VANDERMONDE DETERMINANTAL IDEALS

JUNZO WATANABE and KOHJI YANAGAWA

Abstract

We show that the ideal generated by maximal minors (i.e., k+1-minors) of a $(k+1) \times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n-k, 1, \ldots, 1)$.

1. Introduction

Let n, k be integers with $n > k \ge 1$. Consider the polynomial ring $R = K[x_1, \ldots, x_n]$ over a field K, and the following non-square Vandermonde matrix

$$M_{n,k} := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix}.$$

Let $I_{n,k}^{\text{Vd}}$ denote the ideal of R generated by all maximal minors (i.e., k+1 minors) of $M_{n,k}$.

The purpose of this paper is to prove the following.

THEOREM 1.1. $R/I_{n,k}^{\text{Vd}}$ is a reduced Cohen-Macaulay ring with dim $R/I_{n,k}^{\text{Vd}} = k$ and deg $R/I_{n,k}^{\text{Vd}} = S(n,k)$, where S(n,k) stands for the Stirling number of the second kind.

The present paper can be seen as the precursor of our ongoing project [6] on *Specht ideals*. For a partition λ of n, we can consider the ideal

$$I_{\lambda}^{\mathrm{Sp}} = (\Delta_T \mid T \text{ is a Young tableau of shape } \lambda)$$

of R, where $\Delta_T \in R$ denotes the *Specht polynomial* corresponding to T (see [2]). Then we have $I_{n,k}^{\mathrm{Vd}} = I_{(n-k,1,\dots,1)}^{\mathrm{Sp}}$. Note that the K-vector subspace

Received 17 December 2017, in final form 16 April 2018. Accepted 9 May 2018.

DOI: https://doi.org/10.7146/math.scand.a-114906

The second authors is partially supported by JSPS Grant-in-Aid for Scientific Research (C) 16K05114.

 $\langle \Delta_T \mid T \text{ is a Young tableau of shape } \lambda \rangle$ of R is the *Specht module* associated with λ as an S_n -module. The Specht modules are often constructed in different manner (e.g., using Young tabloids), and play crucial role in the representation theory of symmetric groups (see, for example [5]). General Specht ideals are much more delicate than the Vandermont case $I_{n,k}^{\mathrm{Vd}}$. For example, $R/I_{\lambda}^{\mathrm{Sp}}$ is not even pure dimensional for many λ , and the Cohen-Macaulayness of $R/I_{\lambda}^{\mathrm{Sp}}$ may depend on $\mathrm{char}(K)$ for some fixed λ . In [6], we will use the representation theory of symmetric groups.

It is noteworthy that Fröberg and Shapiro [1] also studied some variants of R/I_{λ}^{Vd} in a different context.

2. Results and proofs

Extending the base field, we may assume that K is algebraically closed. Theoretically, this assumption is not necessary in the following argument, but it makes the expositions more readable.

For an ideal $I \subset R$, set $V(I) := \{ \mathfrak{p} \mid \mathfrak{p} \in \operatorname{Spec} R, \mathfrak{p} \supset I \}$ as usual. For $\mathbf{a} = (a_1, \dots, a_n) \in K^n$, let $\mathfrak{m}_{\mathbf{a}}$ denote the maximal ideal $(x_1 - a_1, x_2 - a_2, \dots, x_n - a_n)$ of R. By abuse of notation, we just write $\mathbf{a} \in V(I)$ to mean $\mathfrak{m}_{\mathbf{a}} \in V(I)$. Clearly, $\mathbf{a} \in V(I)$ if and only if $f(\mathbf{a}) = 0$ for all $f \in I$.

Proposition 2.1. We have dim $R/I_{n.k}^{Vd} = k$ and

$$\deg\left(R/\sqrt{I_{n,k}^{\mathrm{Vd}}}\right) = S(n,k),$$

where S(n, k) stands for the Stirling number of the second kind, that is, the number of ways to partition the set $\{1, 2, ..., n\}$ into k non-empty subsets.

PROOF. For
$$\mathbf{a} = (a_1, \dots, a_n) \in K^n$$
, $\mathbf{a} \in V(I_{n,k}^{\text{Vd}})$ if and only if $\operatorname{rank}(M_{n,k}(\mathbf{a})) < k$,

where $M_{n,k}(\mathbf{a})$ is the matrix given by putting $x_i = a_i$ for each i in $M_{n,k}$. The latter condition is equivalent to that $\#\{a_1,\ldots,a_n\} \leq k$. This is also equivalent to that there is a partition $\Pi = \{F_1,\ldots,F_k\}$ of the set $[n] := \{1,2,\ldots,n\}$ such that $a_i = a_j$ for all $i,j \in F_\ell$ ($\ell = 1,2,\ldots,k$). For the above partition Π , let P_Π denote the prime ideal

$$(x_i - x_j \mid i, j \in F_\ell \text{ for } \ell = 1, \dots, k)$$

of R. Since

$$\sqrt{I_{n,k}^{\mathrm{Vd}}} = \bigcap_{\substack{\Pi: \text{ partition of } [n] \\ \#\Pi = k}} P_{\Pi},$$

dim $R/P_{\Pi} = k$ for all Π , and deg $R/P_{\Pi} = 1$, we are done.

