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ARROW CATEGORIES OF MONOIDAL MODEL
CATEGORIES

DAVID WHITE and DONALD YAU

Abstract
We prove that the arrow category of a monoidal model category, equipped with the pushout product
monoidal structure and the projective model structure, is a monoidal model category. This answers
a question posed by Mark Hovey, in the course of his work on Smith ideals. As a corollary,
we prove that the projective model structure in cubical homotopy theory is a monoidal model
structure. As illustrations we include numerous examples of non-cofibrantly generated monoidal
model categories, including chain complexes, small categories, pro-categories, and topological
spaces.

1. Introduction

Based on an unpublished talk by Jeff Smith, in [17] Hovey developed a homo-
topy theory of Smith ideals in monoidal model categories. Given a symmetric
monoidal closed category M, its arrow category Arr(M) = −→M becomes a
symmetric monoidal closed category when equipped with the pushout product

monoidal structure, denoted −→M �
. A Smith ideal in M is defined as a monoid

in−→M �
. Equivalently, a Smith ideal is a triple (R, I, j) with R a monoid in M,

I an R-bimodule, and j : I → R a map of R-bimodules that satisfies an extra
compatibility condition.

If M has a (cofibrantly generated) model structure, then its arrow category
inherits a (cofibrantly generated) projective model structure with weak equival-
ences and fibrations defined entrywise in M. This is because the arrow category
is the category of functors from I = {0 → 1}, which is a direct category, to
M. A monoidal model category [31] is a symmetric monoidal closed category
with a model structure that satisfies the pushout product axiom. In [17, 3.1(5)]
Hovey showed that if M is a cofibrantly generated monoidal model category,
then its arrow category equipped with the pushout product monoidal structure
and the projective model structure is a monoidal model category. Furthermore,
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Hovey expressed the belief that−→M �
should be a monoidal model category even

without assuming cofibrant generation on M. Such a result was first achieved
in [29, Proposition 3.1.8] with an inductive argument that involves decom-
posing certain maps into composites of pushouts. The purpose of this short
note is to reprove this result with a direct, non-inductive argument, and to give
numerous applications of this result.

Theorem A. Suppose M is a monoidal model category. Then its arrow cat-
egory equipped with the pushout product monoidal structure and the projective
model structure is a monoidal model category.

This result will be proved below as Theorem 3.1. The point is that it is not
necessary to assume cofibrant generation on M, as in [17, 3.1(5)]. The primary

difficulty of verifying the pushout product axiom in −→M �
, with the projective

model structure, is computing the pushout product in−→M �
in terms of pushout

products in M. The pushout product of two morphisms in −→M �
is described

in (3.3).
To deal with these categorical and homotopical difficulties, our proof below

involves three rewritings of pushout corner maps. In the first instance (3.6),
we rewrite a pushout corner map as the induced map between two pushout
squares. In each of the other two instances (3.7) and (3.12), a pushout corner
map is rewritten as a pushout product.

In Section 4 we will provide a list of examples of monoidal model categories
that are not cofibrantly generated, including chain complexes, small categories,
spaces, and pro-categories. In Section 5, we discuss an application of our
main result to cubical homotopy theory, a field that has recently been applied
in numerous settings, including Goodwillie calculus, homotopy type theory,
classical stable and unstable homotopy theory, rewriting theory, concurrency
theory, and the homotopy theory of C∗-algebras. A corollary of our main result,
Corollary B, implies that the natural monoidal product in cubical homotopy
theory satisfies the pushout product axiom, and hence provides practitioners
of cubical homotopy theory with a more powerful set of tools.

Cubical homotopy theory begins with a sequence of diagram categories
MI := Arr(M), MI×2

:= Arr(MI ), . . . , MI×n

:= Arr(MI×(n−1)

), . . ., each being
the arrow category of the previous step. The objects of MI×n

are commutative n-
cubes in M (i.e., functors from {0→ 1}×n to M) and maps are commutative (n+
1)-cubes (i.e., natural transformations between functors from {0 → 1}×n to
M). For each of these diagram categories, the projective model structure defines
weak equivalences and fibrations pointwise in M. By iterating Theorem A, we
obtain the following corollary, discussed further in Section 5.
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Corollary B. Let M be any monoidal model category (cofibrantly gen-
erated or not). Then all of the diagram categories MI×n

, equipped with their
projective model structures, are monoidal model categories.

