VANDERMONDE DETERMINANTAL IDEALS

JUNZO WATANABE and KOHJI YANAGAWA

Abstract

We show that the ideal generated by maximal minors (i.e., $k + 1$ -minors) of a $(k + 1) \times n$ Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all Specht polynomials with shape $(n - k, 1, \ldots, 1)$.

1. Introduction

Let n, k be integers with $n > k \ge 1$. Consider the polynomial ring $R =$ $K[x_1, \ldots, x_n]$ over a field K, and the following non-square Vandermonde matrix $1 \quad 1 \quad \cdots \quad 1$

$$
M_{n,k} := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ x_1^2 & x_2^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^k & x_2^k & \cdots & x_n^k \end{pmatrix}.
$$

Let $I_{n,k}^{\text{Vd}}$ denote the ideal of R generated by all maximal minors (i.e., $k + 1$ minors) of $M_{n,k}$.

The purpose of this paper is to prove the following.

THEOREM 1.1 . $R/I_{n,k}^{\text{Vd}}$ is a reduced Cohen-Macaulay ring with $\dim R/I_{n,k}^{\text{Vd}}=$ k and $\deg R/I_{n,k}^{\text{Vd}} = S(n, k)$, where $S(n, k)$ stands for the Stirling number of *the second kind.*

The present paper can be seen as the precursor of our ongoing project [6] on *Specht ideals*. For a partition λ of *n*, we can consider the ideal

 $I_{\lambda}^{\text{Sp}} = (\Delta_T | T \text{ is a Young tableau of shape } \lambda)$

of R, where $\Delta_T \in R$ denotes the *Specht polynomial* corresponding to T (see [2]). Then we have $I_{n,k}^{\text{Vd}} = I_{(n-k,1,\dots,1)}^{\text{Sp}}$. Note that the K-vector subspace

The second authors is partially supported by JSPS Grant-in-Aid for Scientific Research (C) 16K05114.

Received 17 December 2017, in final form 16 April 2018. Accepted 9 May 2018. DOI: https://doi.org/10.7146/math.scand.a-114906

 $(\Delta_T | T$ is a Young tableau of shape λ) of R is the *Specht module* associated with λ as an S_n -module. The Specht modules are often constructed in different manner (e.g., using Young tabloids), and play crucial role in the representation theory of symmetric groups (see, for example [5]). General Specht ideals are much more delicate than the Vandermont case $I_{n,k}^{\text{Vd}}$. For example, $R/I_{\lambda}^{\text{Sp}}$ is not even pure dimensional for many λ , and the Cohen-Macaulayness of $R/I_{\lambda}^{\text{Sp}}$ may depend on char(K) for some fixed λ . In [6], we will use the representation theory of symmetric groups.

It is noteworthy that Fröberg and Shapiro [1] also studied some variants of $R/I_{\lambda}^{\text{Vd}}$ in a different context.

2. Results and proofs

Extending the base field, we may assume that K is algebraically closed. Theoretically, this assumption is not necessary in the following argument, but it makes the expositions more readable.

For an ideal $I \subset R$, set $V(I) := \{ \mathfrak{p} \mid \mathfrak{p} \in \text{Spec } R, \mathfrak{p} \supset I \}$ as usual. For $\mathbf{a} = (a_1, \ldots, a_n) \in K^n$, let $\mathfrak{m}_{\mathbf{a}}$ denote the maximal ideal $(x_1 - a_1, x_2 - a_1)$ $a_2, \ldots, x_n - a_n$ of R. By abuse of notation, we just write $\mathbf{a} \in V(I)$ to mean $m_a \in V(I)$. Clearly, $a \in V(I)$ if and only if $f(a) = 0$ for all $f \in I$.

PROPOSITION 2.1. *We have* dim $R/I_{n,k}^{\text{Vd}} = k$ *and*

$$
\deg\left(R\bigg/\sqrt{I_{n,k}^{\text{Vd}}}\,\right)=S(n,k),
$$

where S(n, k) *stands for the Stirling number of the second kind, that is, the number of ways to partition the set* $\{1, 2, \ldots, n\}$ *into* k *non-empty subsets.*

PROOF. For $\mathbf{a} = (a_1, \dots, a_n) \in K^n$, $\mathbf{a} \in V(I_{n,k}^{\text{Vd}})$ if and only if

$$
rank(M_{n,k}(\mathbf{a})) \leq k,
$$

where $M_{n,k}(\mathbf{a})$ is the matrix given by putting $x_i = a_i$ for each i in $M_{n,k}$. The latter condition is equivalent to that $\#\{a_1,\ldots,a_n\} \leq k$. This is also equivalent to that there is a partition $\Pi = \{F_1, \ldots, F_k\}$ of the set $[n] := \{1, 2, \ldots, n\}$ such that $a_i = a_j$ for all $i, j \in F_\ell$ ($\ell = 1, 2, ..., k$). For the above partition Π , let P_{Π} denote the prime ideal

$$
(x_i - x_j \mid i, j \in F_\ell \text{ for } \ell = 1, \ldots, k)
$$

of ^R. Since

$$
\sqrt{I_{n,k}^{\text{Vd}}} = \bigcap_{\Pi: \text{ partition of } [n]} P_{\Pi},
$$

dim $R/P_{\Pi} = k$ for all Π , and deg $R/P_{\Pi} = 1$, we are done.

