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HARDY INEQUALITIES FOR LANDAU
HAMILTONIAN AND FOR BAOUENDI-GRUSHIN

OPERATOR WITH AHARONOV-BOHM TYPE
MAGNETIC FIELD. PART I

ARI LAPTEV, MICHAEL RUZHANSKY and NURGISSA YESSIRKEGENOV

Abstract
In this paper we prove the Hardy inequalities for the quadratic form of the Laplacian with the
Landau Hamiltonian type magnetic field. Moreover, we obtain a Poincaré type inequality and
inequalities with more general families of weights. Furthermore, we establish weighted Hardy
inequalities for the quadratic form of the magnetic Baouendi-Grushin operator for the magnetic
field of Aharonov-Bohm type. For these, we show refinements of the known Hardy inequalities
for the Baouendi-Grushin operator involving radial derivatives in some of the variables. The
corresponding uncertainty type principles are also obtained.

1. Introduction

The purpose of this paper is to prove the weighted Hardy inequality for the
quadratic form of the Landau Hamiltonian type and for the magnetic Baouendi-
Grushin operator with Aharonov-Bohm type magnetic field. In Part II of this
paper we investigate and present the corresponding Caffarelli-Kohn-Nirenberg
inequalities for the Landau Hamiltonian and for the Baouendi-Grushin oper-
ator, with and without magnetic fields.

The classical Hardy inequality for functions f ∈ C∞
0 (R

n \ {0}) is∫
Rn

|∇f (w)|2 dw ≥
(
n− 2

2

)2 ∫
Rn

|f (w)|2
|w|2 dw, n ≥ 3, (1)

where the constant ((n− 2)/2)2 is sharp but not attained. There exists a large
literature concerning different versions of Hardy’s inequalities and their ap-
plications. However, since we are interested in the inequalities associated with
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the Landau Hamiltonian and with the Baouendi-Grushin operator, let us only
recall known results in these directions.

1.1. Baouendi-Grushin operator

The Hardy inequality (1) has been generalised for Baouendi-Grushin vector
fields by Garofalo [10],∫

Rn
|∇xf |2 + |x|2γ |∇yf |2 dx dy

≥
(
Q− 2

2

)2 ∫
Rn

( |x|2γ
|x|2+2γ + (1 + γ )2|y|2

)
|f |2 dx dy, (2)

where x ∈ Rm, y ∈ Rk , with n = m+ k,m, k ≥ 1, γ ≥ 0,Q = m+ (1 + γ )k
and f ∈ C∞

0 (R
m × Rk \ {(0, 0)}). Here, ∇xf and ∇yf are the gradients of

f in the variables x and y, respectively. The inequality (2) recovers (1) when
γ = 0.

Let us put this result in perspective. Let z = (x1, . . . , xm, y1, . . . , yk) =
(x, y) ∈ Rm × Rk with k,m ≥ 1, k +m = n and γ ≥ 0. Let us consider the
vector fields

Xi = ∂

∂xi
, i = 1, . . . , m, Yj = |x|γ ∂

∂yj
, j = 1, . . . , k.

The corresponding sub-elliptic gradient, which is the n-dimensional vector
field, is then defined as

∇γ := (X1, . . . , Xm, Y1, . . . , Yk) = (∇x, |x|γ∇y). (3)

The Baouendi-Grushin operator on Rm+k is defined by

�γ =
m∑
i=1

X2
i +

k∑
j=1

Y 2
j = �x + |x|2γ�y = ∇γ · ∇γ ,

where�x and�y are the Laplace operators in the variables x ∈ Rm andy ∈ Rk ,
respectively. The Baouendi-Grushin operator for an even positive integer γ is
a sum of squares of C∞ vector fields satisfying the Hörmander condition

rank Lie[X1, . . . , Xm, Y1, . . . , Yk] = n.

We can define on Rm+k the anisotropic dilation attached to �γ as

δλ(x, y) = (λx, λ1+γ y)
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for λ > 0, and the homogeneous dimension with respect to this dilation is

Q = m+ (1 + γ )k. (4)

A change of variables formula for the Lebesgue measure implies that

d ◦ δλ(x, y) = λQ dx dy.

It is easy to check that

Xi(δλ) = λδλ(Xi), Yi(δλ) = λδλ(Yi),

and hence
∇γ ◦ δλ = λδλ∇γ .

Let ρ(z) be the corresponding distance function from the origin for z =
(x, y) ∈ Rm × Rk:

ρ = ρ(z) := (|x|2(1+γ ) + (1 + γ )2|y|2)1/(2(1+γ )). (5)

By a direct calculation one obtains

|∇γ ρ| = |x|γ
ργ

. (6)

The described setup may be thought of as a special case of the setting of
homogeneous groups, see e.g. [8].

The weightedLp-versions of (2) have been obtained by D’Ambrosio [5]: let
� ⊂ Rn be an open set. Let p > 1, k,m ≥ 1, α, β ∈ R be such that m+ (1 +
γ )k > α−β andm > γp−β. Then for everyf ∈ D1,p

γ (�, |x|β−γpρ(1+γ )p−α),
we have∫

�

|∇γ f |p|x|β−γpρ(1+γ )p−α dx dy ≥
(
Q+ β − α

p

)p ∫
�

|f |p |x|β
ρα

dx dy,

(7)
where D1,p

γ (�, ω) denotes the closure of C∞
0 (�) in the norm(∫

�

|∇γ f |pω dz dy
)1/p

for ω ∈ L1
loc(�) with ω > 0 a.e. on �.

If 0 ∈ �, then the constant
(
Q+β−α

p

)p
in (7) is sharp. The inequality (7)

has also been established in [15], and in [26] for � = Rn with sharp constant.
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Moreover, in [26], a Hardy-Rellich type inequality for the Baouendi-Grushin
operator is obtained in L2 with sharp constant:(

Q− α − 2

2

)2 ∫
Rn

|∇γ f |2ρα ≤
∫
Rn

|�γf |2ρα+2|∇γ ρ|−2,

where p > 1, 2−Q
3 ≤ α ≤ Q− 2 and f ∈ C∞

0 (R
n \ {0}).

The inequalities of this type have been also studied for some sub-elliptic
operators of different types (see e.g. [10], [11], [6], [5], [18], [14] and [7]). For
Hardy and Caffarelli-Kohn-Nirenberg inequalities on more general homogen-
eous Carnot groups and the literature review including the Heisenberg group
we refer to [23], [21], for the anisotropic versions of the usual L2 and Lp

Cafarelli-Kohn-Nirenberg inequalities we refer to [20] and [19], respectively,
and for Hardy inequalities for more general sums of squares of vector fields
we refer to [22].

Here we obtain the following refinement of Hardy inequalities for the
Baouendi-Grushin operator:

Weighted refined Hardy inequalities for Grushin operators. Let
(x, y) = (x1, . . . , xm, y1, . . . , yk) ∈ Rm × Rk with k,m ≥ 1, k +m = n. Let
Q + α1 − 2 > 0 and m + γα2 > 0. Then we have the following Hardy type
inequality for all complex-valued functions f ∈ C∞

0 (R
n \ {0}):∫

Rn
ρα1 |∇γ ρ|α2

(∣∣∣∣ dd|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dx dy

≥
(
Q+ α1 − 2

2

)2 ∫
Rn
ρα1 |∇γ ρ|α2

|∇γ ρ|2
ρ2

|f |2 dx dy, (8)

where the constant ((Q+ α1 − 2)/2)2 is sharp.

Already in the absence of weights, i.e. for α1 = α2 = 0, the estimate (8)
is new. The obtained family of inequalities extends the known case of k = 0
when one has the classical Hardy inequality (1), and the case of m = 0 when
one has the radial version established in [13], see also [17] (always for γ = 0).
We note that since we can estimate

∣∣ d
d|x|f

∣∣ ≤ |∇xf |, inequality (8) also gives
a refinement to the inequality (7) for p = 2.

The estimate (8), in addition to its own interest, will play an important role
in the derivation of estimates for magnetic operators.