Another motivation for Theorem A is that it is needed in a companion
paper [34], that uses the theory of [35] to extend Hovey’s work on Smith ideals
of ring spectra [17] to the context of algebras over general operads, rather than
simply monoids. This work builds on [33], where commutative Smith ideals
were introduced, as commutative monoids in−→M proj. Using Theorem A, we are

able to lift operads O to new operads
−→
O that act in−→M proj. We then work out the

homotopy theory of
−→
O -algebras, generalizing results of Hovey [17], proving

new results regarding left Bousfield localization, and setting up a theory of
Smith O -ideals in spectra, chain complexes, and the stable module category.

2. Projective model structure on the arrow category

In this section we briefly recall some definitions and facts regarding monoidal
model categories and arrow categories. Our main references for model cat-
egories are [15], [16], [31]. In this paper, (M,⊗, 1, Hom) will be a bicomplete
symmetric monoidal closed category with monoidal unit 1 and initial object ∅.

Definition 2.1.
(1) A model category is cofibrantly generated if there are a set I of cofibra-

tions and a set J of trivial cofibrations (i.e., maps that are both cofibra-
tions and weak equivalences) that permit the small object argument (with
respect to some cardinal κ), and a map is a (trivial) fibration if and only
if it satisfies the right lifting property with respect to all maps in J (resp.,
I ).

(2) A symmetric monoidal closed category M equipped with a model struc-
ture is called a monoidal model category if it satisfies the following
pushout product axiom [31, 3.1]:
• Given any cofibrations f : X0 → X1 and g: Y0 → Y1, the pushout

product map

(X0 ⊗ Y1)
∐

X0⊗Y0

(X1 ⊗ Y0)
f �g−−−−→ X1 ⊗ Y1

is a cofibration. If, in addition, either f or g is a weak equivalence
then f � g is a trivial cofibration.

We now recall the arrow category and its projective model structure from
[17].
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Definition 2.2.
(1) Given a solid-arrow commutative diagram

A C

pushout

f

g

B B
A

C

f g

D

in M in which the square is a pushout, the unique dotted induced map
– i.e., the pushout corner map – will be denoted by f � g. The only
exception to this notation is when the pushout corner map is actually a
pushout product of two maps, in which case we keep the box notation
in Def. 2.1.

(2) The arrow category −→M is the category whose objects are maps in M, in
which a map α: f → g is a commutative square

X0
α0−−−−−→ Y0

f g

X1
α1−−−−−→ Y1

(2.3)

in M. We will also write Ev0 f = X0, Ev1 f = X1, Ev0 α = α0, and
Ev1 α = α1.

(3) The pushout product monoidal structure on −→M is given by the pushout
product

(X0 ⊗ Y1)
∐

X0⊗Y0

(X1 ⊗ Y0)
f �g−−−−→ X1 ⊗ Y1

for f : X0 → X1 and g: Y0 → Y1. The arrow category equipped with

this monoidal structure is denoted by −→M �
. Its monoidal unit is ∅→ 1,

and it is a symmetric monoidal closed category.

(4) Defining L0(X) = (Id: X → X) and L1(X) = (∅ → X) for X ∈ M,
there are adjunctions

M
L0−−−−−→←−−−−−
Ev0

−→M M
L1−−−−−→←−−−−−
Ev1

−→M
with left adjoints on top.

Of course, the arrow category is also the category of functors from the category
{0 → 1}, with two objects and one non-identity arrow, to M. The following
result about the projective model structure is from [17, 3.1].
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Theorem 2.4. Suppose M is a model category.

(1) There is a model structure on−→M , called the projective model structure, in
which a map α: f → g as in (2.3) is a weak equivalence (resp., fibration)
if and only if α0 and α1 are weak equivalences (resp., fibrations) in M. A
map α is a (trivial) cofibration if and only if α0 and the pushout corner
map

X1
∐
X0

Y0
α1�g−−−−−→ Ev0 Y1

are (trivial) cofibrations in M. The arrow category equipped with the
projective model structure is denoted by −→M proj.

