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ON DIAGONAL QUASI-FREE AUTOMORPHISMS OF
SIMPLE CUNTZ-KRIEGER ALGEBRAS

SELÇUK BARLAK and GÁBOR SZABÓ

Abstract
We show that an outer action of a finite abelian group on a simple Cuntz-Krieger algebra is
strongly approximately inner in the sense of Izumi if the action is given by diagonal quasi-
free automorphisms and the associated matrix is aperiodic. This is achieved by an approximate
cohomology vanishing-type argument for the canonical shift restricted to the relative commutant
of the set of domain projections of the canonical generating isometries in the fixed point algebra.

Introduction

Ever since their inception, Cuntz-Krieger algebras [9] and graph C∗-algebras
[19] form natural classes of nuclear C∗-algebras satisfying the UCT [28], which
keep attracting much attention. One compelling feature is that many of these
C∗-algebras’ structural properties have natural characterizations in terms of
their matrices and graphs, respectively. This feature makes them particularly
approachable from the point of view of classification, as is evidenced for
example by Rørdam’s work [27] on simple Cuntz-Krieger algebras. More re-
cently, the classification of unital graph C∗-algebras in purely graph theoretic
terms has been completed by Eilers, Restorff, Ruiz and Sørensen; see [11].

This paper deals with actions of finite abelian groups on Cuntz-Krieger
algebras by quasi-free automorphisms in the sense of [32] or [12]. This class
of automorphisms contains the ones that permute the canonical generating
partial isometries, as well as automorphisms for which each of these partial
isometries is an eigenvector. The latter ones fall into the class of diagonal
quasi-free automorphisms, as they fix all range projections of the generating
partial isometries.

Every action by diagonal quasi-free automorphisms is conjugate to one that
is given by automorphisms for which the canonical partial isometries are eigen-
vectors; see Proposition 1.8. In particular, diagonal quasi-free automorphisms
are always homotopic to the identity map. Therefore they are approximately
inner, provided the Cuntz-Krieger algebra is simple, in which case it must be a
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unital Kirchberg algebra; see [26], [23]. This is in contrast to automorphisms
induced by permutations on the set of the canonical generators. In general,
such automorphisms act non-trivially on the K0-group of the Cuntz-Krieger
algebra, as it is generated by the classes of domain projections of the generating
partial isometries; see [7].

One might now ask the following question.

Question. Is every outer action of a finite abelian group by diagonal
quasi-free automorphisms on a simple, purely infinite Cuntz-Krieger algebra
strongly approximately inner in the sense of Izumi [13]?

Strong approximate innerness requires that unitaries witnessing approxim-
ate innerness can be chosen to lie in the fixed point algebra of the action. If the
unitaries can in addition be chosen to give rise to (approximate) group repres-
entations, then the action is called approximately representable. Although in
general different, these notions coincide if the action absorbs the trivial action
on a suitable UHF algebra; see [13] and [29].

On the one hand, the key feature of these technically looking properties
is the duality between approximate representability and the Rokhlin property.
As illustrated beautifully by Izumi [13], [14], this relationship paired with
the rigid nature of Rokhlin actions make approximately representable actions
particularly accessible to classification via their duals. For strongly approxim-
ately inner actions of cyclic groups of prime power order on O2, this perspective
was successfully exploited by Izumi, and was even accompanied by a complete
range result.

On the other hand, models for actions with the Rokhlin property such as
in [2] together with Takai duality [30] can be used to infer models or structural
properties for approximately representable actions. Along these lines, a charac-
terization of the UCT for the fixed point algebra associated to aMn∞ -absorbing
action α:Zn � A on a unital UCT Kirchberg algebra has recently been shown
by the first author in joint work with Xin Li; see [1]. More concretely,Aα satis-
fies the UCT if and only if there exists an inverse semigroup ofα-homogeneous
partial isometries S ⊂ A (meaning that S is closed under multiplication and
the ∗-operation) such that S generates A as a C∗-algebra and the projections
in S generate a Cartan subalgebra of A in the sense of Renault [24].

Restricted to Cuntz-Krieger algebras, our question above therefore raises
the issue to which extend the latter condition already implies approximate
representabilty. Indeed, the canonical partial isometries of a Cuntz-Krieger
algebra generate an inverse semigroup whose projections in turn generate an
abelian C∗-subalgebra. It is a Cartan subalgebra precisely when the matrix
satisfies Condition (I) (see [24] and [9]), which is equivalent to its spectrum
being the Cantor set.
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Our main result asserts that the above question indeed has an affirmatively
answer if the matrix is aperiodic, that is, if some power of the matrix has only
strictly positive entries.