1.2. Magnetic Baouendi-Grushin operator

In [16] and [4], Hardy inequalities for some magnetic forms were obtained.
For example, in [4] for the quadratic form of the following magnetic Grushin



HARDY INEQUALITIES FOR MAGNETIC OPERATORS 243

operator
GA = −(∇G + iβA0)

2,

the following Hardy inequality for − 1
2 ≤ β ≤ 1

2 was proved:∫
R3

|(∇G + iβA0)f |2 dz dt ≥ (1 + β2)

∫
R3

|z|2
d4

|f |2 dz dt, (9)

where

A0 = (A1,A2,A3,A4) =
(

−∂yd
d
,
∂xd

d
,−2y

∂td

d
, 2x

∂td

d

)
,

∇G = (∂x, ∂y, 2x∂t , 2y∂t ) with z = (x, y), |z| = √
x2 + y2, β ∈ R is a “flux”

and d(z, t) = (|z|4 + t2)1/4 is the Kaplan distance.
The following results extend the estimate (9). While the most physical

setting is y ∈ R1, we can obtain the results for any y ∈ Rk .
Hardy inequality for the magnetic Baouendi-Grushin operator.

Let (x, y) = (x1, x2, y) ∈ R2 ×Rk . Let α1, α2, β ∈ R be such that α1 +k(γ +
1) > 0, α2γ + 2 > 0 and −1/2 ≤ β ≤ 1/2. Let us define the Aharonov-Bohm
type magnetic field

Ã :=
(

−∂x2ρ

ρ
,
∂x1ρ

ρ
,−|x|γ√

2

∇yρ

ρ
,
|x|γ√

2

∇yρ

ρ

)
,

and the corresponding gradient

∇̃γ =
(
∂

∂x1
,
∂

∂x2
,
|x|γ√

2
∇y,

|x|γ√
2

∇y

)
.

Then for any complex-valued functionf ∈ C∞
0 (R

2+k\{0}), we have the follow-
ing weighted Hardy inequality for the magnetic Baouendi-Grushin operator:∫

R2+k
ρα1
∣∣∇̃γ ρ

∣∣α2
∣∣(∇̃γ + iβÃ

)
f
∣∣2 dx dy

≥
((

α1 + k(γ + 1)

2

)2

+ β2

)∫
R2+k

ρα1
∣∣∇̃γ ρ

∣∣α2 |x|2γ
ρ2γ+2

|f |2 dx dy,

where the constant
((
α1+k(γ+1)

2

)2 + β2
)

is sharp (so that the constant in (9) is
actually also sharp).

Uncertainty type principle. Let (x, y) = (x1, x2, y) ∈ R2 × Rk . Let
α1, α2, β ∈ R be such that α1 + k(γ + 1) > 0, α2γ + 2 > 0 and −1/2 ≤ β ≤
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1/2. Then for any complex-valued function f ∈ C∞
0 (R

2+k \ {0}), we have∥∥ρα1/2
∣∣∇̃γ ρ

∣∣α2/2(∇̃γ + iβÃ
)
f
∥∥
L2(R2+k)‖f ‖L2(R2+k)

≥
((

α1 + k(γ + 1)

2

)2

+ β2

)1/2 ∫
R2+k

ρα1/2
∣∣∇̃γ ρ

∣∣α2/2 |x|γ
ργ+1

|f |2 dx dy.

Magnetic Baouendi-Grushin operator with constant magnetic
field. In Remark 3.9, we also give inequalities for the magnetic Baouendi-
Grushin operator on Cn with the constant magnetic field

LG =
n∑
j=1

(
i∂xj + ψ1,j (yj )

)2 + (
i|x|γ ∂yj + ψ2,j (xj )

)2
.

1.3. Landau Hamiltonian

Let us recall that the Landau Hamiltonian (or the twisted Laplacian) on Cn is
defined as

L =
n∑
j=1

[(
i∂xj + 1

2
yj

)2

+
(
i∂yj − 1

2
xj

)2]
.

Setting

X̃j = ∂xj − 1

2
iyj and Ỹj = ∂yj + 1

2
ixj ,

we have

L = −
n∑
j=1

(X̃2
j + Ỹ 2

j ).

The twisted Laplacian can be also written as L = −�+ 1
4 (|x|2 +|y|2)+ iN ,

where

N =
n∑
j=1

(yj ∂xj − xj∂yj )

is the rotation field. Let ∇L be the gradient operator associated with L :

∇L f = (
X̃1f, . . . , X̃nf, Ỹ1f, . . . , Ỹnf

)
.

Let W 1,2
L
(Cn) be the Sobolev space defined by

W
1,2

L
(Cn) = {

f ∈ L2(Cn) : X̃jf, Ỹjf ∈ L2(Cn), 1 ≤ j ≤ n
}
. (10)
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In the recent paper [2], a version of the Hardy inequality for the twisted
Laplacian with Landau Hamiltonian magnetic field was established for real-
valued functions f ∈ W 1,2

L
(Cn), namely, the inequality

1

4

∫
Cn

|f |2ω(z) dz ≤
∫
Cn

|∇L f |2 dz,

with the weight

ω(z) = |∇LE|2
E2

+ |z|2
4
,

where E is a fundamental solution to the twisted Laplacian on Cn.
In this paper we obtain the versions of Hardy inequalities for the Landau

Hamiltonian for both complex-valued and real-valued functions.
In fact, we obtain results for operators L̃ ψ of the form

L̃ ψ =
n∑
j=1

[(
i∂xj + ψ(|z|)yj

)2 + (
i∂yj − ψ(|z|)xj

)2
]
,

where ψ(|z|) is a radial real-valued differentiable function satisfying some
conditions, and z = (x, y). Setting

X̌j = ∂xj − iψ(|z|)yj and Y̌j = ∂yj + iψ(|z|)xj ,
we write ∇̃Lψ

f = (
X̌1f, . . . , X̌nf, Y̌1f, . . . , Y̌nf

)
.

As usual, we will identify C ∼= R2.

Hardy inequalities for the Landau-Hamiltonian L̃ ψ . Let ψ =
ψ(|z|) be a radial real-valued function such that ψ ∈ L2

loc(C \ {0}) with

|ψ(r)|r2 ≤ 1
2 , ∀r ∈ (0,∞). (11)

Then we have the following inequalities:

(i) Hardy-Sobolev inequality. For any θ1 ∈ R \ {0} we have∫
C

∣∣∇̃L f
∣∣2

|z|2θ1
dz− θ2

1

∫
C

|f |2
|z|2θ1+2

dz ≥
∫
C

ψ(|z|)2
|z|2θ1−2

|f |2 dz,

for all complex-valued functions f ∈ C∞
0 (R

2 \ {0}).
(ii) Logarithmic Hardy inequality. We have∫

C

∣∣∇̃L f
∣∣2∣∣log |z|∣∣2 dz− 1

4

∫
C

|f |2 dz ≥
∫
C
ψ(|z|)2|z|2∣∣log |z|∣∣2|f |2dz,

for all complex-valued functions f ∈ C∞
0 (R

2 \ {0}).
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(iii) Poincaré inequality. Let � be a bounded domain in C and R =
supz∈�{|z|}. Then we have∫

�

∣∣∇̃L f
∣∣2 dz− 1

R2

∫
�

|f |2 dz ≥
∫
�

ψ(|z|)2|z|2|f |2 dz,

for all complex-valued functions f ∈ �̂1,2
0 (�) satisfying df/d|z| ∈

L2(�), where the space �̂1,2
0 (�) is defined in (40).

(iv) Hardy-Sobolev inequality with superweights. Let θ2, θ3, θ4, a,

b ∈ R with a, b > 0, θ2θ3 < 0 and 2θ4 ≤ θ2θ3. Then we have∫
C

(a + b|z|θ2)θ3

|z|2θ4

∣∣∇̃L f
∣∣2 dz ≥ θ2θ3 − 2θ4

2

∫
C

(a + b|z|θ2)θ3

|z|2θ4+2
|f |2 dz,

for all complex-valued functions f ∈ C∞
0 (R

2 \ {0}). Weights of this type
have appeared in [12], as well as in [24], and are called the superweights
due to the freedom in the choice of indices.

If one is interested in all the inequalities above only for real-valued functions
f then assumption (11) is not needed, see Remark 3.6.

The Hardy inequalities for a magnetic Baouendi-Grushin operator with
Aharonov-Bohm type magnetic field are proved in Section 2. In Section 3
we prove the Hardy inequalities for the twisted Laplacian with the Landau-
Hamiltonian type magnetic field.

