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FREE RESOLUTIONS OF DYNKIN FORMAT AND THE
LICCI PROPERTY OF GRADE 3 PERFECT IDEALS

LARS WINTHER CHRISTENSEN, OANA VELICHE and JERZY WEYMAN

Abstract
Recent work on generic free resolutions of length 3 attaches to every resolution a graph and suggests
that resolutions whose associated graph is a Dynkin diagram are distinguished. We conjecture that
in a regular local ring, every grade 3 perfect ideal whose minimal free resolution is distinguished
in this way is in the linkage class of a complete intersection.

1. Introduction

Let Q be a commutative Noetherian ring. Quotient rings of Q that have pro-
jective dimension at most 3 as Q-modules have been and still are investigated
vigorously. A recent development is Weyman’s [15] construction of generic
rings for resolutions of length 3. For a free resolution,

F0
∂1

F1
∂2

F2
∂3

F3 ←− 0,

the format is the quadruple (f0, f1, f2, f3) with fi = rank Fi . To each resolu-
tion format Weyman associates a graph and a generic ring, and he proves that
the generic ring is Noetherian exactly if the graph is a Dynkin diagram. This
suggests that free resolutions of formats corresponding to Dynkin diagrams
play a special role; here we explore what that role might be in the context of
linkage.

Let Q be local and I in Q be a perfect ideal of grade 3. Let m be the minimal
number of generators of I , the minimal free resolution of Q/I over Q then
has format � = (1, m, m+n− 1, n) for m � 3 and some integer n � 1 which,
when Q is regular, is referred to as the type of the ring Q/I . For convenience
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we refer to the tuple � as the resolution format, or simply the format, of I . The
graph associated to � is

•m−3 · · · •1 • •1 · · · •n

•
A complete intersection ideal has resolution format (1, 3, 3, 1), and the cor-
responding graph is the Dynkin diagram A3. A Gorenstein ideal that is not
complete intersection has format (1, m, m, 1) for some odd m � 5, and the
associated graph is the Dynkin diagram Dm. There is another way to obtain
Dynkin diagrams of type D, namely from almost complete intersection ideals,
which have formats (1, 4, n + 3, n), corresponding to Dn+3, for n � 2. It is
elementary to verify that E6, E7, and E8 are the only other Dynkin diagrams
that can possibly arise in this manner. In the remainder of this paper, we say
that a (resolution) format is Dynkin if the corresponding graph is a Dynkin
diagram.

If Q is regular, then every grade 2 perfect ideal I in Q is licci, that is, in
the linkage class of a complete intersection ideal. Not every perfect ideal of
grade 3 is licci, and in a certain sense licci ideals of grade 4 are rare; see Miller
and Ulrich [12]. Works of Kunz [11] and Watanabe [13] show that a grade 3
perfect ideal is licci if it is Gorenstein or almost complete intersection; these
results predate the term licci, but Buchsbaum and Eisenbud interpret them in
the introduction to [3]. The purpose of this paper is to motivate the following:

Conjecture 1. Let Q be a regular local ring and � = (1, m, m+n− 1, n)

be a resolution format realized by some grade 3 perfect ideal in Q.

I If � is not Dynkin, then there exists a grade 3 perfect ideal in Q of format
� that is not licci.

II If � is Dynkin, then every grade 3 perfect ideal in Q of format � is licci.

The paper is organized as follows. In Section 2 we recall basics on linkage
and prove a few technical results. In Section 3 we collect evidence for part I of
the conjecture; in fact, we prove it for local rings that are obtained by localizing
a polynomial algebra at the irrelevant maximal ideal. Some of our evidence
for part II was already discussed above, and further evidence is provided in
Section 4.
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2. Linkage of grade 3 perfect ideals

To goal of this section, other than to recall the language of linkage, is to
establish a proposition that allows some control over the resolution formats
of directly linked ideals. To this end we need a folklore application of Prime
Avoidance for which we did not find a citable reference. (Note added in proof:
A, not widely available, reference is Kaplansky [10, Theorem 124].)

Lemma 2.1. Let Q be a commutative ring and P1, . . . , Ps be prime ideals
in Q. For every ideal J and element x in Q with J + (x) �⊆ P1 ∪P2 ∪ . . .∪Ps

there exists an element v ∈ J with v + x /∈ P1 ∪ P2 ∪ . . . ∪ Ps .