Applying elementary column operations to $M_{n,k}$, we get the following matrix

$$
M'_{n,k} := \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ x_1 & x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_1^2 & x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_n^2 - x_1^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_1^k & x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_n^k - x_1^k \end{pmatrix}.
$$

Consider its $k \times (n-1)$ submatrix

$$
N_{n,k} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_n - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_n^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_n^k - x_1^k \end{pmatrix}.
$$

Clearly, $I_{n,k}^{\text{Vd}}$ is generated by all maximal minors (i.e., k-minors) of $N_{n,k}$.

THEOREM 2.2. $R/I_{n,k}^{\text{Vd}}$ is Cohen-Macaulay. Moreover, its minimal graded *free resolution is given by the Eagon-Northcott complex* (*see, for example* [4]) *associated to the matrix* $N_{n,k}$.

PROOF. Since $ht(I_{n,k}^{\text{Vd}}) = \dim R - \dim R / I_{n,k}^{\text{Vd}} = n - k = (n - 1) - k + 1$, $I_{n,k}^{\text{Vd}}$ is a *standard determinantal ideal* in the sense of [4]. Hence the assertion is immediate from well-known properties of this notion (cf. §1.2 of [4]).

When we construct the Eagon-Northcott resolution of $I_{n,k}^{\text{Vd}}$, we use a symmetric power Sym_i V of a k-dimensional vector space V with a basis e_1, \ldots, e_k such that deg $e_i = i$ for each i. Set

$$
p_{i,j}^m := # \{ (a_1, \ldots, a_m) \in \mathbb{N}^m \mid a_1 + a_2 + \cdots + a_m = i, \ a_1 + 2a_2 + \cdots + ma_m = j \}
$$

For simplicity, set $p_{0,j}^m := \delta_{0,j}$. The following facts are easy to see:

(1) $p_{i,j}^m \neq 0$ if and only if $i \leq j \leq im;$

(2)
$$
\sum_{j} p_{i,j}^{m} = {m + i - 1 \choose i}.
$$

For the vector space V discussed above, the dimension of the degree j part of Sym_i V is $p_{i,j}^k$.

COROLLARY 2.3. For $i \geq 1$, we have

$$
\beta_{i,j}(R/I_{n,k}^{\text{Vd}})=p_{i-1,j-\frac{1}{2}k(k+1)}^{k}\times \binom{n-1}{k+i-1}.
$$

PROOF. Since the minimal free resolution of $R/I_{n,k}^{\text{Vd}}$ is given by the Eagon-Northcott complex, we have

$$
\beta_{i,j}(R/I_{n,k}^{\text{Vd}}) = \left(\dim_K \left[\left(\text{Sym}_{i-1} V\right) \otimes_K \bigwedge^k V \right]_j \right) \times \left(\dim_K \bigwedge^{k+i-1} W\right)
$$

= $(\dim_K \left[\text{Sym}_{i-1} V \right]_{j-\frac{1}{2}k(k+1)}) \times \left(\dim_K \bigwedge^{k+i-1} W\right)$
= $p_{i-1,j-\frac{1}{2}k(k+1)}^k \times {n-1 \choose k+i-1},$

where V is the K -vector space considered above, and W is a K -vector space of dimension $n-1$.

EXAMPLE 2.4. Since $p_{i,j}^2 = 0$ or 1 for all *i*, *j*, we have $\beta_{i,j}(R/I_{n,2}^{\text{Vd}}) = 0$ or $\binom{n-1}{i+1}$ for all $i \ge 1$. For example, the Betti table of $R/I_{6,2}^{Vd}$ is the following.

The following are the Betti tables of $R/I_{6,3}^{\text{Vd}}$ and $R/I_{7,3}^{\text{Vd}}$, respectively.

Theorem 2.5. *We have*

$$
\deg R/I_{n,k}^{\text{Vd}} = S(n,k).
$$

PROOF. Since $I_{n,1}^{\text{Vd}}$ is an ideal generated by linear forms, we have deg $R/I_{n,1}^{\text{Vd}} = 1 = S(n, 1)$ for all $n \geq 2$. Since $I_{n,n-1}^{\text{Vd}}$ is a principal ideal generated by a polynomial of degree $\binom{n}{2}$, we have deg $R/I_{n,n-1}^{Vd} = \binom{n}{2} = S(n, n-1)$. It is well-known that the Stirling numbers of the second kind satisfy the recurrence relation

$$
S(n, k) = S(n - 1, k - 1) + kS(n - 1, k).
$$

So it suffices to show that deg $R/I_{n,k}^{\text{Vd}}$ also satisfies the corresponding relation

$$
\deg R/I_{n,k}^{\text{Vd}} = \deg R'/I_{n-1,k-1}^{\text{Vd}} + k \big(\deg R'/I_{n-1,k}^{\text{Vd}} \big) \tag{2.1}
$$

for $n - 1 > k$, where R' is the polynomial ring $K[x_1, \ldots, x_{n-1}]$.