Theorem 1. Let n ≥ 2 be an integer. Let A be an aperiodic n × n-matrix
with values in {0, 1}. LetG be a finite abelian group and let σ :G � OA be an
action by diagonal quasi-free automorphisms. If σ is outer, then it is strongly
approximately inner.

As a consequence, one gets an analogous result for unital graph C∗-algebras.
The conditions we have to impose on the finite graphs are strong connectedness
and aperiodicity. Here, a graph is said to be strongly connected aperiodic if
there is some k ≥ 1 such that for any two of its edges v,w there is some path
of length k from v to w. The notion of (diagonal) quasi-free automorphisms
transfers to the setting of unital graph C∗-algebras in a straightforward manner.

Theorem 2. Let E be a finite graph that contains at least two edges. Let
G be a finite abelian group and let σ :G � C∗(E) be an action by diagonal
quasi-free automorphisms on the associated graph C∗-algebra. Suppose thatE
is strongly connected aperiodic. If σ is outer, then it is strongly approximately
inner.

Our main result generalizes Izumi’s [13, Proposition 5.6(2)] for actions on
the Cuntz algebras by quasi-free automorphisms. The argument in his work is
a variant of Rørdam’s proof [25] that unital endomorphisms of Cuntz algebras
are approximately inner. A crucial ingredient therein is the Rokhlin property
of the one-sided tensorial shift on the CAR algebra; see [3]. In the proof, this
is used to derive an approximate cohomology vanishing-type result for the
canonical endomorphism restricted to the fixed point algebra of the canonical
UHF subalgebra. Strong approximate innerness of the quasi-free action is then
derived from the well-known bijective correspondence between unitaries and
unital endomorphisms of Cuntz algebras; see [6].

Our approach is of a similar nature. Although less striking than it is for Cuntz
algebras, there is still a close connection between certain unitaries and unital
endomorphisms of Cuntz-Krieger algebras; see [32] and [5]. In particular,
one can associate to each diagonal quasi-free automorphism a unique unitary
so that the automorphism is given on the canonical partial isometries by left
multiplication with this unitary. The shift map of a Cuntz-Krieger algebra com-
mutes with any given action by diagonal quasi-free automorphisms for which
the canonical partial isometries are eigenvectors. In general, this map may only
be a unital completely positive map, but it restricts to a ∗-homomorphism on
the relative commutant of the domain projections of the canonical generators
inside the fixed point algebra of the action. This resulting endomorphism is
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injective. As it is a priori unclear whether this endomorphism has the Rokhlin
property (in the sense of [4] or [26]), our approach deviates at this point from
Izumi’s original approach and instead considers the dilation of the shift map
to an automorphism in the sense of [20]. Aperiodicity of the matrix enters the
game here to make sure that the dilated C∗-algebra is a unital Kirchberg al-
gebra and the automorphism is aperiodic, provided that the action is outer; see
Lemma 2.2 and [18], [15], [31]. A classical theorem of Nakamura [21] then
yields that this automorphism has the Rokhlin property. As the dilated system
embeds into the ultrapower of the shift endomorphism, a modified cohomo-
logy vanishing-type technique for the unitaries associated with the action can
be performed. Strong approximate innerness of the involved automorphisms
then follows by going back from unitaries to unital endomorphisms. In fact, a
technically more involved argument yields strong approximate innerness for
an a priori larger class of actions; see Theorem 2.6.

A consequence of our main result and Izumi’s classification result [14] is that
outer actions of cyclic groups with prime power order by diagonal quasi-free
automorphisms on Cuntz-Krieger algebras isomorphic to O2 are classified in
terms of their fixed point algebras and some additional information about their
dual actions, provided the associated matrices are aperiodic. In particular this
holds for any (possibly non-standard) identification of O2 with a Cuntz-Krieger
algebra. Using Kirchberg-Phillips classification [16], [23], this simplifies as
follows in the case of order two automorphisms.

Corollary 1. Let m, n ≥ 2. Let A be an m×m-matrix and B an n× n-
matrix with entries in {0, 1} such that OA ∼= OB ∼= O2 as abstract C∗-algebras.
Let α:Z2 � OA and β:Z2 � OB be two actions by diagonal quasi-free
automorphisms. Suppose that that A and B are aperiodic and that both α and
β are outer. Then α and β are (cocycle) conjugate if and only if Oα

A and O
β

B

are (stably) isomorphic

1. Preliminaries

We start by recalling the definition of a Cuntz-Krieger algebra.