Proof. Without loss of generality we may assume that there are no con-
tainments among the prime ideals P1, . . . , Ps and that they are ordered such
that there is an r between 0 and s with x ∈ P1, . . . , Pr and x /∈ Pr+1, . . . , Ps .
Notice that if r = 0, then one can take v = 0.

Let r > 0. From the assumption on J + (x) one gets J �⊆ P1 ∪ . . . ∪ Pr ;
choose an element u ∈ J \ (P1 ∪ . . .∪ Pr). If r = s, then one can take v = u.
In the case r < s one has Pr+1∩ . . .∩Ps �⊆ P1∪ . . .∪Pr as, indeed, by Prime
Avoidance containment would imply Pr+1∩ . . .∩Ps ⊆ Pi for some i and then
one would have Pj ⊆ Pi for some j �= i, which contradicts the assumption on
P1, . . . , Ps . Now choose an element y ∈ Pr+1 ∩ . . . ∩ Ps \ P1 ∪ . . . ∪ Pr . It is
elementary to verify that uy + x is not in P1 ∪ P2 ∪ . . . ∪ Ps .

In the rest of this section, we keep the setup and notation close to [1]
by Avramov, Kustin, and Miller; the reader may see [1, Section 1] for more
background.

Let I be a perfect ideal of grade 3 in a local ring Q. An ideal J ⊆ Q is
said to be directly linked to I if there exists a regular sequence x1, x2, x3 of
elements in I with J = (x1, x2, x3) : I . The ideal J is then also a perfect ideal
of grade 3. An ideal J is said to be linked to I if there exists a sequence of
ideals I = J0, J1, . . . , Jn = J such that Ji+1 is directly linked to Ji for each
i = 0, . . . , n− 1.

Proposition 2.2. Let Q be a local ring and I ⊆ Q a grade 3 perfect ideal
of resolution format (1, m, m+ n− 1, n).

(a) If m � 4 holds, then there exists a grade 3 perfect ideal of resolution
format (1, n+ 3, m+ n, m− 2) that is directly linked to I .

(b) If m � 5 holds, then there exists a grade 3 perfect ideal of resolution
format (1, n+ 3, m+ n− 1, m− 3) that is directly linked to I .

Proof. Denote by � the maximal ideal of Q and by k the residue field
Q/�. Let F• be the minimal free resolution of Q/I . For a regular sequence
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x1, x2, x3 in I the corresponding Koszul complex is denoted by K•. The ca-
nonical surjection Q/(x1, x2, x3) → Q/I lifts to a morphism ϕ•: K• → F•.
As recalled in [1, Section 1], the dual of the mapping cone of ϕ• yields a, not
necessarily minimal, free resolution of Q/J . Further, the ranks of the modules
in the minimal free resolution G• of Q/J are given by

rankQ G1 = n+ 3− rankk(ϕ3 ⊗ k)− rankk(ϕ2 ⊗ k)

rankQ G2 = m+ n+ 2− rankk(ϕ2 ⊗ k)− rankk(ϕ1 ⊗ k)

rankQ G3 = m− rankk(ϕ1 ⊗ k).

Set A• = TorQ
• (Q/I, k). The morphism ϕ• ⊗ k: H(K•)→ A• is a morphism

of graded-commutative k-algebras.
(a): By assumption, I is not generated by a regular sequence, so by [1,

Theorem 2.1] one has (A1)
3 = 0 and, therefore, rankk(ϕ3 ⊗ k) = 0. It now

suffices to show that one can choose a regular sequence x1, x2, x3 such that
rankk(ϕ1 ⊗ k) = 2 and rankk(ϕ2 ⊗ k) = 0 hold. By [1, Theorem 2.1] one can
choose minimal generators x ′1 and x ′2 of I such that the corresponding cycles
z′1 and z′2 in F1 satisfy [z′1] · [z′2] = 0 in A•. Let P1, . . . , Ps be the associated
prime ideals of Q. As I has grade 3, the ideal �I + (x ′1) is not contained in the
union