Applying elementary column operations to $M_{n,k}$, we get the following matrix

$$M'_{n,k} := \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ x_1 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_1^2 & x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_n^2 - x_1^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^k & x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_n^k - x_1^k \end{pmatrix}.$$

Consider its $k \times (n-1)$ submatrix

$$N_{n,k} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_n^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_n^k - x_1^k \end{pmatrix}.$$

Clearly, $I_{n,k}^{Vd}$ is generated by all maximal minors (i.e., k-minors) of $N_{n,k}$.

THEOREM 2.2. $R/I_{n,k}^{Vd}$ is Cohen-Macaulay. Moreover, its minimal graded free resolution is given by the Eagon-Northcott complex (see, for example [4]) associated to the matrix $N_{n,k}$.

PROOF. Since $\operatorname{ht}(I_{n,k}^{\operatorname{Vd}}) = \dim R - \dim R/I_{n,k}^{\operatorname{Vd}} = n-k = (n-1)-k+1$, $I_{n,k}^{\operatorname{Vd}}$ is a *standard determinantal ideal* in the sense of [4]. Hence the assertion is immediate from well-known properties of this notion (cf. §1.2 of [4]).

When we construct the Eagon-Northcott resolution of $I_{n,k}^{Vd}$, we use a symmetric power $\operatorname{Sym}_i V$ of a k-dimensional vector space V with a basis e_1, \ldots, e_k such that $\deg e_i = i$ for each i. Set

$$p_{i,j}^m := \#\{(a_1, \dots, a_m) \in \mathbb{N}^m \\ | a_1 + a_2 + \dots + a_m = i, \ a_1 + 2a_2 + \dots + ma_m = j\}$$

For simplicity, set $p_{0,j}^m := \delta_{0,j}$. The following facts are easy to see:

(1) $p_{i,j}^m \neq 0$ if and only if $i \leq j \leq im$;

$$(2) \sum_{j} p_{i,j}^{m} = \binom{m+i-1}{i}.$$

For the vector space V discussed above, the dimension of the degree j part of $\operatorname{Sym}_i V$ is $p_{i,j}^k$.

Corollary 2.3. For $i \ge 1$, we have

$$\beta_{i,j}(R/I_{n,k}^{\text{Vd}}) = p_{i-1,j-\frac{1}{2}k(k+1)}^k \times \binom{n-1}{k+i-1}.$$

PROOF. Since the minimal free resolution of $R/I_{n,k}^{\text{Vd}}$ is given by the Eagon-Northcott complex, we have

$$\begin{split} \beta_{i,j}(R/I_{n,k}^{\mathrm{Vd}}) &= \left(\dim_K \left[\left(\mathrm{Sym}_{i-1} \, V \right) \otimes_K \bigwedge^k V \, \right]_j \right) \times \left(\dim_K \bigwedge^{k+i-1} W \right) \\ &= \left(\dim_K \left[\left. \mathrm{Sym}_{i-1} \, V \, \right]_{j-\frac{1}{2}k(k+1)} \right) \times \left(\dim_K \bigwedge^{k+i-1} W \right) \\ &= p_{i-1,j-\frac{1}{2}k(k+1)}^k \times \binom{n-1}{k+i-1}, \end{split}$$

where V is the K-vector space considered above, and W is a K-vector space of dimension n-1.

EXAMPLE 2.4. Since $p_{i,j}^2 = 0$ or 1 for all i, j, we have $\beta_{i,j}(R/I_{n,2}^{\text{Vd}}) = 0$ or $\binom{n-1}{i+1}$ for all $i \geq 1$. For example, the Betti table of $R/I_{6,2}^{\text{Vd}}$ is the following.

The following are the Betti tables of $R/I_{6.3}^{\rm Vd}$ and $R/I_{7.3}^{\rm Vd}$, respectively.

total:	1	10	15	6	total:	1	20	45	36	10
0:	1				0:	1				
1:			•		1:					
2:			•		2:					
3:				•	3:			•	•	
4:				•	4:			•	•	
5:		10	5	1	5 :		20	15	6	1
6:			5	1	6:			15	6	1
7:			5	2	7:			15	12	2
8:				1	8:				6	2
9:				1	9:				6	2
					10:					1
					11:					1

