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A SHORT NOTE ON HELMHOLTZ DECOMPOSITIONS
FOR BOUNDED DOMAINS IN R3

IMMANUEL ANJAM

Abstract
In this short note we consider several widely used L2-orthogonal Helmholtz decompositions for
bounded domains in R3. It is well known that one part of the decompositions is a subspace of the
space of functions with zero mean. We refine this global property into a local equivalent: we show
that functions from these spaces have zero mean in every part of specific decompositions of the
domain.

An application of the zero mean properties is presented for convex domains. We introduce
a specialized Poincaré-type inequality, and estimate the related unknown constant from above.
The upper bound is derived using the upper bound for the Poincaré constant proven by Payne and
Weinberger. This is then used to obtain a small improvement of upper bounds of two Maxwell-type
constants originally proven by Pauly.

Although the two dimensional case is not considered, all derived results can be repeated in R2

by similar calculations.

1. Notation and Helmholtz decompositions

Let ω ⊂ R3 be a bounded open set. The space of scalar- or vector-valued
smooth functions with compact supports in ω is denoted by C̊∞

(ω). We denote
by |·|L1(ω) the norm for functions in L1(ω), and by 〈·, ·〉L2(ω) and |·|L2(ω) the
inner product and norm for functions in L2(ω). The space of scalar-valued
functions in L2(ω) with zero mean is defined as

L2
0(ω) :=

{
ϕ ∈ L2(ω)

∣∣∣∣
∫
ω

ϕ dx = 0

}
,

and, as usual, for a vector-valued function φ we write φ ∈ L2
0(ω) if all its

components belong to L2
0(ω).

Throughout this note� denotes a bounded domain inR3, and from now on,
whenever ω = �, we sometimes omit the indication of the set in our notation.

Besides the gradient ∇ we will also need the divergence operator div and the
rotation operator rot acting on vector-valued functions. For smooth functions

Received 21 December 2017. Accepted 24 April 2018.
DOI: https://doi.org/10.7146/math.scand.a-114908



228 I. ANJAM

they are defined as

div

(
φ1

φ2

φ3

)
:= ∂1φ1 + ∂2φ2 + ∂3φ3, rot

(
φ1

φ2

φ3

)
:=
(
∂2φ3 − ∂3φ2

∂3φ1 − ∂1φ3

∂1φ2 − ∂2φ1

)
.

We define the usual Sobolev spaces

H1 := {ϕ ∈ L2 | ∇ϕ ∈ L2}, H̊1 := C̊∞H1

,

D := {φ ∈ L2 | div φ ∈ L2}, D̊ := C̊∞D
,

R := {φ ∈ L2 | rot φ ∈ L2}, R̊ := C̊∞R
,

which are Hilbert spaces. Note that on the former spaces the differential op-
erators are now defined in the usual weak sense. The latter spaces, where the
closures are taken with respect to graph norms, generalize the classical homo-
geneous scalar, normal, and tangential boundary conditions, respectively. The
operators satisfy

∀ϕ ∈ H̊1 ∀φ ∈ D 〈∇ϕ, φ〉L2 = −〈ϕ, div φ〉L2 ,

∀ϕ ∈ H1 ∀φ ∈ D̊ 〈∇ϕ, φ〉L2 = −〈ϕ, div φ〉L2 ,

∀φ ∈ R̊ ∀ψ ∈ R 〈rot φ,ψ〉L2 = 〈φ, rotψ〉L2 .

Note, that even though it is not indicated in the notation, we have two of each
differential operator, one acting on a space without a boundary condition, and
one acting on a space with a boundary condition. We also define

D0 := {φ ∈ D | div φ = 0}, D̊0 := {φ ∈ D̊ | div φ = 0},
R0 := {φ ∈ R | rot φ = 0}, R̊0 := {φ ∈ R̊ | rot φ = 0}.

