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APPROXIMATION AND INTERPOLATION OF REGULAR
MAPS FROM AFFINE VARIETIES TO ALGEBRAIC

MANIFOLDS

FINNUR LÁRUSSON and TUYEN TRUNG TRUONG

Abstract
We consider the analogue for regular maps from affine varieties to suitable algebraic manifolds of
Oka theory for holomorphic maps from Stein spaces to suitable complex manifolds. The goal is
to understand when the obstructions to approximation or interpolation are purely topological. We
propose a definition of an algebraic Oka property, which is stronger than the analytic Oka property.
We review the known examples of algebraic manifolds satisfying the algebraic Oka property and
add a new class of examples: smooth nondegenerate toric varieties. On the other hand, we show
that the algebraic analogues of three of the central properties of analytic Oka theory fail for all
compact manifolds and manifolds with a rational curve; in particular, for projective manifolds.

1. Introduction and results

The past 15 years or so have seen the development of a rich theory of approx-
imation and interpolation of holomorphic maps from Stein spaces to complex
manifolds that are “big” in the sense that the complex plane is big and the disc
is small. The prototypical examples of “big” complex manifolds are complex
Lie groups. By the 1960s, good approximation and interpolation theorems
for them and their homogeneous spaces had been proved by Grauert, Cartan,
and others. In a seminal paper [12] of 1989, Gromov showed how to extend
such theorems to the larger class of elliptic manifolds, using his linearisation
method of dominating sprays. Since 2000, the theory has grown into a sub-
field of holomorphic geometry in its own right, the foremost contributor being
Forstnerič. Oka manifolds have emerged as the natural targets of maps from
Stein spaces. They are defined by close to 20 nontrivially equivalent proper-
ties involving approximation or interpolation or both. (The monograph [9] is
a comprehensive reference on Oka theory; see also the survey [11].)

Among the properties of a complex manifold Y investigated in Oka theory
are the following, where X denotes an arbitrary reduced Stein space.
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• The approximation property (AP): Every continuous map X → Y that is
holomorphic on a holomorphically convex compact subset K of X can
be uniformly approximated on K by holomorphic maps X → Y .

• The interpolation property (IP): A holomorphic map from a subvariety
of X to Y has a holomorphic extension X → Y if it has a continuous
extension.

• The basic Oka property (BOP): Every continuous map X → Y is ho-
motopic to a holomorphic map.

• The homotopy Runge property (HRP): For every holomorphic map
f0: X → Y , a holomorphically convex compact subset K of X with
a neighbourhood U , and a homotopy of holomorphic maps ft : U → Y ,
t ∈ [0, 1], there is a holomorphic map F : X×C → Y with F(·, 0) = f0

and F(·, t) as close to ft as desired, uniformly on K .

• Subellipticity (SEll): Y admits a finite dominating family of holomorphic
sprays (for more details, see [9, Definition 5.6.13]).

• Ell1: For every holomorphic map f : X → Y , there is a holomorphic
map F : X × Cm → Y for some m ≥ 1, such that F(·, 0) = f and
F(x, ·):Cm → Y is a submersion at 0 for every x ∈ X. (Ell1 is Gromov’s
term. The property could also be called relative ellipticity.)

Deep theorems provide the following implications.

Ell

SEll (AP IP HRP)

BOP

1

AP, IP, and HRP are among the many equivalent formulations of the Oka
property. Subellipticity is a useful geometric sufficient condition for the Oka
property to hold. Ell1 is primarily of interest as a stepping stone on the way
to transversality theorems for holomorphic maps into Oka manifolds (see [9,
Section 8.8]). The converses of the implications → and ↗ are true when Y is
Stein, but are open in general. The converse of ↘ obviously fails when Y is
the disc, but no noncontractible counterexamples are known.

The goal of this paper is to investigate the analogues of these properties and
their relationships in the algebraic category. Each of the six properties has an
algebraic version for an algebraic manifold Y , with X replaced by an arbitrary
affine variety, holomorphic maps from X, X × C, X × Cm, or subvarieties
of X by regular maps (that is, morphisms), and holomorphic sprays on Y by
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algebraic sprays. The algebraic analogue of a holomorphic property P will
be called aP. (Here, an algebraic manifold is a connected smooth algebraic
variety over C, by definition quasi-compact in the Zariski topology. We take a
subvariety to be closed and not necessarily irreducible.)