2. Weighted Hardy inequalities for magnetic Baouendi-Grushin
operator with Aharonov-Bohm type magnetic field

In this section we establish weighted Hardy inequalities for the quadratic form
of the magnetic Baouendi-Grushin operator with Aharonov-Bohm type mag-
netic field. We adapt all the notation introduced in Sections 1.1 and 1.2, namely,
∇γ , ρ and Q defined in (3), (5) and (4), respectively. Recalling these for con-
venience of the reader, we have

∇γ = (∇x, |x|γ∇y), (x, y) ∈ Rm × Rk, Q = m+ (1 + γ )k, γ ≥ 0,

and the magnetic field A is defined here as

A = ∇γ ρ

ρ
=
(∇xρ

ρ
, |x|γ ∇yρ

ρ

)
∈ Rm × Rk. (12)

We start with a simple inequality showing the best constants one can expect.
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Lemma 2.1. Let � ⊂ Rn be an open set. Let (x, y) = (x1, . . . , xm,

y1, . . . , yk) ∈ Rm × Rk with k,m ≥ 1, k + m = n. Let α1, α2, β ∈ R be
such that

Q+ α1 − 2 > 0 and m+ α2γ > 0.

Then for any real-valued functionf ∈ C∞
0 (�), we have the following weighted

Hardy inequality for the magnetic Baouendi-Grushin operator∫
�

ρα1 |∇γ ρ|α2 |(∇γ + iβA )f |2 dx dy

≥
((

Q+ α1 − 2

2

)2

+ β2

)∫
�

ρα1 |∇γ ρ|α2
|x|2γ
ρ2γ+2

|f |2 dx dy, (13)

Moreover, if 0 ∈ �, then the constant in (13) is sharp.

Proof. By opening brackets we have∫
�

ρα1 |∇γ ρ|α2 |(∇γ + iβA )f |2 dx dy

=
∫
�

ρα1 |∇γ ρ|α2 |∇γ f |2 dx dy + β2
∫
�

ρα1 |∇γ ρ|α2 |Af |2 dx dy. (14)

Taking into account (6) and putting p = 2, α = γ (α2 + 2) + 2 − α1 and
β = γ (α2 + 2) in (7), we have for anyQ+ α1 − 2 > 0 andm+ α2γ > 0 that∫

�

ρα1 |∇γ ρ|α2 |∇γ f |2 dx dy

≥
(
Q+ α1 − 2

2

)2 ∫
�

ρα1 |∇γ ρ|α2
|∇γ ρ|2
ρ2

|f |2 dx dy. (15)

Taking into account the form of the magnetic field A = (A1,A2) =(∇xρ
ρ
, |x|γ ∇yρ

ρ

)
in (12), and by a direct calculation one finds

β2
∫
�

ρα1 |∇γ ρ|α2 |Af |2 dx dy

= β2
∫
�

ρα1 |∇γ ρ|α2
|∇xρ|2 + |x|2γ |∇yρ|2

ρ2
|f |2 dx dy

= β2
∫
�

ρα1 |∇γ ρ|α2
|∇γ ρ|2
ρ2

|f |2 dx dy. (16)
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Then by (14), (15) and (16) we obtain∫
�

ρα1 |∇γ ρ|α2 |(∇γ + iβA )f |2 dz

≥
((

Q+ α1 − 2

2

)2

+ β2

)∫
�

ρα1 |∇γ ρ|α2
|∇γ ρ|2
ρ2

|f |2 dx dy. (17)

Then using (6), we observe that (17) yields (13). Since the constant in (15) is
sharp when 0 ∈ � by (7), then the constant in the obtained inequality is sharp
when 0 ∈ �. The proof of Lemma 2.1 is complete.

We obtain the following corollary inR2+k for theAharonov-Bohm potential
of the type considered in [4].

Corollary 2.2. Let � ⊂ R2+k be an open set. Let (x, y) = (x1, x2, y) ∈
R2 ×Rk . Let α1, α2, β ∈ R be such that α1 + k(γ + 1) > 0 and α2γ + 2 > 0.
Then for any real-valued functionf ∈ C∞

0 (�) and for the following Aharonov-
Bohm type magnetic field

Ã =
(

−∂x2ρ

ρ
,
∂x1ρ

ρ
,−|x|γ√

2

∇yρ

ρ
,
|x|γ√

2

∇yρ

ρ

)
, (18)

we have the following weighted Hardy inequality for the magnetic Baouendi-
Grushin operator∫

�

ρα1
∣∣∇̃γ ρ

∣∣α2
∣∣(∇̃γ + iβÃ

)
f
∣∣2 dx dy

≥
((

α1 + k(γ + 1)

2

)2

+ β2

)∫
�

ρα1
∣∣∇̃γ ρ

∣∣α2 |x|2γ
ρ2γ+2

|f |2 dx dy, (19)

where
∇̃γ =

(
∂

∂x1
,
∂

∂x2
,
|x|γ√

2
∇y,

|x|γ√
2

∇y

)
. (20)

Moreover, if 0 ∈ �, then the constant
((
α1+k(γ+1)

2

)2 + β2
)

in (19) is sharp.

Proof. In this case m = 2, then Q = 2 + k(1 + γ ). Since we have∣∣Ãf
∣∣2 = |Af |2,

∣∣∇̃γ ρ
∣∣ = |∇γ ρ| and

∣∣∇̃γ f
∣∣2 = |∇γ f |2, then in the exact

same way as in the proof of the Lemma 2.1 one obtains (19). The proof of
Corollary 2.2 is complete.

As another corollary of Lemma 2.1, we obtain the following uncertainty
principle.

Corollary 2.3 (Uncertainty type principle). Let (x, y) = (x1, . . . , xm,

y1, . . . , yk) ∈ Rm × Rk with k,m ≥ 1, k + m = n. Let � ⊂ Rn be an open
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set. Let α1, α2, β ∈ R be such that Q+ α1 − 2 > 0 and m+ α2γ > 0. Then
for any real-valued function f ∈ C∞

0 (�), we have∥∥ρα1/2|∇γ ρ|α2/2(∇γ + iβA )f
∥∥
L2(�)

‖f ‖L2(�)

≥
((

Q+ α1 − 2

2

)2

+ β2

)1/2 ∫
�

ρα1/2|∇γ ρ|α2/2
|x|γ
ργ+1

|f |2 dx dy.

Proof. By Lemma 2.1 we get∥∥ρα1/2|∇γ ρ|α2/2(∇γ + iβA )f
∥∥
L2(�)

‖f ‖L2(�)

≥
((

Q+ α1 − 2

2

)2

+ β2

)1/2∥∥∥∥ρα1/2|∇γ ρ|α2/2
|x|γ
ργ+1

f

∥∥∥∥
L2(�)

‖f ‖L2(�)

≥
((

Q+ α1 − 2

2

)2

+ β2

)1/2 ∫
�

ρα1/2|∇γ ρ|α2/2
|x|γ
ργ+1

|f |2 dx dy.

The proof of Corollary 2.3 is complete.

We now give the main theorem of this section for complex-valued func-
tions f .

Theorem 2.4. Let (x, y) = (x1, x2, y) ∈ R2 × Rk . Let α1, α2, β ∈ R be
such that α1 + k(γ + 1) > 0, α2 + 2γ > 0 and −1/2 ≤ β ≤ 1/2. Recall ∇̃γ ,
Ã and ρ defined in (20), (18) and (5), respectively.

Then for any complex-valued function f ∈ C∞
0 (R

2+k \ {0}), we have the
following weighted Hardy inequality for the magnetic Baouendi-Grushin op-
erator:∫
R2+k

ρα1
∣∣∇̃γ ρ

∣∣α2
∣∣(∇̃γ + iβÃ

)
f
∣∣2 dx dy

≥
((

α1 + k(γ + 1)

2

)2

+ β2

)∫
R2+k

ρα1
∣∣∇̃γ ρ

∣∣α2 |x|2γ
ρ2γ+2

|f |2 dx dy, (21)

and the constant
(
α1+k(γ+1)

2

)2 + β2 is sharp.