Definition 1.1 ([9]). Let n ≥ 2 be an integer. Let A be an n × n matrix
with entries in {0, 1} and no zero rows or columns. The Cuntz-Krieger algebra
OA associated with A is the universal C∗-algebra generated by a family of
partial isometries {s1, . . . , sn} subject to the relations

(1) s∗i sj = 0 for i �= j ,

(2) s∗i si = ∑n
j=1A(i, j)sj s

∗
j for i = 1, . . . , n.
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Notation 1.2. For i ∈ {1, . . . , n}, we set qi = s∗i si and pi = sis
∗
i . One

can check that OA is unital with 1 = ∑n
i=1 pi . If μ = (μ1, . . . , μk) ∈ {0, 1}k

is a multi-index, then we set sμ = sμ1 . . . sμk ∈ OA. It holds that sμ �= 0 if and
only if A(μi, μi+1) = 1 for all i ∈ {1, . . . , k − 1}. We denote by Wk the set
of all multi-indices μ ∈ {0, 1}k such that sμ �= 0.

Definition 1.3. An n × n-matrix A with entries in {0, 1} is said to be
aperiodic if there exists some m ≥ 1 such that Am(i, j) > 0 for all i, j ∈
{1, . . . , n}.

We shall later need the following well-known result for Cuntz-Krieger al-
gebras associated with aperiodic matrices over {0, 1}.

Theorem 1.4. Let n ≥ 2. Let A be an aperiodic n× n-matrix with entries
in {0, 1}. Then OA is a unital Kirchberg algebra.

Proof. Clearly, OA is unital and separable. It follows from [8, Proposi-
tion 1.6] that OA is simple and purely infinite; see also [9, Theorem 2.14].
Furthermore, OA is nuclear, as it is stably isomorphic to a crossed product of
an AF algebra by an automorphism; see [26, Example 2.5].

As shown in [6], there exists a canonical bijective correspondence between
unital endomorphisms and unitaries of the Cuntz algebra On for finite n. A
similar result was obtained in [32] for Cuntz-Krieger-Pimsner algebras. In
the case of Cuntz-Krieger algebras, such a correspondence exists for unital
endomorphisms that fix all domain projections of the canonical generators and
unitaries commuting with these projections; see also [5].

Proposition 1.5. Let A be an n × n-matrix with entries in {0, 1} and no
zero rows or columns. For any unitary u ∈ U(OA) ∩ {qi | 1 ≤ i ≤ n}′, there
exists a unique unital ∗-endomorphism λu of OA such that λu(qi) = qi and
λu(si) = usi for all i ∈ {1, . . . , n}. Conversely, if σ : OA → OA is a unital
∗-endomorphism such that σ(qi) = qi for all i, then uσ = ∑n

i=1 σ(si)s
∗
i is a

unitary in U(OA) ∩ {qi | 1 ≤ i ≤ n}′. These assignments are inverse to each
other and continuous with respect to the norm and the point-norm topology,
respectively.

Remark 1.6. It follows from Proposition 1.5 that, given two unital endo-
morphisms ρ, σ : OA → OA fixing all domain projections of the canonical
generators, the associated unitaries satisfy the convolution formula uσ◦ρ =
σ(uρ)uσ . In particular, for any n ≥ 1, one has σn = id precisely when
σn−1(uσ ) . . . σ (uσ )uσ = 1.

Definition 1.7 (cf. [32]). Let A be an n× n-matrix with entries in {0, 1}
and no zero rows or columns. An automorphism σ ∈ Aut(OA) is said to be
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diagonal quasi-free if

σ(qi) = qi for all i ∈ {1, . . . , n}, and

σ(span{si | 1 ≤ i ≤ n}) = span{si | 1 ≤ i ≤ n}.

We note that the above definition is slightly more general than the one in [32].
In fact, Zacharias requires a diagonal quasi-free automorphism to restrict to
the identity on the set of range projections of the canonical generators. How-
ever, the two notions of diagonal quasi-free automorphisms lead to the same
conjugacy classes of automorphisms, as the next result shows. It is certainly
known to experts, and partly contained in [5]. For the reader’s convenience,
we give a proof here.

Proposition 1.8. Let A be an n × n-matrix with entries in {0, 1} and no
zero rows or columns. Consider the finite-dimensional C∗-subalgebra

B = span{sis∗j | 1 ≤ i, j ≤ n}
of OA. Then the following assertions hold:

(1) the bijective map in Proposition 1.5 restricts to a group isomorphism
between the set of diagonal quasi-free automorphisms and U(B)∩ {qi |
1 ≤ i ≤ n}′;

(2) let G be an abelian group. Then every action σ :G � OA by diagonal
quasi-free automorphisms is conjugate to an action ρ:G � OA with the
property that for all g ∈ G and i ∈ {1, . . . , n} there exists some ηg,i ∈ T
such that ρg(si) = ηg,isi .