A very different picture emerges in the algebraic case.

Theorem 1. For algebraic manifolds, aSEll, aEll1, and aHRP are equival-
ent.

Theorem 2. Let Y be an algebraic manifold.
(a) If Y contains a rational curve, that is, there is a nonconstant regular

map from P1 to Y , then Y does not satisfy aAP, aIP, or aBOP.
(b) If Y is compact, then Y does not satisfy aAP, aIP, or aBOP.

We take Y to have positive dimension, that is, we exclude the point.
Theorem 1 suggests that “algebraic Oka theory” should focus on the equi-

valent properties aSEll, aEll1, and aHRP. It is tempting to introduce the term
the algebraic Oka property (aOka) for them.

On the other hand, the properties aAP, aIP, and aBOP are of no interest
for compact manifolds and manifolds with a rational curve; in particular for
projective manifolds. For affine manifolds Y , the authors’ understanding of
these properties is limited. The affine spacesCn, n ≥ 1, satisfy the six algebraic
properties. More generally, when Y is contractible, aBOP is obviously true,
and aAP holds if, and aIP holds if and only if, Y is a regular retract of some
affine space. We would not be surprised if the three properties turned out to fail
for all noncontractible affine manifolds. We provide some examples below.

The properties aAP, aIP, and aBOP make sense, as defined, for singular
varieties. The proof of Theorem 2 is easily generalised to a possibly singular
algebraic variety Y that embeds as a subvariety in a smooth variety. It is well
known that not all singular varieties do. In particular, Theorem 2 holds for
a projective variety Y . Little is known about the Oka theory of singular tar-
gets. The first paper on this topic is [17]. The results there show that analytic
Oka theory changes quite dramatically when we move from smooth targets to
singular targets.

Our third theorem provides a new class of examples of aOka manifolds.

Theorem 3. Every smooth nondegenerate toric variety is locally flexible
and hence algebraically Oka.

It is known that every smooth toric variety is Oka ([19], [8, Theorem 2.17]).

Remark 1. We rely on Forstnerič’s work in [7] (see also [9, Sections 6.15
and 8.8]). He proved that aSEll implies both aHRP [7, Theorem 3.1] and
aEll1 [7, Proposition 4.6].
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Forstnerič showed that if a holomorphic map from an affine variety X to
an aOka manifold is homotopic to a regular map, then it is approximable by
regular maps. The converse is easily proved, because two continuous maps
from X that are sufficiently close on a sufficiently large compact subset of
X are homotopic. (Here we need to know that there is a compact subset of
X that is a strong deformation retract of X [13, Theorem 1.1].) For the same
reason (noting also that aAP trivially implies AP, which, as already mentioned,
nontrivially implies BOP), aAP implies aBOP.

Forstnerič gave two aOka counterexamples to aBOP, and therefore to aAP,
in [9, Examples 6.15.7 and 6.15.8]. One is the complex projective space Pn

for n ≥ 3. The other is the complex n-sphere �n = {(z0, . . . , zn) ∈ Cn+1 :
z2

0 +· · ·+ z2
n = 1} for even n ≥ 2. It is a homogeneous space of the connected

linear algebraic group SO(n + 1,C), which has no nontrivial characters, and
therefore flexible [1, Proposition 5.4].

An affine manifold is flexible if its tangent bundle is generated by com-
plete regular vector fields with regular flows. Equivalently, the subgroup of the
algebraic automorphism group generated by subgroups isomorphic to (C, +)

acts infinitely transitively ([1], [4]). The notion of flexibility has been exten-
ded to quasi-affine manifolds [6]. An algebraic manifold is locally flexible if
it is covered by quasi-affine Zariski-open subsets that are flexible; it is then
aOka [16, Corollary 3.2] and has “many” birational automorphisms.

Remark 2. (a) If an algebraic manifold is aOka, then it is Oka as a com-
plex manifold (because algebraic subellipticity obviously implies subellipti-
city, which in turn implies the Oka property).

(b) It is easily seen that:

• the product of two aOka manifolds is aOka,
• a regular retract of an aOka manifold is aOka,
• a finite unbranched covering space of an aOka manifold is aOka.