By the projection theorem we obtain the L2-orthogonal Helmholtz decompos-
itions

L2 = ∇H̊1 ⊕ D0 = R̊0 ⊕ rot R = ∇H̊1 ⊕ HD ⊕ rot R, HD := D0 ∩ R̊0, (1)

L2 = ∇H1 ⊕ D̊0 = R0 ⊕ rot R̊ = ∇H1 ⊕ HN ⊕ rot R̊, HN := D̊0 ∩ R0, (2)

where HD and HN are the spaces of Dirichlet and Neumann fields, respectively.
In particular, we have the decompositions

D̊0 = HN ⊕ rot R̊, R̊0 = ∇H̊1 ⊕ HD. (3)
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It is easy to see that functions from D̊0 have zero mean globally, i.e., they
belong to L2

0:

∀φ ∈ D̊0

∫
�

φi dx = 〈φ,∇xi〉L2 = −〈div φ, xi〉L2 = 0. (4)

We also observe that R̊0 belongs to L2
0: for v1(x) := (0, 0, x2), v2(x) :=

(x3, 0, 0), and v3(x) := (0, x1, 0) we have

∀φ ∈ R̊0

∫
�

φi dx = 〈φ, rot vi〉L2 = 〈rot φ, vi〉L2 = 0.

In this note we show that functions from the above two spaces satisfy local
zero mean properties with respect to certain decompositions of �.

For our considerations, it is not needed to assume any regularity of the
domain. However, we mention that if � is Lipschitz, then Rellich’s selection
theorem and Weck’s selection theorem [12] hold. This means that the closure
bars in (1)–(3) can be skipped, and both HD and HN are finite dimensional.
Furthermore, if the domain is topologically equivalent to a ball, then HD =
HN = {0}. For more information on Helmholtz decompositions we refer to [5]
and [9], which contains a concise exposition of Helmholtz decompositions in
a general Hilbert space setting.

This note is organized as follows. Section 2 contains additional notation
related to decompositions of the domain. Our main results, Theorems 1 and 2,
and the local zero mean properties of Corollaries 3 and 4, are in Section 3.
In Section 4 we use these results to derive, in the case of convex domains,
slightly improved upper bounds of certain Maxwell-type constants related to
the theory of electromagnetism.

2. Decompositions of the domain

Our calculations are invariant with respect to translations of the domain, so
without loss of generality we assume � to be contained in the rectangular
cuboid

I := (0, �1)× (0, �2)× (0, �3), 0 < �1, �2, �3 < ∞.

We assume � is translated such that I is as small as possible. Note that the
calculations of the following section no longer hold if the domain is rotated.

In what follows we will often need two or three distinct indices from the
index set {1, 2, 3}. To this end, we define {1, 2, 3}p to denote the set of all
p-permutations of the set {1, 2, 3}, where p is either 2 or 3.
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Figure 1. Examples of �i .
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Figure 2. Examples of �ij . For illustrative purposes the �ij are chosen
such that they belong to the �i of Figure 1.

For 0 ≤ αi < βi ≤ �i , i ∈ {1, 2, 3}, we define

Ii := {x ∈ I | αi < xi < βi}, Iij := Ii ∩ Ij ,
�i := {x ∈ � | αi < xi < βi}, �ij := �i ∩�j,

where in the latter definitions (i, j) ∈ {1, 2, 3}2. Note that �i ⊂ Ii and �ij ⊂
Iij hold. Examples of these subsets are illustrated in Figures 1 and 2. It is
clear that � can be decomposed in such pieces in a way that the pieces are
nonintersecting, and that the union of their closures equals�. Note also that if
�i and �ij appear in the same relation, they are always related to each other,
i.e., in particular �ij ⊂ �i holds.

3. Local zero mean properties

In order to prove the local zero mean properties, we show that the mean value
of functions from D̊ and R̊ can be locally estimated from below and above by
L1-norms of their divergence and rotation, respectively.