Proof. (1). Let u,w ∈ U(B) ∩ {qi | 1 ≤ i ≤ n}′. Using that λu(w) =
uwu∗, one computes for i ∈ {1, . . . , n} that

λuλw(si) = λu(w)usi = uwu∗usi = uwsi.

Hence, λuw = λuλw. By taking w = u∗, it follows in particular that λu is an
automorphism. Moreover, if u = ∑n

i,j=1 ηi,j sis
∗
j , then

λu(sj ) =
n∑
i=1

ηi,j si .

This shows that λu is diagonal quasi-free. On the other hand, it is clear that
uσ ∈ U(B) ∩ {qi | 1 ≤ i ≤ n}′ if σ ∈ Aut(OA) is diagonal quasi-free.

(2). Let σ : G � OA be an action of an abelian group by diagonal quasi-
free automorphisms. By (1), we find a unitary representation u:G → U(B)∩
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{qi | 1 ≤ i ≤ n}′ such that σg = λu(g) for all g ∈ G. As G is abelian, u maps
into some MASA of the finite dimensional C∗-algebra B ∩ {qi | 1 ≤ i ≤ n}′.
Note that span{pi | 1 ≤ i ≤ n} is a MASA in this C∗-algebra. Using that
every two MASAs in a finite-dimensional C∗-algebra are unitarily conjugate,
we find some w ∈ U(B) ∩ {qi | 1 ≤ i ≤ n}′ such that

wu(g)w∗ ∈ span{pi | 1 ≤ i ≤ n} for all g ∈ G.
It follows from (1) that λwu(g)w∗ = λwσgλ

−1
w for all g ∈ G. Hence, the action

ρ:G � OA given by ρg = λwu(g)w∗ is conjugate to σ . Furthermore, it is
straighthforward to check that for g ∈ G and i ∈ {1, . . . , n} there exists
ηg,i ∈ T such that ρg(si) = ηg,isi . This finishes the proof.

2. Main results

Notation 2.1. We call an automorphismα on a unital C∗-algebraA aperiodic
if αk is outer for all k �= 0.

For a free filter ω on N, we denote the (ω-) sequence algebra of A by

Aω = 	∞(N, A)
/{
(xn)n ∈ 	∞(N, A)

∣∣ lim
n→ω

‖xn‖ = 0
}
.

If ω∞ is the Fréchet filter, we simply write A∞ = Aω∞ . There is a ca-
nonical embedding of A into Aω by (representatives of) constant sequences.
Any endomorphism ψ :A → A induces endomorphisms ψω:Aω → Aω and
ψ∞:A∞ → A∞. These assignments are functorial, so that any discrete group
action α:G � A induces group actions α∞ and αω of G on A∞ and Aω,
respectively.

Proposition 2.2. Let A be a separable, unital C∗-algebra and ψ :A → A

be a unital and injective ∗-homomorphism. Let

(B, ψ̄) = lim−→{(A,ψ), ψ}

denote its dilation to a ∗-automorphism; see [20]. Suppose ψ is not an
asymptotically inner ∗-automorphism, meaning ψ is a ∗-automorphism and
there is no norm-continuous path (ut )t∈[0,∞) of unitaries in A such that ψ =
limt→∞ Ad(ut ). Then ψ̄ is outer. In particular, for every k ≥ 1 one has that if
ψk is not an asymptotically inner ∗-automorphism, then ψ̄k is outer.

Proof. By the standard construction of the inductive limit, B arises as the
closure of the ∗-algebra

{
[(a, ψ(a), ψ2(a), . . .)n≥	] ∈ A∞ | a ∈ A, 	 ≥ 1

} ⊂ A∞,
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and on this dense subset the ∗-endomorphism ψ̄ coincides with ψ∞. Here the
notation indicates that we only consider the tail of a representing sequence,
which makes sense by definition of A∞.

Suppose ψ̄ = Ad(v) for some unitary v ∈ B. By the definition of B, we
can find a unitary u ∈ A and 	 ≥ 1 such that ‖v − ū‖ < 1/2, where

ū = [(u, ψ(u), ψ2(u), . . .)n≥	] ∈ B.
(Note that the dense ∗-subalgebra of B is closed under functional calculus.)
Without loss of generality, let us assume 	 = 1 here. Let a ∈ A with ‖a‖ ≤ 1
and write ā = [(ψn−1(a))n≥1] ∈ A∞. We use that ψ is injective and calculate

‖ψ(a)− uau∗‖ = lim sup
n→∞

‖ψn(ψ(a)− uau∗)‖
= lim sup

n→∞
‖ψ(ψn(a))− ψn(u)ψn(a)ψn(u)∗‖

= ‖ψ̄(ā)− Ad(ū)(ā)‖
≤ 2‖v − ū‖ < 1.