⋃s
i=1 Pi . It now follows from Lemma 2.1 that there exists an element

v1 in �I such that x1 = v1 + x ′1 is not in
⋃s

i=1 Pi , i.e. not a zero-divisor.
Similarly, there exists a v2 ∈ �I such that x2 = v2 + x ′2 is not in the union
of the associated primes of the Q-module Q/(x1). Thus, x1, x2 form a regular
sequence of minimal generators of I , and the corresponding cycles z1 and z2

in F1 satisfy [z1] = [z′1] and [z2] = [z′2] in A1. Finally there exists, again
by Lemma 2.1, an element x3 in �I and not in the union of the associated
primes of the Q-module Q/(x1, x2). With this regular sequence x1, x2, x3 one
has rankk(ϕ1 ⊗ k) = 2, as the cycle z3 in F1 corresponding to x3 satisfies
[z3] = 0 in A1. In particular, one has [z1] · [z3] = 0 = [z2] · [z3] and hence
rankk(ϕ2 ⊗ k) = 0.

(b): By assumption, I is not generated by a regular sequence, so by [1,
Theorem 2.1] one has (A1)

3 = 0 and, therefore, rankk(ϕ3 ⊗ k) = 0. It now
suffices to show that one can choose a regular sequence x1, x2, x3 such that
rankk(ϕ1 ⊗ k) = 3 and rankk(ϕ2 ⊗ k) = 0 hold. By [1, Theorem 2.1] one
can choose minimal generators x ′1, x ′2, and x ′3 of I such that the corresponding
cycles z′1, z′2, z′3 ∈ F1 satisfy [z′i] · [z′j ] = 0 in A•. (Notice that the assumption
m � 5 is needed in order to choose these elements in case the multiplicative
structure is TE; for the other possible structures, B, G, and H, such elements
can be chosen as long as m is at least 4.) As in the proof of part (a) there
exist elements v1, v2, v3 ∈ �I such that v1 + x ′1, v2 + x ′2, v3 + x ′3 is a regular
sequence in I with the desired properties.
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Corollary 2.3. Let Q be a local ring and I ⊆ Q a grade 3 perfect ideal
of resolution format (1, m, m+ n− 1, n).

(a) If m � 4 holds, then there exists a grade 3 perfect ideal of resolution
format (1, m+ 1, m+ n+ 1, n+ 1) that is linked to I .

(b) If m � 5 holds, then there exists a grade 3 perfect ideal of resolution
format (1, m, m+ n, n+ 1) that is linked to I .

(c) If m � 4 and n � 2 holds, then there exists a grade 3 perfect ideal of
resolution format (1, m+ 1, m+ n, n) that is linked to I .

Proof. Part (a) follows from two consecutive applications of Proposi-
tion 2.2(a). Part (b) follows from an application of 2.2(b) followed an ap-
plication of 2.2(a). Finally, part (c) follows by application of 2.2(a) and 2.2(b)
in that order.

Let I ⊆ Qbe a perfect ideal of grade 3. For every regular sequence x1, x2, x3

in I one has (x1, x2, x3) : ((x1, x2, x3) : I ) = I ; see Golod [7]. Thus if an
ideal J is directly linked to I , then I is also directly linked to J . It follows that
“being linked” is an equivalence relation. The ideal I is called licci if it is in
the linkage class of a complete intersection ideal.

3. Evidence for Part I

By a Dynkin diagram we always mean a simply laced Dynkin diagram, i.e. a
diagram from the ADE classification. Recall from the introduction that

•m−3 · · · •1 • •1 · · · •n

•
is the graph associated to the resolution format (1, m, m + n − 1, n). The
Dynkin formats that can be realized by grade 3 perfect ideals are

A3 corresponding to (1, 3, 3, 1)

Dm — (1, m, m, 1) for odd m � 5

Dn+3 — (1, 4, n+ 3, n) for n � 2

E6 — (1, 5, 6, 2)

E7 — (1, 6, 7, 2) and (1, 5, 7, 3)

E8 — (1, 7, 8, 2) and (1, 5, 8, 4)

(3.1)
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This is straightforward to verify when one recalls that

• (1, 3, 3, 1) is the only possible format with m = 3; this excludes the
formats (1, 3, n+ 2, n) corresponding to An+2 for n � 2.

• The minimal number of generators of grade 3 Gorenstein ideal is odd,
see [3]. This excludes the formats (1, m, m, 1) corresponding to Dm for
even m � 4.

