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VANDERMONDE DETERMINANTAL IDEALS

JUNZO WATANABE and KOHJI YANAGAWA

Abstract

We show that the ideal generated by maximal minors (i.e., K + l-minors) of a (k + 1) x n
Vandermonde matrix is radical and Cohen-Macaulay. Note that this ideal is generated by all
Specht polynomials with shape (n — k, 1,..., 1).

1. Introduction

Let n, k be integers with n > k > 1. Consider the polynomial ring R =

K[xy,...,x,] over a field K, and the following non-square Vandermonde
matrix 11 ... 1
'xl x2 PR xn
2 2 2
My, =% % 0 X
ko k k
X Xy Xy

Let IX 4 denote the ideal of R generated by all maximal minors (i.e., k + 1
minors) of M, .
The purpose of this paper is to prove the following.

THEOREM 1.1. R/ nV g is a reduced Cohen-Macaulay ring withdim R/1 ,}/ 2 =
k and deg R/I,Xg = S(n, k), where S(n, k) stands for the Stirling number of
the second kind.

The present paper can be seen as the precursor of our ongoing project [6]
on Specht ideals. For a partition A of n, we can consider the ideal

pr = (Ar | T is a Young tableau of shape A)

of R, where A7 € R denotes the Specht polynomial corresponding to T

(see [2]). Then we have In\f 2 = I(Snp_kﬁl’_“’l). Note that the K-vector subspace
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(A7 | T is a Young tableau of shape 1) of R is the Specht module associated
with A as an S,-module. The Specht modules are often constructed in different
manner (e.g., using Young tabloids), and play crucial role in the representation
theory of symmetric groups (see, for example [5]). General Specht ideals are
much more delicate than the Vandermont case I,X 4. For example, R/I f P is

not even pure dimensional for many A, and the Cohen-Macaulayness of R/1 /\S P
may depend on char(K) for some fixed A. In [6], we will use the representation
theory of symmetric groups.

It is noteworthy that Froberg and Shapiro [1] also studied some variants of
R/I1Y% in a different context.

2. Results and proofs

Extending the base field, we may assume that K is algebraically closed. Theo-
retically, this assumption is not necessary in the following argument, but it
makes the expositions more readable.

For an ideal I C R, set V(I) := {p | » € SpecR,p D I} as usual.
Fora = (ay,...,a,) € K", let m, denote the maximal ideal (x; — a;, x, —
a, ..., X, —a) of R. By abuse of notation, we just write a € V (/) to mean
m, € V(I). Clearly,a € V(I) if and only if f(a) =0 forall f € I.

PROPOSITION 2.1. We have dim R/I))} = k and

deg(R/\/?\f,‘f) — S(n, k),

where S(n, k) stands for the Stirling number of the second kind, that is, the

number of ways to partition the set {1, 2, ..., n} into k non-empty subsets.
Proor. Fora = (ay,...,a,) € K",a € V(In\f,‘(‘) if and only if

rank(M, (a)) < k,

where M, ;(a) is the matrix given by putting x; = a; for each i in M,, ;. The
latter condition is equivalent to that #{a,, ..., a,} < k. This is also equivalent
to that there is a partition I[1 = {Fy, ..., F;} of the set [n] := {1,2,...,n}
such thata; = a; foralli, j € Fy, ({ = 1,2, ..., k). For the above partition
I1, let Pr; denote the prime ideal

(xi—xj|i,jngf0r€:1,...,k)

\/?Y(ki= ﬂ P,

IT: partition of [n]
#I=k

of R. Since
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dim R/ P = k for all I, and deg R/ Py = 1, we are done.

Applying elementary column operations to M, ;, we get the following mat-

rix
1 0 0 0
X1 X2 —X1p Xz—Xp - Xp — X
2 2 2 2 2 2 2
M =X XX X3 Xy e X X
ko ok ko k k k k
Xy Xy = Xp X3 X e Xy T X

Consider its k£ x (n — 1) submatrix

X2 — X1 X3 — X1 0 Xy — X

xz—xz xz—xz x2—x2

2 1 3 1 n 1
Nn,k ==

k k k k k k

Xy — Xy Xy —Xx{ o Xy —Xx)

Clearly, k is generated by all maximal minors (i.e., k-minors) of N,, .

THEOREM 2.2. R/ I,Z ¢ is Cohen-Macaulay. Moreover, its minimal graded
free resolution is given by the Eagon-Northcott complex (see, for example [4])
associated to the matrix N j.

ProOOF. Since ht(IVd) = dim R — dim R/Ivk =n—k=m—-1)—k+1,
I,X ,‘: is a standard determinantal ideal in the sense of [4]. Hence the assertion
is immediate from well-known properties of this notion (cf. §1.2 of [4]).