Theorem 1. For any φ ∈ D̊(�), the estimate

∀i ∈ {1, 2, 3}
∣∣∣∣
∫
�i

φi dx

∣∣∣∣ ≤ (βi − αi)|div φ|L1(�)

holds for an arbitrary �i .

Proof. For anyφ ∈ C̊∞
(�) its zero extension φ̂: I → R3 belongs to C̊∞

(I ).
By the Fundamental Theorem of Calculus the components of this extension
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can be represented as

φ̂1(x1, x2, x3) =
∫ x1

0
∂aφ̂1(a, x2, x3) da,

φ̂2(x1, x2, x3) =
∫ x2

0
∂bφ̂2(x1, b, x3) db,

φ̂3(x1, x2, x3) =
∫ x3

0
∂cφ̂3(x1, x2, c) dc.

Using the above representations we write

±
∫ x3

0

∫ x2

0
φ̂1(x1, b, c) d(bc)±

∫ x3

0

∫ x1

0
φ̂2(a, x2, c) d(ac) (5)

±
∫ x2

0

∫ x1

0
φ̂3(a, b, x3) d(ab)

= ±
∫ x3

0

∫ x2

0

∫ x1

0
∂aφ̂1(a, b, c)+ ∂bφ̂2(a, b, c)+ ∂cφ̂3(a, b, c) d(abc)

≤ |div φ̂|L1(I ).

By choosing x2 = �2 and x3 = �3, the two last terms on the left-hand side
vanish, and we obtain

±
∫ �3

0

∫ �2

0
φ̂1(x1, b, c) d(bc) ≤ |div φ̂|L1(I ).

By integrating with respect to x1 over (α1, β1) we obtain

±
∫
I1

φ̂1 dx ≤ (β1 −α1)|div φ̂|L1(I ) ⇒ ±
∫
�1

φ1 dx ≤ (β1 −α1)|div φ|L1(�),

since the integrals are nonzero only in�. By density the latter inequality above
holds for any φ ∈ D̊(�), and we have proven the assertion for i = 1. To prove
the cases i = 2 and i = 3, one chooses x1 = �1, x3 = �3 and x1 = �1, x2 = �2

in (5), respectively, and proceeds in a similar manner.

Theorem 2. For any φ ∈ R̊(�), the estimate

∀(i, j, k) ∈ {1, 2, 3}3

∣∣∣∣
∫
�jk

φi dx

∣∣∣∣ ≤ (βj − αj )|(rot φ)k|L1(�k)

holds for an arbitrary �jk .
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Proof. For anyφ ∈ C̊∞
(�) its zero extension φ̂: I → R3 belongs to C̊∞

(I ).
By the Fundamental Theorem of Calculus the components of this extension
can be represented as

φ̂2(x1, x2, x3) =
∫ x1

0
∂aφ̂2(a, x2, x3) da,

φ̂1(x1, x2, x3) =
∫ x2

0
∂bφ̂1(x1, b, x3) db.

Using the above representations we write

±
∫ x2

0
φ̂2(x1, b, x3) db ∓

∫ x1

0
φ̂1(a, x2, x3) da (6)

= ±
∫ x2

0

∫ x1

0
∂aφ̂2(a, b, x3)− ∂bφ̂1(a, b, x3) d(ab)

≤
∫ �2

0

∫ �1

0
|∂aφ̂2(a, b, x3)− ∂bφ̂1(a, b, x3)| d(ab).

By choosing x1 = �1 in (6) and integrating with respect to x3 over (α3, β3),
we obtain

±
∫ β3

α3

∫ �1

0
φ̂1(a, x2, x3) d(ax3) ≤ |(rot φ̂)3|L1(I3).