From now on, we assume that $n - 1 > k$. Note that the matrices

$$
N_{n-1,k-1} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_{n-1} - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_{n-1}^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{k-1} - x_1^{k-1} & x_3^{k-1} - x_1^{k-1} & \cdots & x_{n-1}^{k-1} - x_1^{k-1} \end{pmatrix}
$$

and

$$
N_{n-1,k} := \begin{pmatrix} x_2 - x_1 & x_3 - x_1 & \cdots & x_{n-1} - x_1 \\ x_2^2 - x_1^2 & x_3^2 - x_1^2 & \cdots & x_{n-1}^2 - x_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_2^k - x_1^k & x_3^k - x_1^k & \cdots & x_{n-1}^k - x_1^k \end{pmatrix}
$$

can be regarded as submatrices of $N_{n,k}$. Let J_1 and J_2 be the ideals (of R) generated by all maximal minors of $N_{n-1,k-1}$ and $N_{n-1,k}$, respectively. By [3, Lemma 2.3(2)], we have

$$
\deg R/I_{n,k}^{\text{Vd}} = \deg R/J_1 + k(\deg R/J_2).
$$

On the other hand, we have $R/J_1 \cong (R'/I_{n-1,k-1}^{\text{Vd}})[x_n]$, and hence deg $R/J_1 =$ deg $R'/I_{n-1,k-1}^{\text{Vd}}$. Similarly, deg $R/J_2 = \text{deg } R'/I_{n-1,k}^{\text{Vd}}$. Now (2.1) is clear.

Remark 2.6. In the first version of this paper, the key formula (2.1) was shown by a direct computation from Corollary 2.3. More precisely, the equations

$$
\beta_{1,j}(R/I_{n,k}^{\text{Vd}}) = \beta_{1,j-k}(R'/I_{n-1,k-1}^{\text{Vd}}) + \beta_{1,j}(R'/I_{n-1,k}^{\text{Vd}})
$$

and

$$
\beta_{i,j}(R/I_{n,k}^{\text{Vd}}) = \beta_{i,j-k}(R'/I_{n-1,k-1}^{\text{Vd}}) + \beta_{i,j}(R'/I_{n-1,k}^{\text{Vd}}) + \beta_{i-1,j-k}(R'/I_{n-1,k}^{\text{Vd}})
$$

hold for $i \geq 2$. One can check this in Example 2.4. Anyway, we see that these equations imply (2.1).

Now we know that (2.1) is a direct consequence of [3, Lemma 2.3(2)]. It is noteworthy that this lemma is a result of Gorenstein liaison theory.

COROLLARY 2.7. $R/I_{n,k}^{\text{Vd}}$ is reduced.

Proof. Since $A := R/I_{n,k}^{\text{Vd}}$ is Cohen-Macaulay, any non-zero ideal $I \subset A$ satisfies dim $I = \dim A$ as an A-module. Hence if A is not reduced, then deg $A > \text{deg } A / \sqrt{(0)}$. However, it contradicts the fact that

$$
\deg(R/I_{n,k}^{\text{Vd}}) = S(n,k) = \deg(R\bigg/\sqrt{I_{n,k}^{\text{Vd}}}\bigg).
$$

ACKNOWLEDGEMENTS. We are grateful to the anonymous referee for directing our attention to [3, Lemma 2.3], which drastically simplified the proof of Theorem 2.5.

REFERENCES

- 1. Fröberg, R., and Shapiro, B., *On Vandermonde varieties*, Math. Scand. 119 (2016), no. 1, 73–91.
- 2. Harima, T., Maeno, T., Morita, H., Numata, Y., Wachi, A., and Watanabe, J., *The Lefschetz properties*, Lecture Notes in Mathematics, vol. 2080, Springer, Heidelberg, 2013.
- 3. Miró-Roig, R. M., *A note on the multiplicity of determinantal ideals*, J. Algebra 299 (2006), no. 2, 714–724.
- 4. Miró-Roig, R. M., *Determinantal ideals*, Progress in Mathematics, vol. 264, Birkhäuser Verlag, Basel, 2008.
- 5. Sagan, B. E., *The symmetric group: representations, combinatorial algorithms, and symmetric functions*, second ed., Graduate Texts in Mathematics, vol. 203, Springer-Verlag, New York, 2001.
- 6. Watanabe, J., and Yanagawa, K., *On Specht ideals*, in preparation.

DEPARTMENT OF MATHEMATICS TOKAI UNIVERSITY HIRATSUKA 259-1292 JAPAN *E-mail:* watanabe.junzo@tokai-u.jp DEPARTMENT OF MATHEMATICS KANSAI UNIVERSITY **SUITA** OSAKA 564-8680 JAPAN *E-mail:* yanagawa@kansai-u.ac.jp