Theorem 3.1. Letk a field and e � 3; set Q = k[X1, . . . , Xe](X1,...,Xe). For
every resolution format � = (1, m, m+ n− 1, n) with m � 3 and n � 1 that
is not Dynkin there exists a grade 3 perfect ideal that has resolution format �
and is not licci.

It is implicit in this statement that every format (1, m, m+ n− 1, n) that is
not Dynkin is realized by a degree 3 perfect ideal in the ring Q. A proof was
sketched in the last section of [15], we provide the details in the Appendix.

The proof of Theorem 3.1 takes up the bulk of this section; indeed the
Theorem follows from Propositions 3.2, 3.4, and 3.6. It proceeds in two steps:
first we prove that it is enough to exhibit non-licci ideals for two specific
formats, (1, 6, 8, 3) and (1, 8, 9, 2), which are not Dynkin. Second we produce
such examples, in fact entire families of them.

Proposition 3.2. Let Q be a local ring. If there is a resolution format �
such that

(1) there exists a grade 3 perfect ideal in Q of format �,

(2) � is not Dynkin, and

(1) every perfect ideal in Q of format � is licci,

then (1, 6, 8, 3) or (1, 8, 9, 2) is such a format.

Proof. Assume that there exists at least one resolution format that satisfies
conditions (1)–(3). Let � = (1, m, m + n − 1, n) be minimal among all such
formats with regard to the total rank β(�) = 2(m + n) of the modules in the
minimal free resolution. Necessarily, one has m � 4 as the Dynkin format
(1, 3, 3, 1) is the only format with m = 3. It follows that the format �′ =
(1, n+ 2, m+ n− 2, m− 3) is Dynkin. Indeed, one has β(�′) = β(�)− 2 and
every perfect ideal of format �′ is by Proposition 2.2(a) is directly linked to a
perfect ideal of format � and hence licci.

Given the Dynkin formats (3.1), the potential minimal formats � can be
found in the table on the following page.

Among the potential minimal formats, (1, 4, 2�+2, 2�−1) does not exist for
� = 1, and for � � 2 the format is Dynkin corresponding to D2�+2. The format
�� = (1, �+3, �+4, 2) is for � ∈ {2, 3, 4}Dynkin corresponding to E6, E7, and
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Dynkin format �′ Potential minimal format �

(1, 2�+ 1, 2�+ 1, 1) for � � 1 (1, 4, 2�+ 2, 2�− 1)

(1, 4, �+ 3, �) for � � 2 (1, �+ 3, �+ 4, 2)

(1, 5, 6, 2) (1, 5, 7, 3)

(1, 5, 7, 3) (1, 6, 8, 3)

(1, 5, 8, 4) (1, 7, 9, 3)

(1, 6, 7, 2) (1, 5, 8, 4)

(1, 7, 8, 2) (1, 5, 9, 5)

E8. Further, the formats (1, 5, 7, 3) and (1, 5, 8, 4) are Dynkin corresponding
to E7 and E8. Thus, possible minimal formats that are not Dynkin and such
that every ideal of the format is licci are (1, 5, 9, 5), (1, 6, 8, 3), (1, 7, 9, 3)

and �� for � � 5.
An ideal of format (1, 5, 9, 5) is by Proposition 2.2(b) linked to an ideal of

format �5 = (1, 8, 9, 2). An ideal of format (1, 6, 8, 3) is by Corollary 2.3(c)
linked one of format (1, 7, 9, 3). Similarly, an ideal of format �� is linked to
one of format ��+1. Thus, if there exists a format that is not Dynkin with the
property that every ideal of that format is licci, then (1, 6, 8, 3) or (1, 8, 9, 2)

has that property.

To provide examples of ideals of formats (1, 6, 8, 3) and (1, 8, 9, 2) that are
not licci, we rely on numerical obstructions found by Huneke and Ulrich [8].

3.3. Let k be a field and e � 3; set Q = k[X1, . . . , Xe]. Let I be a
homogeneous perfect ideal in Q of grade 3 with minimal free resolution

Q←−
m⊕

i=1

Q(−d1,i )←−
m+n−1⊕

i=1

Q(−d2,i )←−
n⊕

i=1

Q(−d3,i )←− 0.