The proof of Theorem 2.4 will be based on the following theorem:

Theorem 2.5. Let (x, y) = (x1, . . . , xm, y1, . . . , yk) ∈ Rm × Rk with
k,m ≥ 1, k +m = n. Let α1, α2 ∈ R be such that

Q+ α1 − 2 > 0 and m+ γα2 > 0.
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Then we have the following Hardy type inequality for all complex-valued func-
tions f ∈ C∞

0 (R
n \ {0}):∫

Rn
ρα1 |∇γ ρ|α2

(∣∣∣∣ dd|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dx dy

≥
(
Q+ α1 − 2

2

)2 ∫
Rn
ρα1 |∇γ ρ|α2

|∇γ ρ|2
ρ2

|f |2 dx dy, (22)

with sharp constant
(
Q+α1−2

2

)2
.

Remark 2.6. Theorem 2.5 implies the following inequality∫
Rn
ρα1 |∇γ ρ|α2

(|∇xf |2 + |x|2γ |∇yf |2) dx dy
≥
(
Q+ α1 − 2

2

)2 ∫
Rn
ρα1 |∇γ ρ|α2

|∇γ ρ|2
ρ2

|f |2 dx dy, (23)

with sharp constant, which gives the result of D’Ambrosio (7) when p = 2
and� = Rn. We also mention that inequality (23) has been established in [15]
and [26].

Proof of Theorem 2.5. We write r = |x| and B(r, y) = ρα1 |∇γ ρ|α2 .
Then, using (5) and (6), one has

B(r, y) = ρα1 |∇γ ρ|α2 = rα2γ ρα1−α2γ = rα2γ
(
r2(1+γ ) + (1 + γ )2|y|2) α1−α2γ

2(1+γ ) .

(24)
Let us first calculate the following∫

Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ

∣∣∣∣(∇y + α
∇yρ

ρ

)
f

∣∣∣∣2)rm−1B(r, y) dr dy

=
∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2)rm−1B(r, y) dr dy

+ α2
∫
Rk

∫ ∞

0

(∣∣∣∣∂rρρ
∣∣∣∣2 + r2γ

∣∣∣∣∇yρ

ρ

∣∣∣∣2)|f |2rm−1B(r, y) dr dy

+ 2α Re
∫
Rk

∫ ∞

0

∂rρ

ρ
rm−1B(r, y) ∂rf · f dr dy

+ 2α Re
∫
Rk

∫ ∞

0

∇yρ

ρ
· ∇yf r

2γ+m−1B(r, y)f dr dy

=: I1 + I2 + I3 + I4.

(25)
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Using
∂rρ

ρ
= r2γ+1

ρ2γ+2
and

∇yρ

ρ
= (γ + 1)y

ρ2γ+2
,

we calculate∣∣∣∣∂rρρ
∣∣∣∣2 +r2γ

∣∣∣∣∇yρ

ρ

∣∣∣∣2 = r4γ+2 + r2γ (γ + 1)2|y|2
ρ4γ+4

= r2γ

ρ2γ+2
= |∇γ ρ|2

ρ2
. (26)

Thus, we obtain

I2 = α2
∫ ∞

−∞

∫ ∞

0

|∇γ ρ|2
ρ2

|f |2rm−1B(r, y) dr dy. (27)

Now we proceed using integration by parts for I3,

I3 = −α
∫
Rk

∫ ∞

0
(2γ +m+ γα2)ρ

α1−α2γ−2γ−2r2γ+m−1+γα2 |f |2 dr dy

− α

∫
Rk

∫ ∞

0
(α1 − α2γ − 2γ − 2)ρα1−α2γ−4γ−4r4γ+m+γα2+1|f |2 dr dy.

Since B(r, y) = rα2γ ρα1−α2γ by (24), then we have

I3 = −α
∫
Rk

∫ ∞

0

(
(2γ +m+ γα2)

r2γ

ρ2γ+2
+ (α1 − α2γ − 2γ − 2)

r4γ+2

ρ4γ+4

)
× rm−1B(r, y)|f |2 dr dy

= −α
∫
Rk

∫ ∞

0

(
2γ +m+ γα2 + (α1 − α2γ − 2γ − 2)

r2γ+2

ρ2γ+2

) |∇γ ρ|2
ρ2

× |f |2rm−1B(r, y) dr dy.

Similarly, we have for I4

I4 = −α
∫
Rk

∫ ∞

0
divy

(
B(r, y)

∇yρ

ρ

)
r2γ+m−1|f |2 dr dy

= −α(γ + 1)
∫
Rk

∫ ∞

0
divy

(
ρα1−α2γ−2γ−2y

)
rα2γ+2γ+m−1|f |2 dr dy

= −α
∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)ρα1−α2γ−2γ−3 (γ + 1)2|y|2

ρ2γ+1

)
× rα2γ+2γ+m−1|f |2 dr dy

− α

∫
Rk

∫ ∞

0
k(γ + 1)ρα1−α2γ−2γ−2rα2γ+2γ+m−1|f |2 dr dy.
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Since r2γ

ρ2γ+2 = |∇γ ρ|2
ρ2 and B(r, y) = rα2γ ρα1−α2γ by (26) and (24), respectively,

then we obtain

I4 = −α
∫
Rk

∫ ∞

0

(
(α1 − α2γ − 2γ − 2)

(γ + 1)2|y|2
ρ2γ+2

+ k(γ + 1)

)
× |∇γ ρ|2

ρ2
|f |2rm−1B(r, y) dr dy.

Then, taking into account the definition (5), we get

I3 + I4

= −α
∫
Rk

∫ ∞

0

(
α1 − α2γ − 2γ − 2 + 2γ +m+ γα2 + k(γ + 1)

) |∇γ ρ|2
ρ2

× |f |2rm−1B(r, y) dr dy,

and using that Q = m+ (1 + γ )k in (4), one has

I3 + I4 = −α
∫
Rk

∫ ∞

0
(Q+ α1 − 2)

|∇γ ρ|2
ρ2

|f |2rm−1B(r, y) dr dy. (28)

Putting (27) and (28) in (25), we have∫
Rk

∫ ∞

0

(∣∣∣∣(∂r + α
∂rρ

ρ

)
f

∣∣∣∣2 + r2γ

∣∣∣∣(∇y + α
∇yρ

ρ

)
f

∣∣∣∣2)rm−1B(r, y) dr dy

=
∫
Rk

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2)rm−1B(r, y) dr dy

− (
(Q+ α1 − 2)α − α2

) ∫
Rk

∫ ∞

0

|∇γ ρ|2
ρ2

|f |2rm−1B(r, y) dr dy.

By substituting α = Q+α1−2
2 and taking into account (24), we obtain (22).

Let us now show the sharpness of the constant in (22). Taking into ac-
count (15) and (22), we have∫

Rn
ρα1 |∇γ ρ|α2

(|∇xf |2 + |x|2γ |∇yf |2) dx dy
≥
∫
Rn
ρα1 |∇γ ρ|α2

(∣∣∣∣ dd|x|f
∣∣∣∣2 + |x|2γ |∇yf |2

)
dx dy

≥
(
Q+ α1 − 2

2

)2 ∫
Rn
ρα1 |∇γ ρ|α2

|∇γ ρ|2
ρ2

|f |2 dx dy,
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which proves the constant
(
Q+α1−2

2

)2
in (22) is sharp. Thus, we have completed

the proof of Theorem 2.5.

We are now ready to prove Theorem 2.4.

Proof of Theorem 2.4. Using polar coordinates for the x-plane, x1 =
r cosφ, x2 = r sin φ, we have r = |x| and

∂x1ρ

ρ
= r2γ+1 cosφ

r2(1+γ ) + (1 + γ )2|y|2 ,

∂x2ρ

ρ
= r2γ+1 sin φ

r2(1+γ ) + (1 + γ )2|y|2 ,

∇yρ

ρ
= (1 + γ )y

r2(1+γ ) + (1 + γ )2|y|2 .