(2) If M is a cofibrantly generated monoidal model category, then −→M �

equipped with the projective model structure is a monoidal model cat-
egory.

Remark 2.5. In (1) above the projective model structure on−→M is the special
case of [16, 5.1.3] for the direct category {0 → 1}. If α is a (trivial) cofibra-
tion, then α1 is also a (trivial) cofibration. If M is cofibrantly generated with
generating cofibrations I and generating trivial cofibrations J , then −→M proj is
cofibrantly generated with generating cofibrations L0I ∪ L1I and generating
trivial cofibrations L0J ∪ L1J [16, 5.1.8].

3. Arrow category as a monoidal model category

In [17] (immediately after 3.1) Hovey stated that the last statement in The-
orem 2.4 should be true even without assuming M is cofibrantly generated. In
this section, we prove that this is indeed the case.

Theorem 3.1. Suppose M is a monoidal model category. Then−→M �
equipped

with the projective model structure is a monoidal model category.

Proof. We already know that−→M �
is a symmetric monoidal closed category

equipped with the projective model structure. We must show that it satisfies
the pushout product axiom. Suppose α: fV → fW and β: fX → fY ,

V0
α0−−−−−→W0

fV fW

V1
α1−−−−−→W1

X0
β0−−−−−→ Y0

fX fY

X1
β1−−−−−→ Y1

(3.2)

are two maps in −→M �
. Their pushout product in −→M �

is the map

(fW � fX)
∐

fV �fX

(fV � fY )
α�2β−−−−−→ fW � fY
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in which � (resp., �2) is the pushout product in M (resp.,−→M �
). To simplify the

notation, in the diagrams below we will omit writing⊗, soV0X0 meansV0⊗X0,
etc. Unraveling the various pushout products, α�2β is the commutative square

W1X0
W0X0

W0X1

V1X0
V0X0

V0X1

V1Y0
V0Y0

V0Y1
ζ−−−→W

W

1Y0
W0Y0

W0Y1

(fW fX)
fV fX

(fV fY ) fW fY

W1X1
V1X1

V1Y1
α1 β1

1Y1

(3.3)

in M.
To prove the pushout product axiom in −→M �

equipped with the projective
model structure, suppose α is a cofibration and β is a (trivial) cofibration in−→M proj. The case with α a trivial cofibration and β a cofibration is proved by
essentially the same argument. To show that α �2 β is a (trivial) cofibration in−→M proj, we must show that:

(1) the top horizontal map ζ in (3.3) is a (trivial) cofibration in M;

(2) the pushout corner map
(
W1X1

∐
V1X1

V1Y1

)∐
Z

(
W1Y0

∐
W0Y0

W0Y1

)
(α1�β1)�(fW �fY )−−−−−−−−−−−−−→W1Y1

(3.4)

of the commutative diagram (3.3) is a (trivial) cofibration in M, where
Z denotes the object in the upper left corner in (3.3).

We will prove statement (1) in Lemma 3.5 and statement (2) in Lemma 3.11
below.

Lemma 3.5. The top horizontal map ζ in (3.3) is a (trivial) cofibration in M.

Proof. First note that ζ is a pushout corner map. By the commutation of
colimits, we may rewrite ζ as the unique induced map in the commutative
cube (see (3.6)) in M with both the back and the front faces pushouts, and with
PTop (resp. PBot) as the pushout of the displayed spans in the top (resp. bottom)
faces, as shown above. Furthermore, the diagonal face, featuring PTop, PBot, ξ ,
and δ1 is a pushout square. By colimit commutation, the relevant map, ζ , is the
composition δ1 ◦ δ0. Since δ0 is a pushout of α1 �β0, it is a (trivial) cofibration
in M. Since δ1 is a pushout of ξ , it suffices to prove that ξ is a (trivial) cofibration
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pushout

pushout

W0X0
V0X0

V0Y0

ξ

ζ

W0X1
V0X1

V0Y1

α1 β0

α0 β1

α0 β0

W1X0
V1X0

V1Y0

δ1

δ0

W1X0
V1X0

V1Y0

W0X0
V0X0

V0Y0

W0X1
V0X1

V0Y1

W0Y0 W0Y1

W1Y0 W1Y0
W0Y0

W0Y1

PBot

PTop

(3.6)

in M. We can rewrite ξ as the pushout product α0 � (β1 � fY ) in the diagram

V0 X1
X0

Y0
(Id,β1 fY )