Hence, Ad(u∗)◦ψ has distance less than one in the operator norm to the identity
operator on A. It thus follows from [22, Theorem 8.7.7] and [10, Lemma 2.14
with proof] that ψ is an asymptotically inner ∗-automorphism.

If k ≥ 1 and ψ̄k is inner, it now follows from the canonical isomorphism

(B, ψ̄k) ∼= lim−→{(A,ψk), ψk}

that ψk is an asymptotically inner ∗-automorphism.

Remark 2.3. Let A be an n × n-matrix with entries in {0, 1} and no zero
rows or columns. There exists a canonical unital completely positive map
ϕ: OA → OA given by ϕ(x) = ∑n

i=1 sixs
∗
i . Furthermore, it restricts to a ∗-

endomorphism of OA ∩ {qi | 1 ≤ i ≤ n}′. It is injective, as one finds for any
0 �= x ∈ OA ∩ {qi | 1 ≤ i ≤ n}′ some j ∈ {1, . . . , n} such that

0 �= xqj = qjxqj ,

and consequently 0 �= sj xs
∗
j = pjϕ(x).

Lemma 2.4. Let n ≥ 2. Let A be an aperiodic n× n-matrix with entries in
{0, 1} and no zero rows or columns. Let C ⊂ OA be a simple C∗-subalgebra
containing {qi | 1 ≤ i ≤ n}. Suppose that ϕ(C) ⊂ C and that the restricted
∗-endomorphism

ϕ:C ∩ {qi | 1 ≤ i ≤ n}′ → C ∩ {qi | 1 ≤ i ≤ n}′
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is not surjective. Denote its automorphic dilation by

(B, ϕ̄) = lim−→
{
(C ∩ {qi | 1 ≤ i ≤ n}′, ϕ), ϕ}

.

Then B is a unital simple C∗-algebra and ϕ̄ an aperiodic automorphism.

Proof. Observe that C∗({qi | 1 ≤ i ≤ n}) ⊂ C is a commutative C∗-sub-
algebra containing the unit of OA. Hence, C is unital and by Remark 2.3 it
follows that

ϕ:C ∩ {qi | 1 ≤ i ≤ n}′ → C ∩ {qi | 1 ≤ i ≤ n}′

is unital and injective, yielding that B is unital as well. Moreover, aperiodicity
of ϕ̄ follows immediately from Proposition 2.2.

It remains to show that B is simple. Using Notation 1.2, one computes for
k ≥ 1 and x ∈ OA, that

ϕk(x) =
∑
ν∈Wk

sνxs
∗
ν .

Let {ri | 1 ≤ i ≤ m} be the set of minimal projections in C∗({qi | 1 ≤ i ≤ n}).
One has that

C ∩ {qi | 1 ≤ i ≤ n}′ =
m⊕
i=1

riCri .

Now let x ∈ C ∩{qi | 1 ≤ i ≤ n}′ be a non-zero element. Find i ∈ {1, . . . , m}
such that 0 �= xri = rixri . For any k ≥ 1 and j ∈ {1, . . . , m} we have that

rjϕ
k(rixri)rj =

∑
ν∈Wk

rj sνrixris
∗
ν rj =

∑
ν∈Wk

j,i

sνxs
∗
ν , (2.1)

where
Wk
j,i = {ν ∈ Wk | pν1 ≤ rj and ri ≤ qνk }.

Find s, t ∈ {1, . . . , n} such that ps ≤ rj and ri ≤ qt . As A is aperiodic, there
exists some m0 ≥ 1 such that Am(u, v) > 0 for all u, v ∈ {1, . . . , n} and
m ≥ m0. In particular, we find for each m ≥ m0 some μ ∈ Wm with μ1 = s

and μm = t . It now follows from (2.1) that 0 �= rjϕ
m(rixri)rj ∈ rjCrj for

m ≥ m0, as

sμ(rjϕ
m(rixri)rj )s

∗
μ =

∑
ν∈Wm

j,i

s∗μsνxs
∗
ν sμ = s∗μsμxs

∗
μsμ = qtxqt �= 0.

As C is simple, rjϕm(rixri)rj ∈ rjCrj is a full element for all j ∈ {1, . . . , n}
and m ≥ m0. Hence, ϕm(x) is full in C ∩ {qi | 1 ≤ i ≤ n}′ for any non-zero
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x ∈ C ∩ {qi | 1 ≤ i ≤ n}′ and m ≥ m0. We conclude that B is simple. This
finishes the proof.

Next comes the main technical result of this paper. Before we state it, we
need the following definition due to Izumi.