By integrating with respect to x2 over (α2, β2) we obtain

±
∫
I23

φ̂1 dx ≤ (β2 − α2)|(rot φ̂)3|L1(I3),

which implies

±
∫
�23

φ1 dx ≤ (β2 − α2)|(rot φ)3|L1(�3), (7)

since the integrals are nonzero only in �. On the other hand, by choosing
x2 = �2 in (6) and integrating with respect to x3 over (α3, β3), we obtain

±
∫ β3

α3

∫ �2

0
φ̂2(x1, b, x3) d(bx3) ≤ |(rot φ̂)3|L1(I3).

By integrating with respect to x1 over (α1, β1) we obtain

±
∫
I13

φ̂2 dx ≤ (β1 − α1)|(rot φ̂)3|L1(I3),
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which implies

±
∫
�13

φ2 dx ≤ (β1 − α1)|(rot φ)3|L1(�3), (8)

since the integrals are nonzero only in �. By density (7) and (8) hold for any
φ ∈ R̊(�), and we have proven two of the six estimates of the assertion. The
remaining estimates are proven in a similar manner by repeating the proof
using the representations

φ̂1(x1, x2, x3) =
∫ x3

0
∂cφ̂1(x1, x2, c) dc,

φ̂3(x1, x2, x3) =
∫ x1

0
∂aφ̂3(a, x2, x3) da,

and
φ̂3(x1, x2, x3) =

∫ x2

0
∂bφ̂3(x1, b, x3) db,

φ̂2(x1, x2, x3) =
∫ x3

0
∂cφ̂2(x1, x2, c) dc.

The following two corollaries are directly implied by Theorems 1 and 2.

Corollary 3. Let φ ∈ D̊0(�). Then φi belongs to L2
0(�i) for any�i , where

i ∈ {1, 2, 3}.
Corollary 4. Let φ ∈ R̊0(�). Then φi belongs to L2

0(�jk) for any �jk ,
where (i, j, k) ∈ {1, 2, 3}3.

Remark 5. Theorem 2 allows for more general statements about R̊ than
Corollary 4:

(i) It is easy to see that Corollary 4 holds not only for R̊0 but even for{
ψ ∈ R̊ | (rotψ)i = (rotψ)j = 0, (i, j) ∈ {1, 2, 3}2

}
.

(ii) Even if only one component of the rotation of φ ∈ R̊ vanishes on a subset
of �, in certain cases we might still be able to obtain information about
where φ has zero mean. If, for example, (rot φ)3 = 0 in ω ⊂ � which
is a �3-set, then Theorem 2 implies that φ1, φ2 ∈ L2

0(ω).
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4. An application for convex domains

In this section we assume the domain� to be convex. Then� is Lipschitz [4],
and Rellich’s selection theorem and Weck’s selection theorem [12] hold, i.e.,
all spaces in (1)–(3) are closed. Furthermore, the Dirichlet and Neumann fields
are absent, i.e., the Helmholtz decompositions (1)–(3) become

L2 = ∇H̊1 ⊕ D0 = R̊0 ⊕ rot R, ∇H̊1 = R̊0, D0 = rot R, (9)

L2 = ∇H1 ⊕ D̊0 = R0 ⊕ rot R̊, ∇H1 = R0, D̊0 = rot R̊. (10)

In the following, we consider the inequalities

∀ϕ ∈ H1 ∩ L2
0 |ϕ|L2 ≤ cp|∇ϕ|L2 ,

∀φ ∈ R̊ ∩ D0 |φ|L2 ≤ cm,1|rot φ|L2 , (11)

∀φ ∈ R ∩ D̊0 |φ|L2 ≤ cm,2|rot φ|L2 , (12)

where the first is the Poincaré inequality, and the latter Maxwell-type inequal-
ities. The Poincaré constant cp > 0 and Maxwell constants cm,1, cm,2 > 0 are
under the assumptions finite. In what follows, we assume we have chosen the
best, i.e., the smallest possible constants in these inequalities. Note that these
constants are related to eigenvalues of the Laplace and rot rot operators.