By Gromov’s localisation principle for algebraic subellipticity ([12, §3.5.B];
see also [9, Proposition 6.4.2]), the algebraic Oka property is Zariski-local.
(Since the properties aAP, aIP, and aBOP fail for P1 but hold for C, they are
not Zariski-local.)

(c)A smooth compact algebraic surface Y is aOka if and only if it is rational.
Indeed, if Y is aOka, then Y is unirational and hence rational. Conversely, if Y

is rational, then Y is covered by Zariski-open subsets isomorphic to C2, so Y

is aOka. (By [1, Example 5.3], a flexible affine manifold need not be rational
or even stably rational.)

(d) Forstnerič showed that every compact aOka manifold of dimension n

is the image of a regular map from Cn (his result [10, Theorem 1.6] in fact
says more). His argument can be easily extended to a proof that if Y is an



APPROXIMATION AND INTERPOLATION OF REGULAR MAPS 203

n-dimensional aOka manifold and K is a compact subset of Y , then there is a
regular map from Cn to Y whose image contains K . It follows that every finite
subset of Y lies in a regular image of C. Equivalently, the values of regular
maps from affine varieties to Y can be prescribed at finitely many points.

Suppose that Y is an aOka manifold of dimension n. By aEll1, Y is strongly
algebraically dominable, meaning that for every y ∈ Y , there is a regular
map g:Cn → Y with 0 �→ y that is nondegenerate at 0. The image of g

is constructible and has nonempty interior in the Hausdorff topology, so it
contains a nonempty Zariski-open set. Being quasi-compact in the Zariski
topology, Y is covered by the images of finitely many such maps. If Y is
noncompact, we do not know whether Y is the image of a single regular map
from Cn. In particular, we do not know whether C2 \ {0} is a regular image
of C2.

(e) As far as the authors are aware, no aOka manifold is known not to be
locally flexible. Quite a few different kinds of examples of locally flexible man-
ifolds may be found in the literature. Some are flexible (for a list of examples,
see [2, Section 3]) and some are Zariski-locally isomorphic to affine space (also
said to be of Class A0 or A-covered; for a list of examples, see [3, Section 4]).
Our Theorem 3 provides a new class of examples of aOka manifolds: smooth
nondegenerate toric varieties.

It does not seem reasonable to conjecture that all aOka manifolds are locally
flexible. In the light of our current knowledge, the two classes appear rather
different. The aOka property is preserved by regular retracts; flexibility is not
(see Remark 3(b) below), but for local flexibility it is an open question. Ar-
bitrary blow-ups of, say, C3 are aOka [20, Theorem 1], but are not known to
be locally flexible. Local flexibility is preserved by removing subvarieties of
codimension at least 2 [6, Theorem 1.1] and yields many birational automorph-
isms; both are unknown for the aOka property (although aOka manifolds do
have many dominant rational self-maps).

(f) We do not know whether the algebraic Oka property is a birational
invariant, but we may be close: the blow-up of a locally flexible (or merely
locally stably flexible) algebraic manifold along any algebraic submanifold
(not necessarily connected or of pure dimension) is aOka [16, Theorem 0.3].
Also, strong algebraic dominability, a property of algebraic manifolds that is
implied by the algebraic Oka property, is preserved by blowing up along any
algebraic submanifold [20, Theorem 9]. (Although C2 satisfies aAP, aIP, and
aBOP, C2 blown up at a point satisfies none of them by Theorem 2(a).)

(g) If a projective manifold is aOka, then it is unirational. By Ishkovskikh
and Manin’s solution of the Lüroth problem [15], every smooth quartic in
P4 has a finite group of birational automorphisms, so it cannot be rational or
locally flexible, whereas Segre showed that some quartics are unirational. It
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follows that among projective manifolds (in fact among smooth quartics in
P4), either there are aOka manifolds that are not locally flexible, or there are
unirational manifolds that are not aOka (or both).