Definition 2.5 (see [13, Definition 3.6]). LetG be a finite abelian group.
An action α:G � A on a separable, unital C∗-algebra is said to be strongly
approximately inner if for each g ∈ G there exists a sequence of unitaries
{ug,n | n ∈ N} ⊂ U(Aα) such that αg = limn→∞ Ad(ug,n).

Theorem 2.6. Let n ≥ 2. Let A be an aperiodic n× n-matrix with values
in {0, 1}. Let G be a finite abelian group and let σ :G � OA be an action
such that σg(qi) = qi for all g ∈ G and i ∈ {1, . . . , n}. For g ∈ G, denote
by uσg ∈ OA ∩ {qi | 1 ≤ i ≤ n}′ the unitary associated with σg . Assume
furthermore that

(1) ϕk(uσg ) ∈ O σ
A for all g ∈ G and k ≥ 0; and

(2) there exists a simple, nuclear C∗-subalgebra C ⊂ O σ
A containing the set

of domain projections {qi | 1 ≤ i ≤ n} such that ϕ(C) ⊂ C and the
restricted ∗-endomorphism

ϕ:C ∩ {qi | 1 ≤ i ≤ n}′ → C ∩ {qi | 1 ≤ i ≤ n}′

is not surjective.

If σ is outer, then it is strongly approximately inner.

Proof. Let g ∈ G. As uσg is fixed by σg and σng = id for some n ≥ 1, it
follows from Remark 1.6 that

unσg = σn−1
g (uσg ) . . . σg(uσg )uσg = 1.

For k ≥ 0, define unitaries ug,k ∈ O σ
A ∩ {qi | 1 ≤ i ≤ n}′ by

ug,0 = 1, ug,1 = uσg and ug,k+1 = ug,σ ϕ(ug,σ ) . . . ϕ
k(ug,σ ).

From the equality σg ◦ ϕ = Ad(uσg ) ◦ ϕ ◦ σg , it follows that

σg ◦ ϕk = Ad(ug,k) ◦ ϕk ◦ σg for all k ≥ 0.

If x ∈ O
σg
A and ϕk(x) are both fixed by σg , then this yields [ϕk(x), ug,k] = 0.

Using ϕ(C) ⊂ C ⊂ O σ
A this shows that for x ∈ C and 0 ≤ i ≤ k,

[ϕk(x), ug,i] = [ϕi(ϕk−i (x)), ug,i] = 0.
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Thus, as u∗
g,iug,i+j = ϕi(ug,j ) for all i, j ∈ N, it follows that

ϕk(x) ∈ C ∩ {
ϕi(ug,j ), q	 | g ∈ G, 0 ≤ j ≤ k, 0 ≤ i ≤ k− j, 1 ≤ 	 ≤ n

}′

for all x ∈ C∩{qi | 1 ≤ i ≤ n}′ and k ≥ 1. In particular, [ϕk(uσg ), ϕ
	(uσg )] =

0 for all k, 	 ≥ 0. Hence, ung,k = 1 for all k ≥ 0 as unσg = 1. Thus, each scalar
in the spectrum of ug,k is an n-th root of unity.

Consider the automorphic dilation of ϕ on C ∩ {qi | 1 ≤ i ≤ n}′

(B, ϕ̄) = lim−→
{
(C ∩ {qi | 1 ≤ i ≤ n}′, ϕ), ϕ}

.

By Lemma 2.4, B is a unital, simple, nuclear C∗-algebra and ϕ̄ an aperiodic
automorphism on B. By the standard construction of the inductive limit, there
exists a unital, injective and equivariant ∗-homomorphism

ρ̃: (B, ϕ̄) → (
(C ∩ {qi | 1 ≤ i ≤ n}′)∞, ϕ∞

)
with the image being the closure of

{
[(x, ϕ(x), ϕ2(x), . . .)n≥k] ∈ C∞ | x ∈ C ∩ {qi | 1 ≤ i ≤ n}′, k ≥ 1

}
.

Observe that

ρ̃(B) ⊂ (O σ
A)∞ ∩ {

ϕi(ug,j ), qk | g ∈ G, i, j ≥ 0, 1 ≤ k ≤ n
}′
.