V0Y1

(α0,Id)(α0,Id)

(Id,β1 fY )

W0 X1
X0

Y0 W0 X1
X0

Y0

V0(X1
X0

Y0)

(V0Y1)

ξ

W0Y1

pushout

(3.7)

in M. Indeed, the pushout in the previous diagram has the same universal
property as the pushout of the top face of the cube (3.6), and the pushout
corner map to W0Y1 corresponds to the previous pushout product. Since the
map α0 is a cofibration and since the pushout corner map β1 � fY is a (trivial)
cofibration in M, their pushout product ξ is a (trivial) cofibration in M by the
pushout product axiom.

Remark 3.8. An alternative way to prove Lemma 3.5 is to consider the
Reedy category D = {−1← 0→ 1} with three objects, a map 0→ −1 that
lowers the degree, a map 0→ 1 that raises the degree, and no other non-identity
maps. There is a Reedy model structure [16, 5.2.5] on the diagram category
MD in which weak equivalences are defined entrywise. A map h: A → B in
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MD,
A−1 A0 A1

h−1 h0 h1

B−1 B0 g B1

(3.9)

is a Reedy (trivial) cofibration if and only if the maps h−1, h0, and the pushout
corner map g � h1: B0

∐
A0

A1 → B1 are (trivial) cofibrations in M. Further-
more, there is a Quillen adjunction

MD colim−−−−−−→←−−−−−−
constant

M (3.10)

in which the left Quillen functor colim is the pushout [16, proof of 5.2.6].
To show that the induced map ζ in (3.6) is a (trivial) cofibration in M, one

can use the Quillen adjunction (3.10). It is enough to show that the diagram
consisting of the left and the top faces of the cube (3.6) – which has the
form (3.9) – is a Reedy (trivial) cofibration in MD. Since the maps α0 and
α1 are cofibrations and since β0 is a (trivial) cofibration in M, the pushout
products α1 � β0 and α0 � β0 are (trivial) cofibrations in M by the pushout
product axiom. We thank the referee for suggesting the simplified proof of
Lemma 3.5 given above, to avoid the need for Reedy categories.

Lemma 3.11. The pushout corner map (α1 � β1) � (fW � fY ) in (3.4) is a
(trivial) cofibration in M.

Proof. There is a commutative square

W1X1
V1X1

V1Y1
Z

W1Y0
W0Y0

W0Y1
(α1 β1) (fW fY )

W1Y1

∼= =

W1 X1
X0

Y0

V1
V0

W0 X1
X0

Y0

V1
V0

W0 Y1
(α1 fW ) (β1 fY )−−−−−−−−−−−→W1Y1

(3.12)

with α1 � fW (resp., β1 � fY ) the pushout corner map of α (resp., β) in (3.2)
and the bottom horizontal map the pushout product of α1 � fW and β1 � fY .
The vertical isomorphism on the left comes from the fact that the pushout in
the lower left corner has the same universal property as the pushout in the
upper left corner. Since α1 �fW is a cofibration and since β1 �fY is a (trivial)
cofibration in M, their pushout product – the bottom horizontal map in (3.12)s
– is a (trivial) cofibration in M by the pushout product axiom.
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4. Examples: non-cofibrantly generated monoidal model categories

In this section we consider examples of monoidal model categories that are not
cofibrantly generated. By Theorem 3.1 each such category yields a monoidal
model structure in its arrow category with the pushout product monoidal struc-
ture and the projective model structure. We note that these examples are not
pathological; all arose naturally in homotopy theoretic investigations, and none
are known to have Quillen equivalent cofibrantly generated model structures.
Indeed, for several of these examples, there cannot be any cofibrantly generated
model structure encoding its homotopy theory, as we prove in Section 4.6.

