need the following estimates. If 0 <, <«,

(6.7) N(z,y) = A(x)|x]*®, zeK(x,), y€oD(x)noK(x).
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Proor. In (6.2) we apply (6.6) and observe that under the assump-
tions of (6.7), |x —y| = A(x,)|x|.
(6.8) N(z,y) = Alx|%2 e —y[>~Hypy(e(y))} |zl
for z € K(«) and y € D(x).

Proor. In (6.1) we use the well-known inequality

g(z,y) < lx—yl>% =xyeK(«).
(6.9)  N(z,y) = Ayy(e(x))lz|?e|z—y|%, xeK(x), yec D(x).

Proor. In (6.1) we apply (6.5).

7. The final proof.
We put
p(x) = Sf)(:c) N(z,y) dn(y) +SK(a)—D(x) N(z,y) dn(y) = I (x)+ I4(x) .

Using Lemma 2 and arguing as in Hayman [12, section 3], it can be
shown that [,(z)=o(|z|**) uniformly in K(x) as |x| - co. Hence it suffices
to prove (A) and (B) of Theorem 1 for 7,(x). We first prove (A). Let &,
be given, 0 < «; < «. Since yp, is nonnegative it follows from the maximum
principle (see [3, p. 326]) that there exists w >0 such that
(7.1) Pi(x) > w, zeS(x).

We claim that for |z| =47,
(7.2)  N(z,y) £ Alxy)le(@)—e(y)>jzi%, 2 e K(x), y € D(z).

To prove (7.2) consider first the case when y,(e(y)) < 4w. Since y,[00,
is bounded in S(x), we have

(7.3) lyi(e(@)) —pi(e(®) £ Ale(x)—e(y)l, =z,ye€K(x),
and hence if y,(e(y)) < o,
(7.4) o = Adle(x)—e(y)|, ze K(x).

From (7.4) and (6.9) it follows that

(7.5)  N(=z,y) < Alz[ew=2le(z)—e(y)|*4, zeK(x), ye D).
If y,(e(y)) 2 4w, then by (6.8),

(16)  N(z,y) S Adole(z)—em)t-dfale, weK(), yeD).
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Since w is a function of «,, we conclude from (6.7), (7.5), and (7.6) that
(7.2) is true.
For given ¢>0 and r> 47T, let

Qe,r,0) = {z: I (z)>elz|®} 0 {|z| >} n K(y) s
E(e,r,xy) = {y : y=e(x) for some x € Q(¢,r,x,)} .
Let v be a positive Borel measure on E(e,r,c,) of total mass 1. Put
L(v) = suPyerd e, 7, ap 1€ — Y122 dr(y) .
If x € Q(e,7,4,), then from (7.2) we see that
e < |a|~* (@) £ A1) Sknqyizin l6(@) —e(y)*~2 dnly) .

Integrating this inequality with respect to » and inverting the order of
integration, we obtain

e < A(xy)L(») SK(a)n(lylg}r) dn(y) .
Since y[K(x)n{|y| = 4r}] - 0 a8 r — oo, it follows that

E(a,(xl) = nr>4T E(G,T,Oﬁ)

has capacity zero. Letting ¢ - 0 and &, - «, we obtain (A) of Theorem 1
for I, and thus for .

We now turn to the proof of (B) of Theorem 1. Following Hayman
[12, p. 120] and Azarin [2, p. 133] we make the following definition.

DEFINITION. Let ¢ be a fixed positive number and suppose that x € K(x).
If for 0 <h < }|z| we have

SK(a)n{ly-a:|<h) dnly) < ~"'(h/|-’17|)d-1 s
then z 18 satd to be ¢ normal with respect to 7.

Also using the technique of Azarin [2, Lemma 6] we prove

Lemma 4. If x s ¢ normal and |x| > 4T, then

I(x) 2 (Ae+o(1))|x|"‘, || = o0 .

Proor. Let x be ¢ normal and suppose that |z|>4T. We put

Jy(x) = SDI(::) N(z,y) dn(y) ,
where

Dy(z) = K(x)n{y : ly—2| < Hxl}.
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If I,(x)=J(z) + (), it follows from (6.1), (6.2), (6.5), and (6.6) that
(7.7) Jo@) £ A{§pedn@)}zl?, ve K(«x), |a| > 47 .
To estimate J,, we define, if » is an integer
B, = {y: ly—=l<4l}n
N{y e K(x): 2" alyy(e(@) = v -yl < 2"aly(e(=))}

Since z is ¢ normal, 7({z})=0 and

(7.8)  Jy(2) = 32 5, N(@,9) dn(y), =ze€K(x), |2| > 4T .

Let C denote the constant in (7.3). Let n, be the least positive integer
such that C2-"*! < 1. We note that

(7.9) le(x)—e()| = 2[z|t|z—yl, xy +0.
If ye U, _,, B, it follows from (7.9) and (7.3) that

vi(e(@)) —py(e(y)) = 2C|2| |z —y| < 2_n°+lc'/’1(e(x)) ,
and so

(7.10) vi(e(®)) = Ayyle(z)), ye Uns—no B, .
Using (7.10) we estimate N(z,y) when y € B,,, n< —n,. Indeed in this
case we see from (6.8) and (7.10) that
N(z,y) £ A2m-DC-Dy,(g(z)) 4|z .
Since x is ¢ normal, it follows that if A =min {}|x(, 2"p,(e(x))|x|},
(7.11) (5, N(z,y) dn(y) < Ae2™z|?, n<—n,.

If n> —mn,, we first suppose that y € K(x)nB,. Then from (6.9) we
find that

(7.12) N(z,y) = Ay, (e(x)-320-md |zt z e K(x) .