The proofs of finiteness of the above constants are based on indirect argu-
ments, and give no hints as to their magnitude. However, in some situations
explicit knowledge of these constants is needed: they appear, e.g., in functional
type a posteriori error estimates for partial differential equations [11]. For con-
vex domains there is a constructive method for obtaining an upper bound of
cp due to Payne and Weinberger [10] (see also [2]). The bound is

cp ≤ d

π
, (13)

where d = diam� is the diameter of �. In [6], [7], [8] Pauly has shown that
for convex domains cm,1 = cm,2 ≤ cp, so together with (13) we have

cm,1 = cm,2 ≤ cp ≤ d

π
. (14)

Using Corollary 3 this upper bound can be slightly improved. However, for
the sake of completeness, we first show that the Maxwell constants are indeed
equal.

Lemma 6. cm,1 = cm,2.
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Proof. Letφ ∈ R̊∩D0. From (9)–(10) we deduce D0 = rot R = rot(R∩D̊0).
Thus there exists a vector potential� ∈ R∩D̊0 such that rot� = φ. Using (12)
we obtain

|φ|2L2 = 〈φ, rot�〉L2 = 〈rot φ,�〉L2 ≤ |rot φ|L2 |�|L2 ≤ cm,2|rot φ|L2 |rot�|L2 ,

which implies |φ|L2 ≤ cm,2|rot φ|L2 . In view of (11) we see that cm,1 ≤ cm,2.
On the other hand, let φ ∈ R ∩ D̊0. From (9)–(10) we deduce D̊0 = rot R̊ =
rot(R̊∩D0). Thus there exists a vector potential� ∈ R̊∩D0 such that rot� = φ.
Using (11) we obtain

|φ|2L2 = 〈φ, rot�〉L2 = 〈rot φ,�〉L2 ≤ |rot φ|L2 |�|L2 ≤ cm,1|rot φ|L2 |rot�|L2 ,

which implies |φ|L2 ≤ cm,1|rot φ|L2 . In view of (12) we see that cm,2 ≤ cm,1,
and the assertion is proven.

Note that the above proof is not restricted to convex domains. It holds true
whenever Weck’s selection theorem [12] holds, provided that the Dirichlet and
Neumann fields are excluded from the considered functions.

For improving (14) we will need the following specialized Poincaré in-
equality.

Lemma 7. Let�be convex andϕ ∈ H1(�)be scalar-valued. In the following
(i, j, k) ∈ {1, 2, 3}3. Assume ϕ ∈ L2

0(�i) for an arbitrary �i . Then we have

|ϕ|L2(�) ≤ cp,i |∇ϕ|L2(�), cp,i ≤ cp, cp,i ≤ djk

π
,

where djk is the diameter of the two-dimensional projection of � into the
(ej , ek)-plane. Here ej and ek denote the j -th and k-th Euclidean orthonormal
basis vectors (see Figure 3 ).

Proof. Let i = 1. Under the assumptions there exists a decomposition of
� into nonintersecting convex �1-sets �1,n, n = 1, . . . , N such that

� =
N⋃
n=1

�1,n, ϕ ∈ L2
0(�1,n), n = 1, . . . , N,

where each �1,n has width �1/N in the direction of the x1-coordinate, and

∀n ∈ {1, . . . , N} diam�1,n ≤
√
d2

23 + �2
1

N2
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Figure 3. Diameters of a rectangular cuboid � and its decomposition into �1-sets.

holds (see Figure 3). For each subdomain we can apply (13) to obtain

∀n ∈ {1, . . . , N} |ϕ|L2(�1,n) ≤ diam�1,n

π
|∇ϕ|L2(�1,n),

which implies

|ϕ|L2(�) ≤ 1

π
max

n∈{1,...,N} diam�1,n|∇ϕ|L2(�)

≤ 1

π

√
d2

23 + �2
1

N2
|∇ϕ|L2(�)

N→∞−−−→ d23

π
|∇ϕ|L2(�).