Thus, we can write∫
R2+k

ρα1
∣∣∇̃γ ρ

∣∣α2
∣∣(∇̃γ + iβÃ

)
f
∣∣2 dx1 dx2 dy =: I1 + I2, (29)

where

I1 =
∫
Rk

∫ 2π

0

∫ ∞

0

∣∣∣∣(cosφ∂r − sin φ

r
∂φ − iβ

r2γ+1 sin φ

r2(1+γ ) + (1 + γ )2|y|2
)
f

∣∣∣∣2
× rB(r, y) dr dφ dy

+
∫
Rk

∫ 2π

0

∫ ∞

0

∣∣∣∣(sin φ∂r + cosφ

r
∂φ + iβ

r2γ+1 cosφ

r2(1+γ ) + (1 + γ )2|y|2
)
f

∣∣∣∣2
× rB(r, y) dr dφ dy

and

I2 = 1

2

∫
Rk

∫ 2π

0

∫ ∞

0

∣∣∣∣(∇y − iβ
(1 + γ )y

r2(1+γ ) + (1 + γ )2|y|2
)
f

∣∣∣∣2
× r2γ+1B(r, y) dr dφ dy

+ 1

2

∫
Rk

∫ 2π

0

∫ ∞

0

∣∣∣∣(∇y + iβ
(1 + γ )y

r2(1+γ ) + (1 + γ )2|y|2
)
f

∣∣∣∣2
× r2γ+1B(r, y) dr dφ dy.
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By opening brackets, we obtain

I1 =
∫
Rk

∫ 2π

0

∫ ∞

0

(
|∂rf |2 + |∂φf |2

r2
+ β2r4γ+2|f |2
(r2(1+γ ) + (1 + γ )2|y|2)2

)
× rB(r, y) dr dφ dy

+ 2 Re
∫
Rk

∫ 2π

0

∫ ∞

0

(
∂φf

r
· iβr2γ+1f

r2(1+γ ) + (1 + γ )2|y|2
)
rB(r, y) dr dφ dy

=
∫
Rk

∫ 2π

0

∫ ∞

0

(
|∂rf |2 + 1

r2

∣∣∣∣∂φf + iβ
r2γ+2

r2(1+γ ) + (1 + γ )2|y|2 f
∣∣∣∣2)

× rB(r, y) dr dφ dy

and

I2 =
∫
Rk

∫ 2π

0

∫ ∞

0
|∇yf |2r2γ+1B(r, y) dr dφ dy

+ β2(1 + γ )2
∫
Rk

∫ 2π

0

∫ ∞

0

|y|2|f |2
(r2(1+γ ) + (1 + γ )2|y|2)2

× r2γ+1B(r, y) dr dφ dy.

Using the Fourier series for f , we can expand

f (r, φ, y) =
∞∑

k=−∞
fk(r, y)e

ikφ,

and by a direct calculation, we get

1

r2

∫ 2π

0

∣∣∣∣∂φf + iβ
r2γ+2

r2(1+γ ) + (1 + γ )2|y|2 f
∣∣∣∣2 dφ

= 2π

r2

∞∑
k=−∞

(
k + β

r2γ+2

r2(1+γ ) + (1 + γ )2|y|2
)2

|fk(r, y)|2

≥ 2π

r2
min
k

(
k + β

r2γ+2

r2(1+γ ) + (1 + γ )2|y|2
)2 ∞∑

k=−∞
|fk(r, y)|2

= 1

r2
min
k

(
k + β

r2γ+2

r2(1+γ ) + (1 + γ )2|y|2
)2 ∫ 2π

0
|f |2 dφ

= β2 r4γ+2

(r2(1+γ ) + (1 + γ )2|y|2)2
∫ 2π

0
|f |2 dφ.
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Now putting the obtained estimates for I1 and I2 in (29), we have∫
R2+k

ρα1
∣∣∇̃γ ρ

∣∣α2
∣∣(∇̃γ + iβÃ

)
f
∣∣2 dx1 dx2 dy

≥
∫
Rk

∫ 2π

0

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2)rB(r, y) dr dφ dy
+ β2

∫
Rk

∫ 2π

0

∫ ∞

0

(
r4γ+2 + (1 + γ )2|y|2r2γ

(r2γ+2 + (1 + γ )2|y|2)2
)

|f |2rB(r, y) dr dφ dy

=
∫
Rk

∫ 2π

0

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2)rB(r, y) dr dφ dy
+ β2

∫
Rk

∫ 2π

0

∫ ∞

0

r2γ

r2γ+2 + (1 + γ )2|y|2 |f |2rB(r, y) dr dφ dy.
(30)

Since |∇̃γ ρ| = |∇γ ρ|, then puttingm = 2 in (15) and taking into account (24),
we obtain the following estimate for the first integral in (30):∫

Rk

∫ 2π

0

∫ ∞

0

(|∂rf |2 + r2γ |∇yf |2)rB(r, y) dr dφ dy
≥
(
α1 + k(γ + 1)

2

)2 ∫
R2+k

ρα1 |∇̃γ ρ|α2
|∇̃γ ρ|2
ρ2

|f |2 dx dy. (31)

Let us calculate the second integral in (30)

β2
∫
Rk

∫ 2π

0

∫ ∞

0

r2γ

r2γ+2 + (1 + γ )2|y|2 |f |2rB(r, y) dr dφ dy

= β2
∫
Rk

∫ 2π

0

∫ ∞

0

r4γ+2 cos2 φ

(r2γ+2 + (1 + γ )2|y|2)2 |f |2rB(r, y) dr dφ dy

+ β2
∫
Rk

∫ 2π

0

∫ ∞

0

r4γ+2 sin2 φ

(r2γ+2 + (1 + γ )2|y|2)2 |f |2rB(r, y) dr dφ dy

+ β2
∫
Rk

∫ 2π

0

∫ ∞

0

(1 + γ )2r2γ |y|2
(r2γ+2 + (1 + γ )2|y|2)2 |f |2rB(r, y) dr dφ dy

= β2
∫
R2+k

ρα1 |∇̃γ ρ|α2

∣∣∣∣(∂x1ρ

ρ
,
∂x2ρ

ρ
,
|x|xγ√

2

∇yρ

ρ
,
|x|γ√

2

∇yρ

ρ

)∣∣∣∣2|f |2 dx dy

= β2
∫
R2+k

ρα1 |∇̃γ ρ|α2
|∇̃γ ρ|2
ρ2

|f |2 dx dy.
(32)
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Putting the estimates (31) and (32) in (30), we obtain (21). Since we have (21)
with a sharp constant for all real-valued functions by Corollary 2.2, then this
constant is sharp also in the class of complex-valued functions in (21). Thus,
we have completed the proof of Theorem 2.4.

We record the corresponding uncertainty principle.

Corollary 2.7 (Uncertainty type principle). Let (x, y) = (x1, x2, y) ∈
R2 ×Rk . Let α1, α2, β ∈ R be such that α1 + k(γ + 1) > 0, α2γ + 2 > 0 and
−1/2 ≤ β ≤ 1/2. Then for any complex-valued function f ∈ C∞

0 (R
2+k \ {0})

we have∥∥ρα1/2
∣∣∇̃γ ρ

∣∣α2/2(∇̃γ + iβÃ
)
f
∥∥
L2(R2+k)‖f ‖L2(R2+k)

≥
((

α1 + k(γ + 1)

2

)2

+ β2

)1/2∫
R2+k

ρα1/2
∣∣∇̃γ ρ

∣∣α2/2 |x|γ
ργ+1

|f |2 dx dy. (33)

Proof. Using (21) and in a similar way as in the proof of the Corollary 2.3,
one obtains (33).

3. Hardy inequalities for Landau-Hamiltonian

In this section we show the Hardy inequalities for the twisted Laplacian with
Landau-Hamiltonian type magnetic field.

Let us introduce now the generalised form of the twisted Laplacian

L̃ =
n∑
j=1

[(
i∂xj + ψ(|z|)yj

)2 + (
i∂yj − ψ(|z|)xj

)2
]
,

where ψ(|z|) is a radial real-valued differentiable function. Setting

X̌j = ∂xj − iψ(|z|)yj and Y̌j = ∂yj + iψ(|z|)xj ,
we write

∇̃L f = (
X̌1f, . . . , X̌nf, Y̌1f, . . . , Y̌nf

)
.

We then have the following result for complex-valued functions f .