If y e 0K(x)n B,,, then (7.12) is also true, as follows from (6.6).
Using (7.12) and the fact that z is ¢ normal, we obtain

(7.13) (p, N(z,y)dn(y) < Ae 2 ™z*, n > —n,.

Summing over # in (7.11) and (7.13), we deduce that Lemma 4 is true for
J,. Since #[D(z)] -~ 0 as |z| - oo, it follows from (7.7) that Lemma 4
also holds for I,.

To conclude the proof of (B) of Theorem 1 for I;, we shall want the
following lemma of Azarin [2, Lemma 7].
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LemMmA 5. The set A(e) of points not ¢ normal may be covered by a system
F(e) of spheres {G;} whose radit {r;} and distances {R;} from their centers
to the origin satisfy

2211 (Ti/Ri)d_l < .

REMARK. Azarin proves Lemma 5 by using a lemma of Landkof. A
proof of Landkof’s result can be found in [15, Lemma 3.2].

The rest of the proof is similar to Azarin’s proof. From Lemma 5 we
see there exists a sequence of increasing positive numbers ¢, -~ o0, n21,
such that for G; € F(n') and R,>t,,

2 Rioty (T B < 277

Let F(n-1,t,) denote the set of spheres whose radii appear in the above
sum and put

F, = U;o=1 F(n-1t,) .

Then clearly for the spheres in Fy we have ¥,(r,/R;)?! < 1. Moreover if
z € K(x), || 2t,, and x does not belong to one of the spheres in F,,
then from Lemma 4 we have

I(x) £ [An"24o(1)]|x|* .

We conclude from the above inequality that (B) of Theorem 1 is valid
for I,. From our previous reductions it now follows that (B) holds for u.
This completes the proof of Theorem 2.

8. On estimates of eigenfunctions.

In the proof of Lemma 2, we used the following estimate of a norma-
lized eigenfunction of (1.2). If 426,

(8.1) lp(@)] < Ap@+vs dist (x,08(«x)) ,

where u is the corresponding eigenvalue. The constant 4 depends only
on the domain S(«) and d. If 2 <d <5, similar estimates are valid. They
are deduced using the same method of proof as in the case d = 6.

We start from the following estimates of the Green’s function, g, for
a second-order uniformly elliptic operator with Holder continuous coeffi-
cients in a bounded C? domain 2 in R? (In (8.1), g=d—1). They are im-
plicit in Widman [18a]. An explicit proof is given in Widman [18b].
The constant 4 in (8.2) and (8.3) and in the sequel depends only on the
ellipticity constants, the Holder constants, £2, and g. It is not necessarily
the same at each occurrence.
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(8.2) g(z,y) = dlz—y|*, z,yel,
(8.3) g(x,y) < Ad(x)d(y) [x—y|-?, =x,yel,

where d(z) =dist (x,0%2).
We want an estimate of M —supueglq) )|/d(y). For that purpose we
choose a point x such that |p(x)|/d(x)= M.

Let >0 be given and suppose that d(x) <d. The case d(x) 2 J will be
discussed later. We define

D, ={y: ly—=z|<d@)}n,
Dy ={y: dx)S|ly—=z|<d}nQ,
Dy={y: ly-=28)n Q.
Since
o) = uly9(@.9)ey) dy ,
it is clear that

plx) oly) d(y)
(8.4) i@ w SQ iy) da) 9(x,y) dy .
We claim that if ¢ =3,
(8.5) \p, d¥)9(x,y) dy| = Ad(x)?,
(8.6) I$p, d¥)g9(x,y) dy| <= Ad(x)o?,
(8.7) $p, pW)g(x,y) dy| = Ad(x)61-9/2.

Proor oF (8.5). Applying (8.2), we see that
Yo, d)g(z,y) dy| = A {p, (d(@)+ |z —y)le—y|*~ dy
< A{I®d(x)o do < Ad(z).
Proor or (8.6). Applying (8.3), we see that
o, dW)9(x,y) dy| = A §p, d(y)d(@)|x—y| -2 dy
< Ad(x) Sd(z) odo = Ad(z)6*.
Proor oF (8.7). Since {, |p(y)|2dy =1, it follows from (8.3) that

{0, pW)9(x,y) dy}* < \p, 9(x,y)? dy
< A, d(@)Pd(y)e—y| 2 dy
< Ad()? {2 g0 dp < Ad(2)?8%

From our choice of z and (8.4)-(8.7), we see that

< A{uM (d(@)?+62) + 82}
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which is equivalent to
M = Apc‘il—q/2{l —A,u(d(a:)2 + 62)}'l .

If d(z) < $(Au)t, we choose 6= }(Au)t and it follows that

M =< A”}+q/4 ,
and thus (8.1) is proved in this case.
If
(8.8) d(z) 2 HAp)* = 8,

we argue in the following way. Define, if > 0 is given,
Dy ={y: ly-=l<ninQ,
Dy ={y: ly—=/2n}nQ.

We claim that if ¢= 3,

(8.9) $p, d¥)g(x,y) dy| < An¥(n+d(z)),
and that if ¢= 5,
(8.10) I$p, p@)g(z,y) dy| < An2-22,

Proor or (8.9). Apply (8.2) in the same way as in the proof of (8.5).

Proor or (8.10). Apply (8.2) and argue in the same way as in the
proof of (8.7).

It follows from our choice of z, (8.4), and (8.8)—(8.10) that

M < A{Mp(nd(x)) +22) + prP-2%{d(2))~}
S A{M (¥ + pn®) + p P27,
which is equivalent to
M < Apdee—2{1 — An®(u+nu®?)}-1.
Choosing 7= }(Au)-t, we see that
M =< A#qu R

and thus (8.1) is true also in this case. This completes the proof of (8.1).
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