Remark 3. (a) Let Y be a projective variety. By the Jouanolou trick (first
used in Oka theory in [18]), Y carries an affine bundle whose total space A

is affine. For Y = Pm, we take A to be the complement Am in Pm × Pm of
the hypersurface defined by the equation z0w0 + · · · + zmwm = 0, with the
projection Am → Pm onto the first component. In general, we embed Y into
Pm for some m and let A be the pullback of Am by the inclusion Y ↪→ Pm. We
sometimes call A an affine model or a Stein model for Y . Every holomorphic
map from a reduced Stein space to Y factors holomorphically (not necessarily
uniquely) through A. We claim that A fails to satisfy aIP.

By the proof of Theorem 2, the failure of Y to satisfy aIP is demonstrated
by the sources {0, 1} ↪→ C or by the sources S ↪→ C2, where S is a smooth
irrational curve. In the former case, we easily deduce that A fails to satisfy aIP.
In the latter case, there is a nullhomotopic regular map f : S → Y that does
not factor regularly through C2 although it does continuously. We claim that f

has a regular lifting to A. The lifting is also nullhomotopic and does not factor
regularly through C2 either, so A does not satisfy aIP.

To prove that f has a regular lifting to A, it suffices to take Y = Pm and
A = Am. We need to show that if f : S → Pm is a regular map from a smooth
affine curve S, then there is a regular map g: S → Pm such that (f, g) avoids
the hypersurface in Pm ×Pm defined by the equation z0w0 +· · ·+ zmwm = 0.
Write f = [f0, . . . , fm], where f0, . . . , fm are regular functions on S, possibly
with a common zero set Z that cannot be eliminated. Let the divisor D on S

be the minimum of the divisors of f0, . . . , fm and consider the short exact
sequence

0 −→ Ker β −→ Om+1
D

β−→ O −→ 0,

on S, where β(g0, . . . , gm) = f0g0 + · · · + fmgm. Since H 1(S, Ker β) = 0,
there are g0, . . . , gm ∈ OD(S) with f0g0 + · · · + fmgm = 1. Let z be a
coordinate centred at a point of Z where D = k ≥ 1. Near the point,

(z−kf0)(z
kg0) + · · · + (z−kfm)(zkgm) = 1.

We conclude that the regular map g = [g0, . . . , gm]: S → Pm is as desired.
(b) We have already noted that a flexible affine manifold need not satisfy

aBOP, let alone aAP. Now we present a flexible affine counterexample to aIP.
By a simple change of coordinates, the affine model A1 ofP1 can be realised

as the affine surface

A1 = {(x, y, z) ∈ C3 : xy = z(1 − z)}.
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Then the projection A1 → P1 takes (x, y, z) to [x, z] = [1 − z, y]. A
Danielewski surface is a smooth affine surface of the form

Dn = {(x, y, z) ∈ C3 : xny = p(z)},
where n ≥ 1 and p is a polynomial of degree at least 2 all of whose zeros are
simple. So A1 is of the form D1. It is known that Danielewski surfaces with
n = 1 are flexible, whereas for n ≥ 2 they are locally flexible but not flexible.
Moreover, for the same p, the surfaces Dn ×C are mutually isomorphic for all
n ≥ 1. Thus A1 is flexible. It also follows that for affine manifolds, flexibility is
not preserved by regular retracts, and local flexibility does not imply flexibility.

By another simple change of coordinates, we can realise A1 as the complex
2-sphere �2, showing again that A1 is flexible (see Remark 1).

2. Proofs of the theorems

Proof of Theorem 1. As mentioned above, aSEll implies both aHRP [7,
Theorem 3.1] and aEll1 [7, Proposition 4.6]. We merely observe that aHRP
and aEll1 both easily imply the following weaker property of an algebraic
manifold Y , which in turn clearly implies aSEll by the powerful localisation
principle.

Weak formulation of aOka: For every a ∈ Y , the tangent space TaY can be
spanned by vectors v, such that there is a Zariski-open neighbourhood U of a in
Y (which might as well be taken to be affine) and a regular map f : U ×C → Y

with f (y, 0) = y for all y ∈ U and D0f (a, ·)d/dz = v.
This gives Theorem 1.

Next we turn to Theorem 3. Our proof relies on two theorems.

• The smooth locus of a nondegenerate affine toric variety is flexible [4,
Theorem 0.2].

• The complement of a subvariety of codimension at least 2 in a flexible
quasi-affine manifold is flexible [6, Theorem 1.1].