Let ω be a free ultrafilter on N. As OA is a unital Kirchberg algebra by
Theorem 1.4, it follows from [17, Proposition 3.4] that (OA)ω ∩ O ′

A is unital,
simple and purely infinite. As σ is a pointwise outer action, so is σω; see [21,
proof of Lemma 2]. Hence, the fixed point algebra ((OA)ω ∩ O ′

A)
σω is unital,

simple and purely infinite by [18, Theorem 3.1] and [15, Theorem 3], and
therefore admits a unital embedding of O∞. Note that ϕω acts trivially on
(OA)ω ∩ O ′

A. A reindexation argument now shows the existence of a unital
embedding

ι: O∞ → (
(OA)ω ∩ (ρ(B) ∪ OA)

′)σω ,
whereρ(B) ⊂ (OA)ω denotes the image of ρ̃(B) under the canonical surjection
(OA)∞ → (OA)ω. Set D = C∗(ρ(B), ι(O∞)), which is a ϕω-invariant C∗-
subalgebra of

(O σ
A)ω ∩ {

ϕi(ug,j ), qk | g ∈ G, i, j ≥ 0, 1 ≤ k ≤ n
}′

containing the unit of (OA)ω. In fact, the assignment b⊗c �→ ρ(b) · ι(c) yields
an equivariant ∗-isomorphism

(B ⊗ O∞, ϕ̄ ⊗ id) → (D, ϕω).
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Now B ⊗ O∞ is a unital Kirchberg algebra and ϕ̄ ⊗ id is an aperiodic
automorphism, so that ϕ̄⊗ id has the Rokhlin property by [21, Theorem 1]. For
given r ≥ 1, it is thus possible to find projections e0, f0, . . . , er−1, fr−1, fr ∈
D such that

r−1∑
i=1

ei +
r∑

j=1

fj = 1; (2.2)

ϕω(ei) ≈ ei+1 and ϕω(fj ) ≈ fj+1,

for all i = 0, . . . , r − 1 and j = 1, . . . , r, (2.3)

where we set er = e0 and fr+1 = f0. By a reindexation trick, we may actually
find such elements in

(O σ
A)ω ∩ {

ϕi(ug,j ), qk | g ∈ G, i, j ≥ 0, 1 ≤ k ≤ n
}′

satisfying the second property (2.3) on the nose.
Now fix g ∈ G. As ug,r and ug,r+1 have finite spectrum, we find continuous

maps

z(i)g : [0, 1] → U
(
(O σ

A)ω ∩ {e0, f0, . . . , er−1, fr−1, fr , qj | 1 ≤ j ≤ n}′)
for i = 0, 1 such that

z(0)g (0) = ug,r , z(1)g (0) = ug,r+1 and z(0)g (1) = z(1)g (1) = 1; (2.4)

ϕkω
(
z(i)g (s)

) ∈ (O σ
A)ω ∩ {e0, f0, . . . , er−1, fr−1, fr , qj | 1 ≤ j ≤ n}′,

for all s ∈ [0, 1], i = 0, 1 and k ≥ 0; (2.5)∥∥z(i)g (s)− z(i)g (t)
∥∥ ≤ 2π |s − t |, for all s, t ∈ [0, 1] and i = 0, 1. (2.6)

Define unitaries

z
(i)
g,ji

= z(i)g (ji/(r + i)), for 0 ≤ ji ≤ r − 1 + i, i = 0, 1.

Then it follows from (2.6) that
∥∥z(i)g,ji − z

(i)
g,ji+1

∥∥ ≤ 2π/r, for all 0 ≤ ji ≤ r − 2 + i and i = 0, 1. (2.7)

Define a unitary zg ∈ U
(
(O σ

A)ω ∩ {qi | 1 ≤ i ≤ n}′) by

zg =
r−1∑
k=0

ug,kϕ
k
ω

(
z
(0)
g,k

)
ek +

r∑
	=0

ug,	ϕ
	
ω

(
z
(1)
g,	

)
f	.
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One computes that

zgϕω(zg)
∗ (2.2),(2.3),(2.4)= ug,re0ϕω(er−1)ϕ(ug,r−1)

∗ + ug,r+1f0ϕω(fr)ϕ(ug,r )
∗

+
r−1∑
k=1

ug,kϕ
k
ω

(
z
(0)
g,k

)
ekϕω(ek−1)ϕ

k
ω

(
z
(0)
g,k−1

)∗
ϕ(ug,k−1)

∗

+
r∑
	=1

ug,	ϕ
	
ω

(
z
(1)
g,	

)
f	ϕω(f	−1)ϕ

	
ω

(
z
(1)
g,	−1

)∗
ϕ(ug,	−1)

∗

(2.3),(2.5)= ug,rϕ(ur−1)
∗e0 + ug,r+1ϕ(ug,r )

∗f0

+
r−1∑
k=1

ug,kϕ
k
ω

(
z
(0)
g,k

)
ϕkω

(
z
(0)
g,k−1

)∗
ϕ(ug,k−1)

∗ek

+
r∑
	=1

ug,	ϕ
	
ω

(
z
(1)
g,	

)
ϕ	ω

(
z
(1)
g,	−1

)∗
ϕ(ug,	−1)

∗f	

(2.7)= 2π/r ug,rϕ(ug,r−1)
∗e0 + ug,r+1ϕ(ug,r )

∗f0

+
r−1∑
k=1

ug,kϕ(ug,k−1)
∗ek +

r∑
	=1

ug,	ϕ(ug,	−1)
∗f	

=
r−1∑
k=0

uσgek +
r∑
	=0

uσgf	

(2.2)= uσg .