The cases i = 2 and i = 3 are proven in a similar way.

As in [6], [7], [8], we will rely on the following essential regularity result
proven in [1, Theorem 2.17].

Lemma 8. Let � be convex and φ ∈ R̊ ∩ D or φ ∈ R ∩ D̊. Then φ ∈ H1 and

|∇φ|2L2 ≤ |div φ|2L2 + |rot φ|2L2 .

We can now state the improved bound.

Theorem 9. Let � be convex. Then we have the estimate

cm,1 = cm,2 ≤ max{cp,1, cp,2, cp,3} ≤ max{d23, d13, d12}
π

.

Proof. Let φ ∈ R ∩ D̊0. Then φ ∈ H1 by Lemma 8 and φ ∈ L2
0 by Co-

rollary 3. More specifically, Corollary 3 shows that the specialized Poincaré
inequality of Lemma 7 can be applied to each component of φ, and we directly
get

|φ|2L2 = |φ1|2L2 + |φ2|2L2 + |φ3|2L2 ≤ c2
p,1|∇φ1|2L2 + c2

p,2|∇φ2|2L2 + c2
p,3|∇φ3|2L2

≤ max{c2
p,1, c

2
p,2, c

2
p,3}|∇φ|2L2 ≤ max{c2

p,1, c
2
p,2, c

2
p,3}|rot φ|2L2 ,
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where in the last step we used Lemma 8. In view of (12) we obtain the estim-
ate cm,2 ≤ max{cp,1, cp,2, cp,3}. Together with Lemmas 6 and 7 we have the
assertion.

Remark 10. If we had used in the above proof the global zero mean prop-
erty (4) and the Payne-Weinberger estimate (13) (instead of Corollary 3 and
Lemma 7, respectively), we would have arrived at (14). Note that Pauly’s proof
of (14) does not use knowledge of (4), but is rather based on finding suitable
potential functions.

Example 11. (i) Let � = (0, 1)3. Then d = √
3 and d23 = d13 = d12 =√

2. The bounds of (14) and Theorem 9 then give

cm,1 = cm,2 ≤
√

3

π
, cm,1 = cm,2 ≤

√
2

π
,

respectively.
(ii) Let � = B(0, 1), i.e., the unit ball in R3. Then d = d23 = d13 = d12 =

2, and the bound in Theorem 9 offers no improvement over the bound (14).

Remark 12. In [7] it was proven that for convex domains � the two Max-
well constants in the inequalities

∀φ ∈ R̊ ∩ D |φ|2L2 ≤ c2
m,t

(|div φ|2L2 + |rot φ|2L2

)
,

∀φ ∈ R ∩ D̊ |φ|2L2 ≤ c2
m,n

(|div φ|2L2 + |rot φ|2L2

)
,

satisfy cm,t ≤ cm,n = cp, and it was conjectured that cm,t < cm,n holds. By
using Theorem 9 instead of [7, Lemma 4] in the proof of [7, Theorem 6], we
obtain

∀φ ∈ R̊ ∩ D |φ|2L2 ≤ c2
f |div φ|2L2 + max{cp,1, cp,2, cp,3}2|rot φ|2L2 ,

∀φ ∈ R ∩ D̊ |φ|2L2 ≤ c2
p

(|div φ|2L2 + |rot φ|2L2

)
,

where cf is the constant in the Friedrichs’ inequality |ϕ|L2 ≤ cf |∇ϕ|L2 which
holds for all scalar valued functions ϕ ∈ H̊1. It is well known that cf < cp

(see, e.g., [3]). Thus, if one can prove that max{cp,1, cp,2, cp,3} < cp, then the
conjecture cm,t < cm,n follows.

Note also that weighted L2-orthogonal Helmholtz decompositions were
used in [7]. In this note unweighted decompositions were used only for sim-
plicity.
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