
MATH. SCAND. 125 (2019), 179–184

VANDERMONDE DETERMINANTAL IDEALS

JUNZO WATANABE and KOHJI YANAGAWA

Abstract
We show that the ideal generated by maximal minors (i.e., k + 1-minors) of a (k + 1) × n

Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all
Specht polynomials with shape (n − k, 1, . . . , 1).

1. Introduction

Let n, k be integers with n > k ≥ 1. Consider the polynomial ring R =
K[x1, . . . , xn] over a field K , and the following non-square Vandermonde
matrix

Mn,k :=

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xk
1 xk

2 · · · xk
n

⎞
⎟⎟⎟⎟⎟⎠

.

Let IVd
n,k denote the ideal of R generated by all maximal minors (i.e., k + 1

minors) of Mn,k .
The purpose of this paper is to prove the following.

Theorem 1.1. R/IVd
n,k is a reduced Cohen-Macaulay ring with dim R/IVd

n,k =
k and deg R/IVd

n,k = S(n, k), where S(n, k) stands for the Stirling number of
the second kind.

The present paper can be seen as the precursor of our ongoing project [6]
on Specht ideals. For a partition λ of n, we can consider the ideal

I
Sp
λ = (�T | T is a Young tableau of shape λ)

of R, where �T ∈ R denotes the Specht polynomial corresponding to T

(see [2]). Then we have IVd
n,k = I

Sp
(n−k,1,...,1). Note that the K-vector subspace
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〈�T | T is a Young tableau of shape λ〉 of R is the Specht module associated
with λ as an Sn-module. The Specht modules are often constructed in different
manner (e.g., usingYoung tabloids), and play crucial role in the representation
theory of symmetric groups (see, for example [5]). General Specht ideals are
much more delicate than the Vandermont case IVd

n,k . For example, R/I
Sp
λ is

not even pure dimensional for many λ, and the Cohen-Macaulayness of R/I
Sp
λ

may depend on char(K) for some fixed λ. In [6], we will use the representation
theory of symmetric groups.

It is noteworthy that Fröberg and Shapiro [1] also studied some variants of
R/IVd

λ in a different context.

2. Results and proofs

Extending the base field, we may assume that K is algebraically closed. Theo-
retically, this assumption is not necessary in the following argument, but it
makes the expositions more readable.

For an ideal I ⊂ R, set V (I) := {� | � ∈ Spec R, � ⊃ I } as usual.
For a = (a1, . . . , an) ∈ Kn, let �a denote the maximal ideal (x1 − a1, x2 −
a2, . . . , xn − an) of R. By abuse of notation, we just write a ∈ V (I) to mean
�a ∈ V (I). Clearly, a ∈ V (I) if and only if f (a) = 0 for all f ∈ I .

Proposition 2.1. We have dim R/IVd
n,k = k and

deg
(
R

/√
IVd
n,k

)
= S(n, k),

where S(n, k) stands for the Stirling number of the second kind, that is, the
number of ways to partition the set {1, 2, . . . , n} into k non-empty subsets.

Proof. For a = (a1, . . . , an) ∈ Kn, a ∈ V (IVd
n,k) if and only if

rank(Mn,k(a)) ≤ k,

where Mn,k(a) is the matrix given by putting xi = ai for each i in Mn,k . The
latter condition is equivalent to that #{a1, . . . , an} ≤ k. This is also equivalent
to that there is a partition � = {F1, . . . , Fk} of the set [n] := {1, 2, . . . , n}
such that ai = aj for all i, j ∈ F� (� = 1, 2, . . . , k). For the above partition
�, let P� denote the prime ideal

(xi − xj | i, j ∈ F� for � = 1, . . . , k)

of R. Since √
IVd
n,k =

⋂
�: partition of [n]

#�=k

P�,
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dim R/P� = k for all �, and deg R/P� = 1, we are done.

Applying elementary column operations to Mn,k , we get the following mat-
rix

M ′
n,k :=

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
x1 x2 − x1 x3 − x1 · · · xn − x1

x2
1 x2

2 − x2
1 x2

3 − x2
1 · · · x2

n − x2
1

...
...

...
. . .

...

xk
1 xk

2 − xk
1 xk

3 − xk
1 · · · xk

n − xk
1

⎞
⎟⎟⎟⎟⎟⎠

.

Consider its k × (n − 1) submatrix

Nn,k :=

⎛
⎜⎜⎜⎝

x2 − x1 x3 − x1 · · · xn − x1

x2
2 − x2

1 x2
3 − x2

1 · · · x2
n − x2

1
...

...
. . .

...

xk
2 − xk

1 xk
3 − xk

1 · · · xk
n − xk

1

⎞
⎟⎟⎟⎠ .

Clearly, IVd
n,k is generated by all maximal minors (i.e., k-minors) of Nn,k .

Theorem 2.2. R/IVd
n,k is Cohen-Macaulay. Moreover, its minimal graded

free resolution is given by the Eagon-Northcott complex (see, for example [4])
associated to the matrix Nn,k .

Proof. Since ht(IVd
n,k) = dim R − dim R/IVd

n,k = n − k = (n − 1) − k + 1,
IVd
n,k is a standard determinantal ideal in the sense of [4]. Hence the assertion

is immediate from well-known properties of this notion (cf. §1.2 of [4]).

When we construct the Eagon-Northcott resolution of IVd
n,k , we use a sym-

metric power Symi V of a k-dimensional vector space V with a basis e1, . . . , ek

such that deg ei = i for each i. Set

pm
i,j := #

{
(a1, . . . , am) ∈ Nm

∣∣ a1 + a2 + · · · + am = i, a1 + 2a2 + · · · + mam = j
}

For simplicity, set pm
0,j := δ0,j . The following facts are easy to see:

(1) pm
i,j 
= 0 if and only if i ≤ j ≤ im;

(2)
∑

j

pm
i,j =

(
m + i − 1

i

)
.