Proof of Theorem 3. Let Y be a smooth nondegenerate toric variety. It
is defined by a fan F of cones in a vector space NR = N ⊗Z R, where N is a
lattice. The fan is smooth, meaning that the minimal generators of each cone
in F form part of a Z-basis for N . Nondegeneracy of Y means that the minimal
generators of all the cones together span NR.

Each maximal cone in F defines an affine toric Zariski-open subset of Y ,
and these subsets cover Y . If the dimension of the cone is n = dim Y , then
the corresponding subset is Cn (because the cone is smooth), which is flexible.
If the dimension of the cone C is k < n, then the corresponding subset U is
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Ck × (C∗)n−k . We will extend U to a flexible quasi-affine toric Zariski-open
subset V of Y . This will complete the proof.

We define V by a subfan F ′ of F . The subfan F ′ contains C along with the
1-dimensional cones spanned by some of the minimal generators of the other
cones in F , so that these generators, together with the minimal generators of
C, form a basis for NR.

Let C ′ be the cone spanned by the cones in F ′, that is, spanned by the
minimal generators of C and the additional minimal generators used to define
F ′. The cone C ′ is pointed (that is, strictly convex), n-dimensional, and defines
a possibly singular nondegenerate affine toric variety Z. All the edges of C ′
are contained in F ′, so by the orbit-cone correspondence, V is realised as the
complement in Z of a toric subvariety of codimension at least 2. By the two
theorems, V is flexible, and Theorem 3 holds.

Without the two theorems, our proof shows that Y has a Zariski-open cover
by two kinds of sets. The first kind is just Cn, coming from a maximal cone C

of full dimension. A set V of the second kind is the complement of a subvariety
of codimension at least 2 in the possibly singular nondegenerate affine toric
variety Z. By [5, Exercise 1.2.10 and Example 1.3.20], Z is simplicial, so it
is of the form Cn/G, where G is a finite abelian group. Therefore V is a finite
unbranched Galois quotient of the complement of a subvariety of codimension
at least 2 in Cn. If we could prove directly that such a set V was flexible or just
aOka, then we would not have to invoke the two theorems.

Now we turn to the proof of Theorem 2. We first consider the case of
projective varieties. The proof relies on the failure of the GAGA principle for
line bundles on affine manifolds. We show that a projective variety fails to
satisfy aAP, aIP, and aBOP for some very particular sources.

Proof of Theorem 2 for projective varieties. Let Y be a projective
variety. First, note that if Y satisfies aIP, then we can use the inclusion {0, 1} ↪→
C to obtain a nonconstant regular map P1 → Y . Second, suppose that Y

satisfies aBOP. Since Y is not contractible, πk(Y ) �= 0 for some k ≥ 1, so
there is a continuous map �k → Y that is not homotopic to a constant map.
(Here, �k is the complex k-sphere defined in Remark 1 above; it contains
and retracts onto the real k-sphere.) Then, by aBOP, there is a nonconstant
regular map �k → Y . One-parameter subgroups of the linear algebraic group
SO(k+1,C) give many regular mapsC∗ → �k , so again there is a nonconstant
regular map P1 → Y .

We conclude that if Y does not contain a rational curve, then Y fails to satisfy
aIP and fails to satisfy aBOP, and hence fails to satisfy aAP. We continue the
proof assuming that there is a nonconstant regular map g:P1 → Y .

Let S be a smooth irrational curve in C2. It is well known that the algebraic



APPROXIMATION AND INTERPOLATION OF REGULAR MAPS 207

Picard group of S is “large”, even though its holomorphic Picard group is
trivial. The algebraic Picard group has plenty of nontorsion elements, so there
is an algebraic line bundle L on S so that no nonzero tensor power of L is
algebraically trivial. (Indeed, we have S = M \ F , where M is a smooth
projective curve of genus at least 1 and F ⊂ M is finite and nonempty. Every
algebraic line bundle on S extends to M , so the algebraic Picard group of
S is a quotient of the Picard group of M by the finitely-generated subgroup
corresponding to divisors with support in F .) The algebraic Picard group is
generated by two regular sections, so it is the pullback of the universal bundle
on P1 by a regular map f : S → P1. Let P be an ample line bundle on Y .
Then g∗P is ample on P1, so f ∗g∗P is a nonzero tensor power of L and hence
algebraically nontrivial. Therefore, by the Quillen-Suslin theorem, g◦f : S →
Y does not factor regularly through C2, even though it does continuously
because f is nullhomotopic. This shows that Y does not satisfy aIP.