When we construct the Eagon-Northcott resolution of IZ 4. we use a sym-
metric power Sym; V of a k-dimensional vector space Vwithabasisey, ..., e
such that dege; = i for each i. Set

pZ’j = #{(al, s, ay) €NT
lai+ar+-+an =i, a1 +2a+ - +ma, = j}
For simplicity, set pg'; := 8o, ;. The following facts are easy to see:

(1) pi"; #0ifandonly if i < j <im;

2) Z l,=<’"+’_1)

For the vector space V discussed above, the dimension of the degree j part of
Sym; V is pf{ i
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COROLLARY 2.3. Fori > 1, we have

Vdy _ ok n—1
IBi,j(R/In,k) - pi_l’j_%k(k_;’_l) X (k +l _ 1)

ProOF. Since the minimal free resolution of R/ I,X dis given by the Eagon-

Northcott complex, we have
k+i—1
) x (dimK A\ W)

k+i—1
= (dimg[Sym;_; V1;_ 1341y X (dimK A\ W)

o n—1
TPty N\ i)

where V is the K-vector space considered above, and W is a K -vector space
of dimension n — 1.

k
Bii R/ = (dimK [(Symi_1 V)ex /\ V}

J

EXAMPLE 2.4. Since p}; = O or 1 for all i, j, we have f; ;(R/1,) =0
or (*,}) forall i > 1. For example, the Betti table of R/I is the following.
total: 1 10 20 15 4

: 1
.10 10 5 1
.10 5 1
5 1
1

U s W N e O
e ee e es e o

The following are the Betti tables of R/ 16\” g and R/ 17\" g, respectively.

total: 1 10 15 6 total: 1 20 45 36 10
0: 1 0: 1
1: 1:
2: 2:
3: 3:
4: . . . . 4: . . . . .
5: . 10 5 1 5: . 2015 6 1
6: 5 1 6: .15 6 1
7: 5 2 7: . 15 12 2
8: 1 8: 6 2
9: 1 9: 6 2
10: 1
11: 1
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THEOREM 2.5. We have

deg R/1){ = S(n, k).
PROOF. Since 1§
deg R/IZ =1= S(n 1) foralln > 2. Since IVd _, is a principal ideal gener-
ated by a polynomial of degree (2) we have deg R/IVd ( ) =Sn,n—1).

nn—1 T
It is well-known that the Stirling numbers of the second kind satisfy the recur-

rence relation

is an ideal generated by linear forms, we have

S, k)y=Smn—1,k—1)+kS(n—1,k).
So it suffices to show that deg R /1" ok d also satisfies the corresponding relation
deg R/I)} =deg R'/1)Y, | +k(deg R'/1), ) 2.1)

forn — 1 > k, where R’ is the polynomial ring K [xy, ..., x,_1].
From now on, we assume that n — 1 > k. Note that the matrices

X2 — X1 X3 — X1 Xn—1 — X1
2 2 2 2 2 2
Xy — X1 X3 — X o X TN
Nyt g1 =
k—1 k=1 _k—1 k—1 k—1 k—1
Xy T X X3 T X X T X5
and

Xp—X| X3—X| e Xpol — X

2 2 .2 2 2 2

Xy = X[ X3 X e X T X

N1 =
k ko ok k k k
Xy =Xy X3 — Xy e Xy T X

can be regarded as submatrices of N, . Let J; and J, be the ideals (of R)
generated by all maximal minors of N,,_; x—; and N,_; x, respectively. By [3,
Lemma 2.3(2)], we have

deg R/I)'} = deg R/J; + k(deg R/ J»).

On the other hand, we have R/J; = (R'/1Y, ,_))[x,], and hence deg R/ J; =
deg R'/1)Y, ,_,. Similarly, deg R/J, = deg R’/Ianl «- Now (2.1) is clear.

REMARK 2.6. In the first version of this paper, the key formula (2.1) was
shown by a direct computation from Corollary 2.3. More precisely, the equa-

tions
lBlJ(R/ ](3)—,81] k(R/Ilek ])+,31j(R/IVd]k)



184 J. WATANABE AND K. YANAGAWA

and
Bii(R/IYD) = Bij—k (RYLYS, ) + Biy (RYLY O + Bij—e (R, )

hold for i > 2. One can check this in Example 2.4. Anyway, we see that these
equations imply (2.1).

Now we know that (2.1) is a direct consequence of [3, Lemma 2.3(2)]. It is
noteworthy that this lemma is a result of Gorenstein liaison theory.

COROLLARY 2.7. R/1V{ is reduced.

ProoOF. Since A := R/ I,X 2 is Cohen-Macaulay, any non-zero ideal I C A
satisfies dim / = dim A as an A-module. Hence if A is not reduced, then
deg A > deg A/+/(0). However, it contradicts the fact that

deg(R/1Y¢) = S(n, k) = deg(R/\/?\fg).
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