THEOREM 2.5. We have

$$\deg R/I_{n,k}^{\mathrm{Vd}} = S(n,k).$$

PROOF. Since $I_{n,1}^{\mathrm{Vd}}$ is an ideal generated by linear forms, we have $\deg R/I_{n,1}^{\mathrm{Vd}}=1=S(n,1)$ for all $n\geq 2$. Since $I_{n,n-1}^{\mathrm{Vd}}$ is a principal ideal generated by a polynomial of degree $\binom{n}{2}$, we have $\deg R/I_{n,n-1}^{\mathrm{Vd}}=\binom{n}{2}=S(n,n-1)$. It is well-known that the Stirling numbers of the second kind satisfy the recurrence relation

$$S(n, k) = S(n - 1, k - 1) + kS(n - 1, k).$$

So it suffices to show that deg $R/I_{n,k}^{Vd}$ also satisfies the corresponding relation

$$\deg R/I_{n,k}^{\text{Vd}} = \deg R'/I_{n-1,k-1}^{\text{Vd}} + k \left(\deg R'/I_{n-1,k}^{\text{Vd}}\right)$$
 (2.1)

for n-1 > k, where R' is the polynomial ring $K[x_1, \ldots, x_{n-1}]$.

From now on, we assume that n-1 > k. Note that the matrices

$$N_{n-1,k-1} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_{n-1} - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_{n-1}^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{k-1} - x_1^{k-1} & x_3^{k-1} - x_1^{k-1} & \cdots & x_{n-1}^{k-1} - x_1^{k-1} \end{pmatrix}$$

and

$$N_{n-1,k} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_{n-1} - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_{n-1}^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_{n-1}^k - x_1^k \end{pmatrix}$$

can be regarded as submatrices of $N_{n,k}$. Let J_1 and J_2 be the ideals (of R) generated by all maximal minors of $N_{n-1,k-1}$ and $N_{n-1,k}$, respectively. By [3, Lemma 2.3(2)], we have

$$\deg R/I_{n,k}^{\text{Vd}} = \deg R/J_1 + k(\deg R/J_2).$$

On the other hand, we have $R/J_1 \cong (R'/I_{n-1,k-1}^{\mathrm{Vd}})[x_n]$, and hence $\deg R/J_1 = \deg R'/I_{n-1,k-1}^{\mathrm{Vd}}$. Similarly, $\deg R/J_2 = \deg R'/I_{n-1,k}^{\mathrm{Vd}}$. Now (2.1) is clear.

REMARK 2.6. In the first version of this paper, the key formula (2.1) was shown by a direct computation from Corollary 2.3. More precisely, the equations

$$\beta_{1,j}(R/I_{n,k}^{\text{Vd}}) = \beta_{1,j-k}(R'/I_{n-1,k-1}^{\text{Vd}}) + \beta_{1,j}(R'/I_{n-1,k}^{\text{Vd}})$$

and

$$\beta_{i,j}(R/I_{n.k}^{\text{Vd}}) = \beta_{i,j-k}(R'/I_{n-1,k-1}^{\text{Vd}}) + \beta_{i,j}(R'/I_{n-1,k}^{\text{Vd}}) + \beta_{i-1,j-k}(R'/I_{n-1,k}^{\text{Vd}})$$

hold for $i \ge 2$. One can check this in Example 2.4. Anyway, we see that these equations imply (2.1).

Now we know that (2.1) is a direct consequence of [3, Lemma 2.3(2)]. It is noteworthy that this lemma is a result of Gorenstein liaison theory.

COROLLARY 2.7. $R/I_{n,k}^{\text{Vd}}$ is reduced.

PROOF. Since $A := R/I_{n,k}^{\text{Vd}}$ is Cohen-Macaulay, any non-zero ideal $I \subset A$ satisfies dim $I = \dim A$ as an A-module. Hence if A is not reduced, then deg $A > \deg A/\sqrt{(0)}$. However, it contradicts the fact that

$$\deg(R/I_{n,k}^{\mathrm{Vd}}) = S(n,k) = \deg(R/\sqrt{I_{n,k}^{\mathrm{Vd}}}).$$

ACKNOWLEDGEMENTS. We are grateful to the anonymous referee for directing our attention to [3, Lemma 2.3], which drastically simplified the proof of Theorem 2.5.

REFERENCES

- Fröberg, R., and Shapiro, B., On Vandermonde varieties, Math. Scand. 119 (2016), no. 1, 73–91.
- 2. Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., and Watanabe, J., *The Lefschetz properties*, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013.
- 3. Miró-Roig, R. M., A note on the multiplicity of determinantal ideals, J. Algebra 299 (2006), no. 2, 714–724.
- 4. Miró-Roig, R. M., *Determinantal ideals*, Progress in Mathematics, vol. 264, Birkhäuser Verlag, Basel, 2008.
- Sagan, B. E., The symmetric group: representations, combinatorial algorithms, and symmetric functions, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001.
- 6. Watanabe, J., and Yanagawa, K., On Specht ideals, in preparation.

DEPARTMENT OF MATHEMATICS TOKAI UNIVERSITY HIRATSUKA 259-1292 JAPAN

E-mail: watanabe.junzo@tokai-u.jp

DEPARTMENT OF MATHEMATICS KANSAI UNIVERSITY SUITA OSAKA 564-8680 IAPAN

E-mail: yanagawa@kansai-u.ac.jp