To show that Y does not satisfy aBOP, we use the fact that C∗ × C∗ has
a “large” holomorphic Picard group, isomorphic to H 2(C∗ × C∗,Z), even
though its algebraic Picard group is trivial. Let L be a nontrivial holomorphic
line bundle onC∗ ×C∗. Then no nonzero tensor power of L is holomorphically
trivial. As we will explain in a moment, L is generated by two holomorphic
sections, so it is the pullback of the universal bundle on P1 by a holomorphic
map f :C∗ × C∗ → P1. As before, let P be an ample line bundle on Y . Then
g∗P is ample on P1, so f ∗g∗P is a nonzero tensor power of L and hence
holomorphically nontrivial. If g ◦ f :C∗ × C∗ → Y could be deformed to a
regular map h, then h∗P would be algebraically and hence topologically trivial,
so f ∗g∗P would be topologically trivial as well, and hence holomorphically
trivial by Grauert’s Oka principle. This shows that Y fails to satisfy aBOP and
hence aAP.

To generate L by two holomorphic sections on C∗ × C∗, we first choose
a nontrivial section s, whose zero locus is a 1-dimensional subvariety Z of
C∗ × C∗. Now Z has the homotopy type of a union of bouquets of circles
(see [13]), so L|Z is topologically and hence holomorphically trivial. Take
a holomorphic section of L|Z without zeros and extend it to a holomorphic
section t of L. Then s and t generate L.

To prove Theorem 2 in full generality we need a lemma, probably well
known to experts, but for want of a reference we sketch a proof.

Lemma 1. Let Y be a compact algebraic manifold and C be an irreducible
curve in Y . There is a finite composition Y ′ → Y of blow-ups with smooth
centres, such that Y ′ is projective and C is not contained in the image of any
of the exceptional divisors.

Proof. Let U be an affine Zariski-open subset of Y with U ∩ C �= ∅.
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By a strong version of Chow’s lemma [22, Proposition 5], there is a blow-up
p: Ỹ → Y along an ideal I cosupported on Y \ U , such that Ỹ is smooth and
projective. We can then use the arguments in [21, proof of Proposition D] to
finish the proof as follows. By Hironaka’s resolution of singularities, there is
an iterated blow-up π : Y ′ → Y with smooth centres over Y \ U , such that the
ideal π∗I is principal. Then Y ′ is smooth and compact and by the universal
property of blow-ups, there is a birational morphism g: Y ′ → Ỹ such that
π = p ◦ g. Since p is a blow-up and hence a modification, g is also a blow-up
by [14, Lemma 4]. Since Ỹ is projective, so is Y ′. The exceptional divisors of
π lie over Y \ U , so their images do not contain C.

Proof of Theorem 2. (a) Let Y be an algebraic manifold with a non-
constant regular map f :P1 → Y . By Nagata’s compactification theorem and
Hironaka’s resolution of singularities, there is a smooth compactification Ȳ of
Y . By Lemma 1, there is a finite composition π : Y ′ → Ȳ of blow-ups with
smooth centres, such that Y ′ is projective and f (P1) is not contained in the
image of any of the exceptional divisors.

Embed Y ′ in a projective space Pm. Let L be the hyperplane bundle on
Pm and take a hyperplane H in Pm that does not contain π−1(f (P1)). Then
deg f ∗π∗(L|Y ′) equals the intersection number f∗(P1) · π∗(L|Y ′), that is, the
intersection number of the effective curve f∗(P1) and the effective divisor
π∗(H ∩ Y ′). This number is positive since f (P1) is irreducible and not con-
tained in π(H ∩ Y ′), so f ∗π∗(L|Y ′) is an ample line bundle on P1. Now we
can proceed as in the proof for a projective variety Y .

(b) If Y is a compact algebraic manifold satifying aAP, aIP, or aBOP, then,
as in the proof for projective varieties, we can show that Y has a rational curve.
Then we invoke part (a).
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