Set Q = Q(X1,...,Xe) and I = I(X1,...,Xe). Assuming that one has d1,1 � d1,2 �
· · · � d1,m and d3,1 � · · · � d3,n it follows from [8, Corollary 5.13] that if the
inequality

d3,n � 2d1,1

holds, then the ideal I is not licci.
Notice that if Q/I is Artinian, i.e. e = 3, then one has Q/I ∼= Q/I and the

inequality says that 3 plus the socle degree of Q/I does not exceed 2 times
the initial degree of I .

Resolution format (1, 6, 8, 3)

Proposition 3.4. Adopt the notation from 3.3. Let � be a 2×4 matrix of linear
forms in Q or a 3× 3 symmetric matrix of linear forms, and let I be the ideal
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of 2 × 2 minors of �. The ideal I has resolution format (1, 6, 8, 3) and it is
not licci.

Proof. The graded minimal free resolution of Q/I has the form

Q←− Q(−2)6 ←− Q(−3)8 ←− Q(−4)3 ←− 0;
see Eagon and Nothcott [5, Theorem 2] and Józefiak [9, Theorem 3.1] or
Weyman [14, Proposition (6.1.7) and Theorem (6.3.1)]. It follows from 3.3
that I is not licci.

The next example illustrates Proposition 3.4 and the linkage argument in
the proof of Proposition 3.2. Recall that an Artinian local ring is called level
if the socle is exactly the highest nonvanishing power of the maximal ideal.

Example 3.5. Let k be a field; set Q = k[X, Y, Z] and N = (X, Y, Z).
The ideal N 2 is generated by the six quadratic monomials, and the quotient
Q/N 2 is an Artinian local level algebra of socle degree 1 and type 3, so the
minimal free resolution over Q is

Q←− Q(−2)6 ←− Q(−3)8 ←− Q(−4)3 ←− 0;
Notice that N 2 is the ideal of 2× 2 minors of either matrix

(
X Y Z 0

0 X Y Z

)
or

⎛
⎝ X Y Z

Y 0 X

Z X Y

⎞
⎠ .

The linked ideal

I = (X2, Y 2, Z3) : N 2 = (X2, Y 2, XYZ, XZ2, YZ2, Z3)

defines a local Artinian k-algebra with graded basis

1 x, y, z xy, xz, yz, z2.

Evidently, there are no linear forms in the socle of Q/I , so it is a level algebra
of type 4, whence I has resolution format (1, 6, 9, 4). Next, the ideal

J = (X3 − YZ2, Y 3 −XZ2, Z3) : I

= (X3 − YZ2, Y 3 −XZ2, Z3, X2Y 2, X2YZ, XY 2Z, XYZ2)

defines a local Artinian k-algebra with graded basis

1 x, y, z x2, xy, xz, y2, yz, z2

x2y, x2z, xy2, xyz, xz2, y2z, yz2 x2z2, y2z2.
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It is straightforward to verify that the socle of Q/J is generated by xyz, x2z2,
and y2z2. It follows that J has resolution format (1, 7, 9, 3).

Resolution format (1, 8, 9, 2)

Recall that an Artinian k-algebra is called compressed if it has maximal length
among all algebras with the same socle polynomial; see Setup 4.1. This notion
has a natural generalization to Cohen-Macaulay algebras, see Fröberg and
Laksov [6], and that is the one we use in the proposition below.

Proposition 3.6. Adopt the notation from 3.3. Assume that the graded k-
algebra Q/I is compressed with with socle polynomial 2t3; that is,

dimk(TorQ
3 (Q/I ,k))i =

{
2, for i = 6,

0, for i �= 6.

The ideal I has resolution format (1, 8, 9, 2) and it is not licci.

Proof. By [6, Proposition 6] the Hilbert series of Q/I is

1+ 3t + 6t2 + 2t3

(1− t)e−3
.

Further, it follows from the equality
(3

2

) = 2
(3

1

)
that Q/I is extremely com-

pressed, see [6, p. 133]. Now it follows from [6, Proposition 16] that the graded
free resolution of Q/I has the form

Q←− Q(−3)8 ←− Q(−4)9 ←− Q(−6)2 ←− 0;
The conclusion now follows from 3.3.

By work of Boij and Laksov [2, Theorem (3.4)], Proposition 3.6 applies to
generic Artinian level algebras of embedding dimension 3, socle degree 3, and
type 2.