For the vector space V discussed above, the dimension of the degree j part of
Symi V is pk

i,j .
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Corollary 2.3. For i ≥ 1, we have

βi,j (R/IVd
n,k) = pk

i−1,j− 1
2 k(k+1)

×
(

n − 1

k + i − 1

)
.

Proof. Since the minimal free resolution of R/IVd
n,k is given by the Eagon-

Northcott complex, we have

βi,j (R/IVd
n,k) =

(
dimK

[
(Symi−1 V ) ⊗K

k∧
V

]
j

)
×

(
dimK

k+i−1∧
W

)

= (
dimK [ Symi−1 V ]j− 1

2 k(k+1)

) ×
(

dimK

k+i−1∧
W

)

= pk

i−1,j− 1
2 k(k+1)

×
(

n − 1

k + i − 1

)
,

where V is the K-vector space considered above, and W is a K-vector space
of dimension n − 1.

Example 2.4. Since p2
i,j = 0 or 1 for all i, j , we have βi,j (R/IVd

n,2) = 0

or
(
n−1
i+1

)
for all i ≥ 1. For example, the Betti table of R/IVd

6,2 is the following.

total: 1 10 20 15 4
0: 1 . . . .
1: . . . . .
2: . 10 10 5 1
3: . . 10 5 1
4: . . . 5 1
5: . . . . 1

The following are the Betti tables of R/IVd
6,3 and R/IVd

7,3 , respectively.

total: 1 10 15 6
0: 1 . . .
1: . . . .
2: . . . .
3: . . . .
4: . . . .
5: . 10 5 1
6: . . 5 1
7: . . 5 2
8: . . . 1
9: . . . 1

total: 1 20 45 36 10
0: 1 . . . .
1: . . . . .
2: . . . . .
3: . . . . .
4: . . . . .
5: . 20 15 6 1
6: . . 15 6 1
7: . . 15 12 2
8: . . . 6 2
9: . . . 6 2
10: . . . . 1
11: . . . . 1
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Theorem 2.5. We have

deg R/IVd
n,k = S(n, k).

Proof. Since IVd
n,1 is an ideal generated by linear forms, we have

deg R/IVd
n,1 = 1 = S(n, 1) for all n ≥ 2. Since IVd

n,n−1 is a principal ideal gener-
ated by a polynomial of degree

(
n

2

)
, we have deg R/IVd

n,n−1 = (
n

2

) = S(n, n−1).
It is well-known that the Stirling numbers of the second kind satisfy the recur-
rence relation

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k).

So it suffices to show that deg R/IVd
n,k also satisfies the corresponding relation

deg R/IVd
n,k = deg R′/IVd

n−1,k−1 + k
(
deg R′/IVd

n−1,k

)
(2.1)

for n − 1 > k, where R′ is the polynomial ring K[x1, . . . , xn−1].
From now on, we assume that n − 1 > k. Note that the matrices

Nn−1,k−1 :=

⎛
⎜⎜⎜⎜⎝

x2 − x1 x3 − x1 · · · xn−1 − x1

x2
2 − x2

1 x2
3 − x2

1 · · · x2
n−1 − x2

1
...

...
. . .

...

xk−1
2 − xk−1

1 xk−1
3 − xk−1

1 · · · xk−1
n−1 − xk−1

1

⎞
⎟⎟⎟⎟⎠

and

Nn−1,k :=

⎛
⎜⎜⎜⎜⎝

x2 − x1 x3 − x1 · · · xn−1 − x1

x2
2 − x2

1 x2
3 − x2

1 · · · x2
n−1 − x2

1
...

...
. . .

...

xk
2 − xk

1 xk
3 − xk

1 · · · xk
n−1 − xk

1

⎞
⎟⎟⎟⎟⎠

can be regarded as submatrices of Nn,k . Let J1 and J2 be the ideals (of R)
generated by all maximal minors of Nn−1,k−1 and Nn−1,k , respectively. By [3,
Lemma 2.3(2)], we have

deg R/IVd
n,k = deg R/J1 + k(deg R/J2).

On the other hand, we have R/J1
∼= (R′/IVd

n−1,k−1)[xn], and hence deg R/J1 =
deg R′/IVd

n−1,k−1. Similarly, deg R/J2 = deg R′/IVd
n−1,k . Now (2.1) is clear.

Remark 2.6. In the first version of this paper, the key formula (2.1) was
shown by a direct computation from Corollary 2.3. More precisely, the equa-
tions

β1,j (R/IVd
n,k) = β1,j−k(R

′/IVd
n−1,k−1) + β1,j (R

′/IVd
n−1,k)



184 J. WATANABE AND K. YANAGAWA

and

βi,j (R/IVd
n,k) = βi,j−k(R

′/IVd
n−1,k−1) + βi,j (R

′/IVd
n−1,k) + βi−1,j−k(R

′/IVd
n−1,k)

hold for i ≥ 2. One can check this in Example 2.4. Anyway, we see that these
equations imply (2.1).

Now we know that (2.1) is a direct consequence of [3, Lemma 2.3(2)]. It is
noteworthy that this lemma is a result of Gorenstein liaison theory.

Corollary 2.7. R/IVd
n,k is reduced.

Proof. Since A := R/IVd
n,k is Cohen-Macaulay, any non-zero ideal I ⊂ A

satisfies dim I = dim A as an A-module. Hence if A is not reduced, then
deg A > deg A/

√
(0). However, it contradicts the fact that

deg
(
R/IVd

n,k

) = S(n, k) = deg
(
R

/√
IVd
n,k

)
.
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