Theorem 3.1. Let θ1, θ2, θ3, θ4, a, b ∈ R with a, b > 0, θ1 
= 0, θ2θ3 < 0
and 2θ4 ≤ θ2θ3. Let ψ = ψ(|z|) be a radial real-valued function such that
ψ ∈ L2

loc(C \ {0}) with

|ψ(r)|r2 ≤ 1

2
, ∀r ∈ (0,∞).
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Let � be a bounded domain in C and R = supz∈�{|z|}. Then we have the
following inequalities:

(i) Weighted Hardy-Sobolev inequality:∫
C

|∇̃L f |2
|z|2θ1

dz− θ2
1

∫
C

|f |2
|z|2θ1+2

dz ≥
∫
C

(ψ(|z|))2
|z|2θ1−2

|f |2 dz, (34)

for all complex-valued functions f ∈ C∞
0 (R

2 \ {0});
(ii) Logarithmic Hardy inequality:∫
C

|∇̃L f |2∣∣log |z|∣∣2 dz− 1

4

∫
C

|f |2 dz ≥
∫
C
ψ(|z|)2|z|2∣∣log |z|∣∣2|f |2 dz,

(35)
for all complex-valued functions f ∈ C∞

0 (R
2 \ {0});

(iii) Poincaré inequality:∫
�

∣∣∇̃L f
∣∣2 dz− 1

R2

∫
�

|f |2 dz ≥
∫
�

ψ(|z|)2|z|2|f |2 dz, (36)

for all complex-valued functions f ∈ �̂1,2
0 (�) satisfying df/d|z| ∈ L2(�),

where the space �̂1,2
0 (�) is defined in (40);

(iv) Hardy-Sobolev inequality with more general weights:∫
C

(a + b|z|θ2)θ3

|z|2θ4

∣∣∇̃L f
∣∣2 dz ≥ θ2θ3 − 2θ4

2

∫
C

(a + b|z|θ2)θ3

|z|2θ4+2
|f |2 dz

+
∫
C

ψ(|z|)2(a + b|z|θ2)θ3

|z|2θ4−2
|f |2 dz, (37)

for all complex-valued functions f ∈ C∞
0 (R

2 \ {0}).
The proof of Theorem 3.1 will be based on the following family of weighted

Hardy inequalities and the Poincaré type inequality that were obtained in [25,
Theorem 3.4 and Theorem 5.1] and [24, Theorem 8.1], where E = |x|R is the
Euler operator and R := d/d|x| is the radial derivative.

Theorem 3.2 ([25, Theorem 3.4]). Let G be a homogeneous group of ho-
mogeneous dimensionQ and let θ ∈ R. Then for any complex-valued function
f ∈ C∞

0 (G \ {0}), 1 < p < ∞, and any homogeneous quasi-norm |·| on G
for θp 
= Q, we have∥∥∥∥ f

|x|θ
∥∥∥∥
Lp(G)

≤
∣∣∣∣ p

Q− θp

∣∣∣∣ ∥∥∥∥ 1

|x|θ Ef
∥∥∥∥
Lp(G)

. (38)
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If θp 
= Q then the constant
∣∣ p

Q−θp
∣∣ is sharp. For θp = Q, we have

∥∥∥∥ f

|x|Q/p
∥∥∥∥
Lp(G)

≤ p

∥∥∥∥ log |x|
|x|Q/p Ef

∥∥∥∥
Lp(G)

(39)

with sharp constant.

Let� ⊂ G be an open set and let �̂
1,p
0 (�) be the completion ofC∞

0 (�\{0})
with respect to

‖f ‖�̂1,p(�) = ‖f ‖Lp(�) + ‖Ef ‖Lp(�), 1 < p < ∞.

In the abelian case, when G = (R2,+) and p = 2, let us give this definition:
let � ⊂ R2 be an open set and let �̂1,2

0 (�) be the completion of C∞
0 (� \ {0})

with respect to
‖f ‖�̂1,2(�) = ‖f ‖L2(�) + ‖Ef ‖L2(�). (40)

Theorem 3.3 ([25, Theorem 5.1]). Let � be a bounded open subset of G.
If 1 < p < ∞, f ∈ �̂

1,p
0 (�) and Rf ∈ Lp(�), then we have

‖f ‖Lp(�) ≤ Rp

Q
‖Rf ‖Lp(�) = Rp

Q

∥∥∥∥ 1

|x|Ef
∥∥∥∥
Lp(�)

, (41)

where R = supx∈� |x|.
Theorem 3.4 ([24, Theorem 8.1]). Let G be a homogeneous group of ho-

mogeneous dimension Q. Let a, b > 0, θ2θ3 < 0 and pθ4 − θ2θ3 ≤ Q − p.
Then for any complex-valued function f ∈ C∞

0 (G \ {0}), 1 < p < ∞, and
any homogeneous quasi-norm |·| on G, we have

Q− pθ4 + θ2θ3 − p

p

∥∥∥∥∥
(
a + b|x|θ2

)θ3/p

|x|θ4+1
f

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∥
(
a + b|x|θ2

)θ3/p

|x|θ4
Rf

∥∥∥∥∥
Lp(G)

. (42)

If Q 
= pθ4 + p − θ2θ3, then the constant Q−pθ4+θ2θ3−p
p

is sharp.

We briefly recall their proof for the convenience of the reader, but also since
these will be useful in our argument.
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Proof of Theorem 3.2. Integrating by parts gives for θp 
= Q

∫
G

|f (x)|p
|x|θp dx

=
∫ ∞

0

∫
�

|f (ry)|prQ−1−θp dσ (y) dr

= − p

Q− θp

∫ ∞

0
rQ−θp Re

∫
�

|f (ry)|p−2f (ry)
df (ry)

dr
dσ(y) dr

≤
∣∣∣∣ p

Q− θp

∣∣∣∣ ∫
G

|Ef (x)||f (x)|p−1

|x|θp dx

=
∣∣∣∣ p

Q− θp

∣∣∣∣ ∫
G

|Ef (x)||f (x)|p−1

|x|θ+θ(p−1)
dx.

Using Hölder’s inequality, we obtain

∫
G

|f (x)|p
|x|θp dx ≤

∣∣∣∣ p

Q− θp

∣∣∣∣(∫
G

|Ef (x)|p
|x|θp dx

)1/p(∫
G

|f (x)|p
|x|θp dx

)(p−1)/p

,

which implies (38).

In order to show the sharpness of the constant, let us check the equality
condition in the above Hölder inequality. We consider the function

g1(x) = 1

|x|C ,

where C ∈ R, C 
= 0, and θp 
= Q. Then, a direct calculation implies

∣∣∣∣ 1

C

∣∣∣∣p( |Eg1(x)|
|x|θ

)p
=
( |g1(x)|p−1

|x|θ(p−1)

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. Thus, the constant∣∣ p

Q−θp
∣∣ is sharp in (38).

Now we show (39). Taking into account � := {x ∈ G : |x| = 1} and apply-
ing the polar decomposition on homogeneous groupsG, then using integration
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by parts, one calculates∫
G

|f (x)|p
|x|Q dx =

∫ ∞

0

∫
�

|f (ry)|prQ−1−Q dσ(y) dr

= −p
∫ ∞

0
log r Re

∫
�

|f (ry)|p−2f (ry)
df (ry)

dr
dσ(y) dr

≤ p

∫
G

|Ef (x)||f (x)|p−1

|x|Q
∣∣log |x|∣∣ dx

= p

∫
G

|Ef (x)|∣∣log |x|∣∣
|x|Q/p

|f (x)|p−1

|x|Q(p−1)/p
dx.

Using again Hölder’s inequality, we get∫
G

|f (x)|p
|x|Q dx ≤ p

(∫
G

|Ef (x)|p∣∣log |x|∣∣p
|x|Q dx

)1/p(∫
G

|f (x)|p
|x|Q dx

)(p−1)/p

,

which gives (39).
As in the case of (38), we consider the following function to show the

sharpness of the constant in (39):

g2(x) = (log |x|)C,
where C ∈ R and C 
= 0. Then, one has∣∣∣∣ 1

C

∣∣∣∣p( |Eg2(x)|
∣∣log |x|∣∣

|x|Q/p
)p

=
( |g2(x)|p−1

|x|Q(p−1)/p

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. Thus, we have
completed the proof of Theorem 3.2.

Before proving Theorem 3.3, we first show the following proposition.

Proposition 3.5 ([25, Proposition 5.2]). Let � ⊂ G be an open set. If
1 < p < ∞, f ∈ �̂

1,p
0 (�) and Ef ∈ Lp(�), then we have

‖f ‖Lp(�) ≤ p

Q
‖Ef ‖Lp(�). (43)

Proof. Let us consider the function ζ :R → R, which is an even and
smooth function, satisfying

• 0 ≤ ζ ≤ 1,
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• ζ(r) = 1 if |r| ≤ 1,
• ζ(r) = 0 if |r| ≥ 2.