The next example illustrates Proposition 3.6 and the linkage argument in
the proof of Proposition 3.2.

Example 3.7. Let k be a field. The ideal

I = (X3, X2Y + YZ2, X2Z +XYZ, XY 2 +XYZ, XZ2, Y 3, Y 2Z, Z3)

in k[X, Y, Z] defines an Artinian local k-algebra with graded basis

1 x, y, z x2, xy, xz, y2, yz, z2 xyz, yz2.
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It is elementary to check that there are no quadratic forms in the socle of Q/I ,
so it is a compressed level algebra of type 2, and it follows that I has format
(1, 8, 9, 2).

The linked ideal

J = (X3, Y 3, Z3) : I = (X3, X2Y − YZ2, XYZ −XZ2 − Y 2Z, Y 3, Z3)

defines an Artinian local k-algebra with graded basis

1 x, y, z x2, xy, xz, y2, yz, z2 x2z, xy2, xz2, y2z, yz2.

Again it is elementary to verify that there are no quadratic forms in the socle,
so it is a level algebra of type 5; in particular, the resolution format of J is
(1, 5, 9, 5).

Finally, notice that the ideal I under the flat extension k[X, Y, Z] →
k[X, Y, Z, X4, . . . , Xe] extends to an ideal that satisfies the hypothesis of
Proposition 3.6.

4. Evidence for Part II

As discussed in the Introduction, it is known that grade 3 perfect ideals of
resolution format (1, 4, n + 3, n) for n � 2 – almost complete intersection
ideals – and ideals of format (1, m, m, 1) for odd m � 3 – Gorenstein ideals –
are licci. The remaining Dynkin formats are (1, 5, 6, 2) corresponding to E6,
(1, 6, 7, 2) and (1, 5, 7, 3) corresponding to E7, and (1, 7, 8, 2) and (1, 5, 8, 4)

corresponding to E8; see (3.1).
In the previous section, we proved the existence of ideals that are not licci

by invoking the numerical obstructions in 3.3. In this section, we prove that
homogeneous grade 3 perfect ideals in k[X1, X2, X3] of resolution formats
corresponding to E6, E7, or E8 avoid this obstruction.

Setup 4.1. Let Q be a polynomial algebra of embedding dimension e. For
a finitely generated graded Q-module M , let hM(·) denote the Hilbert function.
Let I be a homogeneous ideal in Q such that Q/I isArtinian with socle degree
s; its socle polynomial

∑s
j=1 cj t

j is the Hilbert series of the socle of Q/I . For
every i � 0 there is an inequality

hQ/I (i) � min

{
hQ(i),

s∑
j=i

cjhQ(j − i)

}

= min

{(
e − 1+ i

e − 1

)
,

s∑
j=i

cj

(
e − 1+ j − i

e − 1

)}
.
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If equality holds for every i, then Q/I is called compressed, see [6, Section 3].
The number n =∑s

j=1 cj is the type of Q/I and, evidently, one has

hQ/I (i) � min
{
hQ(i), nhQ(s − i)

}
= min

{(
e − 1+ i

e − 1

)
, n

(
e − 1+ s − i

e − 1

)}
.

(4.1)

Proposition 4.2. Adopt the notation from 3.3 and let e = 3. If the ideal
I has initial degree d1,1 � 2 and resolution format (1, m, m + 1, 2) for
4 � m � 7, then one has d3,2 > d1,1 + d1,2.

As one has d1,1+d1,2 � 2d1,1 it follows that ideals I of format (1, 5, 6, 2),
(1, 6, 7, 2), and (1, 7, 8, 2) avoid the numerical obstruction to being licci
from 3.3.

Proof. To simplify the notation from 3.3, set

R = Q/I , d = d1,1, d ′ = d1,2, and s = d3,2 − 3.

Notice that R is Artinian of socle degree s. The inequalities 2 � d1,1 and
d1,1 + 2 � d3,2 yield

1 � s and d � s + 1.

We assume that s + 3 � d + d ′ holds and aim for a contradiction. To this end
it is by (4.1) sufficient to prove that there is a u � s such that the inequality
hR(u) > 2hQ(s − u) holds.

Case 1. Assume that d < s+3
2 holds. One then has d ′ � s+ 3− d > d, and

hence

hR(i) � hQ(i)− hQ(i − d)− (m− 1)hQ(i − d ′)
� hQ(i)− hQ(i − d)− (m− 1)hQ(i − s − 3+ d)

� hQ(i)− hQ(i − d)− 6hQ(i − s − 3+ d).