Now let ε > 0 be given. By choosing r ∈ N so that 2π/r < ε, we may
represent zg via unitaries and thus find a unitary

wg ∈ O σ
A ∩ {qi | 1 ≤ i ≤ n}′ with ‖uσg − wgϕ(wg)

∗‖ ≤ ε.

It is easy to check that Ad(wg) = λwgϕ(wg)∗ , so that

‖σ(si)− Ad(wg)(si)‖ ≤ ε for all i ∈ {1, . . . , n}.
This yields a sequence of unitaries {wg,n}n∈N ⊂ O σ

A ∩ {qi | 1 ≤ i ≤ n}′ such
that σg = limn→∞ Ad(wg,n). The proof is complete.

Proof of Theorem 1. By Proposition 1.8(2), we may assume that for each
g ∈ G and i ∈ {1, . . . , n}, there exists some ηg,i ∈ T such that σg(si) = ηg,isi .
Then

uσg =
n∑
i=1

ηg,ipi ∈ O σ
A ∩ {qi | 1 ≤ i ≤ n}′.
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One checks that for each g ∈ G, σg ◦ϕ = ϕ◦σg so that ϕ(O σ
A) ⊂ O σ

A . As σ acts
by diagonal quasi-free automorphisms, {qi | 1 ≤ i ≤ n} is contained in O σ

A .
Furthermore, as σ is outer, O σ

A is a unital Kirchberg algebra. The assumptions
of Theorem 2.6 are thus satisfied and prove the claim, provided that

ϕ: O σ
A ∩ {qi | 1 ≤ i ≤ n}′ → O σ

A ∩ {qi | 1 ≤ i ≤ n}′.
is not surjective.

Suppose by way of contradiction that ϕ restricts to a surjective endomorph-
ism of O σ

A ∩ {qi | 1 ≤ i ≤ n}′. For i ∈ {1, . . . , n}, find xi ∈ O σ
A ∩ {qi | 1 ≤

i ≤ n}′ such that ϕ(xi) = pi . One computes that

xiqi = qixiqi = s∗i ϕ(xi)si = s∗i pisi = qi.

A similar computation shows that xiqj = 0 if j �= i. Hence, xi = qi and it
follows that

ϕ

( n∑
i=1

qi

)
=

n∑
i=1

pi = 1.

As ϕ is injective on O σ
A ∩ {qi | 1 ≤ i ≤ n}′, we conclude that

∑n
i=1 qi = 1.

This in turn implies that A is a permutation matrix, which contradicts the
assumption that A is aperiodic. The proof is complete.

Our main result also applies to unital graph C∗-algebras; see [19] for a
definition. The conditions we have to impose on the finite graphs are strong
connectedness and aperiodicity. Here, a graph is said to be strongly connected
aperiodic if there is some k ≥ 1 such that for any two of its edges v,w there
is some path of length k from v to w. The notion of quasi-free automorphisms
transfers to the setting of unital graph C∗-algebras in a straightforward manner.
In particular, we call an automorphism of a unital graph C∗-algebra diagonal
quasi-free if it preserves the span of the canonical generating partial isometries
and fixes all vertex projections.

Proof of Theorem 2. Denote by E1 the set of edges of E. The edge
matrix of E is the E1 × E1 matrix AE defined by

AE(e, f ) =
{

1, if r(e) = s(f ),

0, otherwise.

The canonical partial isometries {se | e ∈ E1} ⊂ C∗(E) define a Cuntz-
Krieger family for AE ; see [19, Section 1]. It follows that C∗(E) and OAE are
canonically isomorphic. In particular, this isomorphism intertwines (diagonal)
quasi-free automorphisms. By Theorem 1, it is thus enough to check that AE
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is aperiodic. However, this holds true asAE is the adjacency matrix of a graph,
which in turn is strongly connected aperiodic since E has this property.

In combination with Izumi’s classification theorem [13, Theorem 4.6], we
obtain from Theorem 1 that outer actions of cyclic groups with prime power
order by diagonal quasi-free automorphisms on Cuntz-Krieger algebras iso-
morphic to O2 are classifiable in terms of their fixed point algebras and some ad-
ditional information about their dual actions, provided the associated matrices
are aperiodic. In the case of Z2-actions, the latter information is not needed.
We thus derive Corollary 1.

Proof of Corollary 1. The claim follows by combining Theorem 1,
[13, Theorem 4.8] and Kirchberg-Phillips classification [16], [23].
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