We set ζλ(x) := ζ(λ|x|) for λ > 0. We have the inequality (43) for f ∈
C∞

0 (G \ {0}) by (38) when θ = 0. There is {f�}∞�=1 ∈ C∞
0 (� \ {0}) such that

f� → f in �̂
1,p
0 (�) as � → ∞. Let λ > 0. From (38) when θ = 0, one gets

‖ζλf�‖Lp(�) ≤ p

Q

(‖(Eζλ)f�‖Lp(�) + ‖ζλ(Ef�)‖Lp(�)
)

for any � ≥ 1. Then, we can immediately see that

lim
�→∞ ζλf� = ζλf, lim

�→∞(Eζλ)f� = (Eζλ)f, lim
�→∞ ζλ(Ef�) = ζλ(Ef )

in Lp(�). By these properties, we obtain

‖ζλf ‖Lp(�) ≤ p

Q

{‖(Eζλ)f ‖Lp(�) + ‖ζλ(Ef )‖Lp(�)
}
.

Since

|(Eζλ)(x)| ≤
{

sup |Eζ |, if λ−1 < |x| < 2λ−1,

0, otherwise,

one obtains (43) in the limit as λ → 0. The proof of Proposition 3.5 is com-
pleted.

Proof of Theorem 3.3. Since R = supx∈� |x|, by Proposition 3.5 one
has

‖f ‖Lp(�) ≤ p

Q
‖Ef ‖Lp(�) ≤ Rp

Q
‖Rf ‖Lp(�) = Rp

Q

∥∥∥∥ 1

|x|Ef
∥∥∥∥
Lp(�)

,

which implies (41).

Proof of Theorem 3.4. Since for Q = pθ4 + p − θ2θ3 there is nothing
to prove, let us only consider the case Q 
= pθ4 + p − θ2θ3. Using polar
coordinates (r, y) = (|x|, x/|x|) ∈ (0,∞) × � on G, where � is the unit
quasi-sphere

� := {x ∈ G : |x| = 1},
and by the polar decomposition on G (see, for example, [9] or [8]) and using
integration by parts, one calculates∫
G

(a + b|x|θ2)θ3

|x|pθ4+p |f (x)|p dx =
∫ ∞

0

∫
�

(a + brθ2)θ3

rpθ4+p |f (ry)|prQ−1 dσ(y) dr.
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Since θ2θ3 < 0 and pθ4 − θ2θ3 < Q− p, we get∫
G

(a + b|x|θ2)θ3

|x|pθ4+p |f (x)|p dx

≤
∫ ∞

0

∫
�

(a + brθ2)θ3rQ−1−pθ4−p

×
(

brθ2

a + brθ2
+ a

a + brθ2
· Q− pθ4 − p

Q− pθ4 − p + θ2θ3

)
|f (ry)|p dσ(y) dr

=
∫ ∞

0

∫
�

(a + brθ2)θ3rQ−1−pθ4−p

Q− pθ4 − p + θ2θ3

×
(
θ2θ3br

θ2

a + brθ2
+Q− pθ4 − p

)
|f (ry)|p dσ(y) dr

=
∫ ∞

0

∫
�

d

dr

(
(a + brθ2)θ3rQ−pθ4−p

Q− pθ4 − p + θ2θ3

)
|f (ry)|p dσ(y) dr

= − p

Q− pθ4 − p + θ2θ3

∫ ∞

0
(a + brθ2)θ3rQ−pθ4−p

× Re
∫

�

|f (ry)|p−2f (ry)
df (ry)

dr
dσ(y) dr

≤
∣∣∣∣ p

Q− pθ4 − p + θ2θ3

∣∣∣∣ ∫
G

(a + b|x|θ2)θ3 |Rf (x)||f (x)|p−1

|x|pθ4+p−1
dx

= p

Q− pθ4 − p + θ2θ3

∫
G

(a + b|x|θ2)θ3(p−1)/p|f (x)|p−1

|x|(θ4+1)(p−1)

× (a + b|x|θ2)θ3/p

|x|θ4
|Rf (x)| dx.

Here Hölder’s inequality gives∫
G

(a + b|x|θ2)θ3

|x|pθ4+p |f (x)|p dx

≤ p

Q− pθ4 − p + θ2θ3

(∫
G

(a + b|x|θ2)θ3

|x|pθ4+p |f (x)|p dx
)(p−1)/p

×
(∫

G

(a + b|x|θ2)θ3

|x|pθ4
|Rf (x)|p dx

)1/p

,
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which implies (42).
In order to show the sharpness of the constant, we check the equality con-

dition in above Hölder’s inequality. We consider the function

g3(x) = |x|C,
where C ∈ R, C 
= 0 and Q 
= pθ4 + p − θ2θ3. Then, a direct calculation
gives∣∣∣∣ 1

C

∣∣∣∣p( (a + b|x|θ2)θ3/p|Rg3(x)|
|x|θ4

)p
=
(
(a + b|x|θ2)θ3(p−1)/p|g3(x)|p−1

|x|(θ4+1)(p−1)

)p/(p−1)

,

which satisfies the equality condition in Hölder’s inequality. This shows the
sharpness of the constant (Q − pθ4 − p + θ2θ3)/p in (42). Thus, we have
completed the proof of Theorem 3.4.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let κ(|z|) 
= 0 be a radial function. Using polar
coordinates for the z-plane x = r cosφ, y = r sin φ, we have∫

C

∣∣∇̃L f
∣∣2

κ(|z|) dz

=
∫
C

(∣∣(i∂x + yψ(|z|))f ∣∣2 + ∣∣(i∂y − xψ(|z|))f ∣∣2) dz

κ(|z|)

=
∫ ∞

0

∫ 2π

0

(∣∣∣(i cosφ∂r − i sin φ

r
∂φ + ψ(r)r sin φ

)
f

∣∣∣2)r dφ dr

κ(r)

+
∫ ∞

0

∫ 2π

0

(∣∣∣(i sin φ∂r + i cosφ

r
∂φ − ψ(r)r cosφ

)
f

∣∣∣2)r dφ dr

κ(r)

=
∫ ∞

0

∫ 2π

0

(
|∂rf |2 + |∂φf |2

r2
+ ψ(r)2r2|f |2

)
r dφ

dr

κ(r)

− 2 Re
∫ ∞

0

∫ 2π

0

(
i∂φf

r
· ψ(r)rf

)
r dφ

dr

κ(r)

=
∫ ∞

0

∫ 2π

0

(
|∂rf |2 + 1

r2

∣∣i∂φf − ψ(r)r2f
∣∣2)r dφ dr

κ(r)
.
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Let us represent f via its Fourier series

f (r, φ) =
∞∑

k=−∞
fk(r)e

ikφ.

Then from the assumptions on ψ , we obtain

1

r2

∫ 2π

0
|i∂φf − ψ(r)r2f |2 dφ = 2π

r2

∑
k

(
k + ψ(r)r2

)2|fk(r)|2

≥ 2π

r2
min
k

(
k + ψ(r)r2

)2 ∑
k

|fk(r)|2

= 1

r2
min
k

(
k + ψ(r)r2

)2
∫ 2π

0
|f |2 dφ

= r2ψ(r)2
∫ 2π

0
|f |2 dφ.

Thus, we arrive at∫
C

∣∣∇̃L f
∣∣2

κ(|z|) dz ≥
∫
C

1

κ(|z|)
∣∣∣∣ dd|z|f

∣∣∣∣2 dz+
∫
C

|z|2ψ(|z|)2
κ(|z|) |f |2 dz. (44)

Putting κ(|z|) = |z|2θ1 , it follows that∫
C

∣∣∇̃L f
∣∣2

|z|2θ1
dz ≥

∫
C

1

|z|2θ1

∣∣∣∣ dd|z|f
∣∣∣∣2 dz+

∫
C

ψ(|z|)2
|z|2θ1−2

|f |2 dz. (45)

In the abelian case G = (R2,+), p = 2 and θ = θ1 + 1 with θ1 
= 0,
(38) implies ∫

C

1

|z|2θ1

∣∣∣∣ dd|z|f
∣∣∣∣2 dz ≥ θ2

1

∫
C

|f |2
|z|2θ1+2

dz.