For d = 2 one has

hR(s) � hQ(s)− hQ(s − 2) =
(

s + 2

2

)
−

(
s

2

)
= 2s + 1 > 2 = 2hQ(0).

Now let d � 3 and set u = s + 2 − ⌈
d
2

⌉
; notice that u � s. Straightforward

computations yield

2hQ(s − u) =
{ 1

4d(d − 2), for d even,

1
4 (d + 1)(d − 1), for d odd,
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and

hQ(u)− hQ(u− d)− 6hQ(u− s − 3+ d)

=
{ 1

4d(4s − 7d + 8), for d even,

1
4 (d(4s − 7d + 12)+ 3), for d odd.

For d even one now has

hR(u)− 2hQ(s − u) � d(4s − 7d + 8)

4
− d(d − 2)

4

= d(2(s − 2d + 3)− 1)

2
� d

2
,

and for d odd

hR(u)− 2hQ(s − u) � d(4s − 7d + 12)+ 3

4
− (d + 1)(d − 1)

4

= d(s − 2d + 3)+ 1 � d + 1.

That is, independent of the parity of d one has hR(u) > 2hQ(s − u).
Case 2. Assume that d � s+3

2 holds; one has

hR(i) � hQ(i)−mhQ(i − d) � hQ(i)− 7hQ(i − d).

Set u = ⌊
s+d

2

⌋
and σ = s − d + 3. Notice that one has

1 � σ � d � s + 1 and u � s.

Straightforward computations yield

2hQ(s − u) =
{ 1

4 (σ 2 − 1), for s + d even,

1
4σ(σ + 2), for s + d odd,

and

hQ(u)− 7hQ(u− d) =
{ 1

4 (2d(d + σ)− 3(σ 2 − 1)), for s + d even,

1
4 (2d(d + σ − 1)− 3σ(σ − 2)), for s + d odd.

The inequality d � σ explains the second inequality in each of the compu-
tation below. For s + d even one has

hR(u)− 2hQ(s − u) � 2d(d + σ)− 3(σ 2 − 1)

4
− σ 2 − 1

4

� 4σ 2 − 4(σ 2 − 1)

4
= 1,
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and for s + d odd

hR(u)− 2hQ(s − u) � 2d(d + σ − 1)− 3σ(σ − 2)

4
− σ(σ + 2)

4

� 2σ(2σ − 1)− 4σ(σ − 1)

4
= σ

2
.

That is, independent of the parity of d one has hR(u) > 2hQ(s − u).

Proposition 4.3. Adopt the notation from 3.3 and let e = 3. If the ideal I

has initial degree d1,1 � 2 and resolution format (1, 5, n+4, n) for 1 � n � 4,
then one has d3,2 > d1,1 + d1,2.

As one has d1,1 + d1,2 � 2d1,1 it follows, in particular, that ideals I of
format (1, 5, 7, 3) and (1, 5, 8, 4) avoid the numerical obstruction to being
licci from 3.3.

Proof. As in the proof of Proposition 4.2, set R = Q/I , d = d1,1, d ′ =
d1,2, and s = d3,2 − 3. Note that R is Artinian of socle degree s, and that one
has 1 � s and d � s + 1. We assume that s + 3 � d + d ′ holds and aim for a
contradiction. To this end it is by (4.1) sufficient to prove that there is a u � s

such that the inequality hR(u) > nhQ(s − u) holds.
Case 1. Assume that d � s+3

2 holds. One then has d ′ � s+ 3− d � d, and
hence

hR(i) � hQ(i)− hQ(i − d)− 4hQ(i − d ′)
� hQ(i)− hQ(i − d)− 4hQ(i − s − 3+ d).

For d = 2 one has s � 2 and hR(s) � hQ(s) − hQ(s − 2) = 2s + 1 > 4 �
nhQ(0) as computed in the proof of Proposition 4.2.

Now let d � 3 and set u = s+ 2− ⌈
d
2

⌉
; notice that u � s. Straightforward

computations yield

nhQ(s − u) � 4hQ(s − u) =
{ 1

2d(d − 2), for d even,

1
2 (d + 1)(d − 1), for d odd,

and

hQ(u)− hQ(u− d)− 4hQ(u− s − 3+ d)

=
{ 1

2d(2s − 3d + 5), for d even,

1
2 (d(2s − 3d + 6)+ 1), for d odd.
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For d even one now has

hR(u)− nhQ(s − u) � d(2s − 3d + 5)

2
− d(d − 2)

2

= d(2(s − 2d + 3)+ 1)

2
� 3d

2
,

and for d odd

hR(u)− nhQ(s − u) � d(2s − 3d + 6)+ 1

2
− (d + 1)(d − 1)

2

= 2d(s − 2d + 3)+ 2

2
� d + 1.

That is, independent of the parity of d one has hR(u) > nhQ(s − u).
Case 2. Assume that d > s+3

2 holds; one has

hR(i) � hQ(i)− 5hQ(i − d).

Set u = ⌊
s+d

2

⌋
and σ = s − d + 3. Notice that one has

2 � σ + 1 � d � s + 1 and u � s.

Straightforward computations yield

nhQ(s − u) � 4hQ(s − u) =
{ 1

2 (σ 2 − 1), for s + d even,

1
2σ(σ + 2), for s + d odd,

and

hQ(u)− 5hQ(u− d) =
{ 1

2 (d(d + σ)− (σ 2 − 1)), for s + d even,

1
2 (d(d + σ − 1)− σ(σ − 2)), for s + d odd.

The inequality d � σ + 1 explains the second inequality in each of the
computation below. For s + d even one has

hR(u)− nhQ(s − u) � d(d + σ)− (σ 2 − 1)

2
− σ 2 − 1

2

� (σ + 1)(2σ + 1)− 2(σ 2 − 1)

2
= 3(σ + 1)

2
,
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and for s + d odd

hR(u)− nhQ(s − u) � d(d + σ − 1)− σ(σ − 2)

2
− σ(σ + 2)

2

� (σ + 1)2σ − 2(σ 2 − σ)

2
= 2σ.

That is, independent of the parity of d one has hR(u) > nhQ(s − u).

Appendix A. Realizability of resolution formats

In the power series ring k[[X, Y, Z]] there exists by [3, Proposition 6.2] an
ideal of resolution format (1, m, m, 1), i.e. a Gorenstein ideal of grade 3, for
every odd m � 3. We start by recording that this is the case in any local ring
of sufficient depth.

Lemma A.1. Let Q be a local ring of depth at least 3. For every odd m � 3
there exists a grade 3 perfect ideal of resolution format (1, m, m, 1).

Proof. Denote by � the maximal ideal of Q and let x, y, z be a regular
sequence in �. Let � be an integer with m = 2�+1 and define a skew symmetric
matrix V� as in [4, Section 3]. Let I be the ideal generated by the sub-maximal
Pfaffians of V�. It follows from Proposition 3.3 in loc. cit. that the radical of I

contains x, y, and z, so I has grade (at least) 3, whence by [3, Theorem 2.1] it
is a Gorenstein ideal of format (1, m, m, 1).

Theorem A.2. Let (Q, �) be a local ring of depth at least 3. For every
resolution format � = (1, m, m + n − 1, n) with m � 3 and n � 1 that is
not (1, m, m, 1) with m even and not (1, 3, n+ 2, n) with n � 2 there exists a
grade 3 perfect ideal I in Q of resolution format �.

Proof. By Lemma A.1 there exists for every odd g � 3 a grade 3 perfect
ideal with resolution format (1, g, g, 1). Fix a format � = (1, m, m + n −
1, n) with m � 3 and n � 2. If m = 4 and n is even, then it follows from
Proposition 2.2(b) that there exists an ideal of format � that is linked to one
of format (1, n + 3, n + 3, 1). If m = 4 and n is odd, then it follows from
Proposition 2.2(a) that there exists an ideal of format � that is linked to one
of format (1, n + 2, n + 2, 1). If m � 5 is odd, then it follows from n −
1 applications of Corollary 2.3(b) that there is an ideal of format � that is
linked to one of format (1, m, m, 1). If m � 6 is even, then it follows from
Corollary 2.3(a) and n− 2 applications of Corollary 2.3(b) that there exists an
ideal of format � that is linked to one of format (1, m− 1, m− 1, 1).
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