Putting this in (45), we obtain (34).
Putting κ(|z|) = | log |z||−2 in (44), one has∫
C

∣∣log |z|∣∣2∣∣∇̃L f
∣∣2 dz

≥
∫
C

∣∣log |z|∣∣2∣∣∣∣ dd|z|f
∣∣∣∣2 dz+

∫
C
ψ(|z|)2|z|2∣∣log |z|∣∣2|f |2 dz. (46)

In the abelian case G = (R2,+) and p = 2, (39) implies∫
C

∣∣log |z|∣∣2∣∣∣∣ dd|z|f
∣∣∣∣2 dz ≥ 1

4

∫
C

|f |2 dz.
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Putting this in (46), we obtain (35).
Putting κ(|z|) = 1 in (44), we get∫

C

∣∣∇̃L f
∣∣2 dz ≥

∫
C

∣∣∣∣ dd|z|f
∣∣∣∣2 dz+

∫
C
ψ(|z|)2|z|2|f |2 dz. (47)

In the abelian case, when � is a bounded domain in (R2,+), and p = 2,
(41) implies ∫

�

∣∣∣∣ dd|z|f
∣∣∣∣2 dz ≥ 1

R2

∫
�

|f |2 dz.

Putting this in (47), we obtain (36).
Putting κ(|z|) = (a + b|z|θ2)−θ3/|z|−2θ4 in (44), we have∫
C

(a + b|z|θ2)θ3

|z|2θ4

∣∣∇̃L f
∣∣2 dz

≥
∫
C

(a + b|z|θ2)θ3

|z|2θ4

∣∣∣∣ dd|z|f
∣∣∣∣2 dz+

∫
C

ψ2(|z|)(a + b|z|θ2)θ3

|z|2θ4−2
|f |2 dz. (48)

Again, in the abelian case G = (R2,+) and p = 2, (42) gives

θ2θ3 − 2θ4

2

∫
C

(a + b|z|θ2)θ3

|z|2θ4+2
|f |2 dz ≤

∫
C

(a + b|z|θ2)θ3

|z|2θ4

∣∣∣∣ dd|z|f
∣∣∣∣2 dz,

for a, b > 0, θ2θ3 < 0 and 2θ4 ≤ θ2θ3. Putting this in (48), we obtain (37).
Thus, we have completed the proof of Theorem 3.1.

Now we give some inequalities for real-valued functions to show the best
estimates one can expect. While estimates for real-valued functions have less
physical meaning than those for complex-valued functions in questions of the
spectral theory, they also find their use in applications to the existence of real
(or positive) solutions to some nonlinear equations.

Remark 3.6. Let ψ = ψ(|z|) be a radial real-valued function such that
ψ ∈ L2

loc(C\{0}). By a direct calculation, we have for all real-valued functions
f ∈ W 1,2

L
(Cn)∫

Cn

∣∣∇̃L f
∣∣2dz =

n∑
j=1

∫
Cn

(∣∣(i∂xj + yjψ(|z|)
)
f
∣∣2 + ∣∣(i∂yj − xjψ(|z|)

)
f
∣∣2) dz

=
∫
Cn

|∇f |2 dz+
∫
Cn

|z|2ψ(|z|)2|f |2 dz.
(49)
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HereW 1,2
L

is defined in (10). Using the well-known Hardy inequality forn ≥ 1,
we obtain∫

Cn

∣∣∇̃L f
∣∣2 dz ≥ (n− 1)2

∫
Cn

|f |2
|z|2 dz+

∫
Cn

|z|2ψ(|z|)2|f |2 dz, (50)

for all real-valued functions f ∈ W
1,2

L
(Cn) and n ≥ 1. We note that for

ψ(|z|) = 1/2, we recover the classical Landau Hamiltonian, i.e.,

L̃ 1/2 = −L and ∇̃L1/2 = ∇L .

Let� be a bounded domain in Cwith 0 ∈ � andR ≥ e · supz∈�{|z|}. Then,
in the case n = 1 we can use the critical Hardy inequality with sharp constant
for f ∈ W 1,2

L
(�) (see for example [1], [3]):∫

�

∣∣∇̃L f
∣∣2 dz ≥ 1

4

∫
�

|f |2
|z|2(log(R/|z|))2 dz+

∫
�

|z|2ψ(|z|)2|f |2 dz, (51)

for all real-valued functions f ∈ W
1,2

L
(�) and n = 1. Since the constants in

the Hardy and critical Hardy inequalities are sharp, then the constants in the
obtained inequalities (50) and (51) are sharp.

Corollary 3.7 (Uncertainty type principle). Let� be a bounded domain in
C with 0 ∈ � and R ≥ e · supz∈�{|z|}. Let ψ = ψ(|z|) be a radial real-valued
function such that ψ ∈ L2

loc(C \ {0}). Then we have

∥∥∇̃L f
∥∥
L2(Cn)

‖f ‖L2(Cn) ≥
∫
Cn

(√
(n− 1)2

|z|2 + |z|2ψ(|z|)2
)

|f |2 dz (52)

for n ≥ 1 and all real-valued functions f ∈ W 1,2
L
(Cn), and

∥∥∇̃L f
∥∥
L2(�)

‖f ‖L2(�) ≥
∫
�

(√
1

4|z|2(log(R/|z|))2 + |z|2ψ(|z|)2
)

|f |2 dz
(53)

for n = 1 and all real-valued functions f ∈ W 1,2
L
(�).

Proof. By (50) we get for n ≥ 1

∥∥∇̃L f
∥∥
L2(Cn)

‖f ‖L2(Cn) ≥
∥∥∥∥∥
(√

(n− 1)2

|z|2 + |z|2ψ(|z|)2
)
f

∥∥∥∥∥
L2(Cn)

‖f ‖L2(Cn)

≥
∫
Cn

(√
(n− 1)2

|z|2 + |z|2ψ(|z|)2
)

|f |2 dz,
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which gives (52). Similarly, using (51) we obtain (53). The proof is complete.

Remark 3.8. In the case n = 1 of the Remark 3.6, we also can use the
another type of critical Hardy inequality (see for example Solomyak [27])
in (49):

∫
C

∣∣∇̃L f
∣∣2 dz ≥ C

∫
C

|f |2
|z|2(1 + log2 |z|) dz+

∫
C

|z|2ψ(|z|)2|f |2 dz,

where C is a positive constant.

Remark 3.9. Let LG be the magnetic Baouendi-Grushin operator on Cn

with the constant magnetic field

LG =
n∑
j=1

(
i∂xj + ψ1,j (yj )

)2 + (
i|x|γ ∂yj + ψ2,j (xj )

)2
,

where |x| = √|x1|2 + . . .+ |xn|2 and ψ1,j , ψ2,j ∈ L2
loc(R \ {0}). Setting

X̂j = i∂xj + ψ1,j (yj ) and Ŷj = i|x|γ ∂yj + ψ2,j (xj ), we write

∇GL f = (X̂1f, . . . , X̂nf, Ŷ1f, . . . , Ŷnf ).

Then, a direct calculation gives for all real-valued functions f ∈ C∞
0 (R

2n\{0})
∫
Cn
ρα1 |∇γ ρ|α2 |∇GL f |2 dz

=
n∑
j=1

∫
Cn
ρα1 |∇γ ρ|α2

(∣∣(i∂xj + ψ1,j (yj )
)
f
∣∣2 + ∣∣(i|x|γ ∂yj + ψ2,j (xj )

)
f
∣∣2) dz

=
∫
Cn
ρα1 |∇γ ρ|α2 |∇γ f |2 dz

+
n∑
j=1

∫
Cn
ρα1 |∇γ ρ|α2

(|ψ2,j (xj )|2 + |ψ1,j (yj )|2
)|f |2 dz.

Then putting m = k = n in (15), and hence Q = n(2 + γ ), we obtain
the following Hardy inequality for magnetic Baouendi-Grushin operator on
Cn with the constant magnetic field and for any real-valued function f ∈
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C∞
0 (R

2n \ {0}) with sharp constant∫
Cn
ρα1 |∇γ ρ|α2 |∇GL f |2 dz

≥
(
n(2 + γ )+ α1 − 2

2

)∫
Cn
ρα1 |∇γ ρ|α2

|x|2γ
ρ2γ+2

|f |2 dz

+
n∑
j=1

∫
Cn
ρα1 |∇γ ρ|α2

(|ψ2,j (xj )|2 + |ψ1,j (yj )|2
)|f |2 dz,

where n(2 + γ )+ α1 − 2 > 0 and n+ α2γ > 0.
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