4.1. Christensen-Hovey model structure on integral chain complexes

The category Ch(Z) of chain complexes of abelian groups admits the absolute
model structure [10]. The weak equivalences in Ch(Z) are the chain homotopy
equivalences. Cofibrations (resp., fibrations) are the degreewise split mono-
morphisms (resp., degreewise split epimorphisms). Equipped with the abso-
lute model structure, Ch(Z) is a non-cofibrantly generated monoidal model
category [10, Example 3.4 and Cororally 5.12].

4.2. Barthel-May-Riehl model structure on DG-modules

For a commutative ring R, the category of differential graded R-modules ad-
mits the r-model structure dgRmodr [3, 1.14 and 1.15]. Analogous to the
previous example, its cofibrations (resp., fibrations) are the degreewise split
monomorphisms (resp., degreewise split epimorphisms). Its weak equival-
ences are the chain homotopy equivalences. This is a non-cofibrantly generated
monoidal model category.

4.3. Adámek-Herrlich-Rosický-Tholen model structure on small categories

The category Cat of all small categories has a non-cofibrantly generated model
structure [1, 2.3, 3.5, and 3.7] in which every map is a weak equivalence and
cofibrations are the full functors. Trivial fibrations are the topological functors.
We will call this the AHRT model structure on Cat. With Cartesian product
as the monoidal product, the AHRT model structure on Cat is a monoidal
model category because the pushout product of two full functors is again a full
functor. Similarly, the AHRT model structure on the category of small posets
is not cofibrantly generated [1, 3.4].

4.4. Strøm model structure on compactly generated spaces

The category Top of compactly generated spaces has a Strøm model struc-
ture [32] with homotopy equivalences as weak equivalences, closed Hurewicz
cofibrations as cofibrations, and Hurewicz fibrations as fibrations. This is a
monoidal model category [25, Chapter 6.4] and is not cofibrantly generated [30,
Remark 4.7].
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4.5. Pro-categories

For any category C , the pro-category pro-C has objects cofiltered diagrams
X = {xa} of objects of C , and morphisms

Hompro-C (X, Y ) = lim
β

colimα C (xα, yβ)

Isaksen [19] built the strict model structure on pro-C whenever C is a proper
model category. However, pro-C is almost never cofibrantly generated (rather,
it is often fibrantly generated). In particular, it is not cofibrantly generated
when C is sSet [19, §5].

If C is a tensor model category, i.e. a monoidal model category such that
functors C⊗− and−⊗C preserve weak equivalences for all cofibrant C, then
pro-C is also a tensor model category, with the levelwise tensor product [14,
Proposition 12.7], although pro-C is almost never a closed category. Hence,
for most proper, tensor model categories C , the category pro-C is a monoidal
model category that is not cofibrantly generated.

4.6. On presentable∞-categories

Recall that a model category M is called combinatorial if M is locally present-
able as a category and cofibrantly generated as a model category. Proposi-
tion A.3.7.6 of [23] demonstrates that the∞-category associated to a combin-
atorial model category is presentable. Furthermore, in a combinatorial model
category, the classes of weak equivalences and trivial fibrations are closed
under sufficiently large filtered colimits, by [13] (Proposition 2.3). The cat-
egory of small categories, of chain complexes over a ring, and of differential
graded R-modules are all locally presentable. So the only obstacle to the model
categories of Sections 4.1, 4.2, and 4.3, being combinatorial is cofibrant gen-
eration. We now argue that there can be no combinatorial model structure for
these three homotopy theories, as well as the homotopy theory of Section 4.5.

Proposition 4.1. The homotopy theory encoded by the absolute model
structure of [10] is a non-presentable∞-category and cannot admit any com-
binatorial model.

Proof. Corollary 1.4.4.2 in [24] implies that the homotopy category of a
presentable stable ∞-category must be well-generated as a triangulated cat-
egory. However, the homotopy category of Ch(Z) is K(Z), and is known not
to be well-generated as discussed in [10, 5.4]. If there was any combinatorial
model for this homotopy theory, it would imply K(Z) is well-generated, a
contradiction.

The same argument implies that the r-model structures of 4.2 cannot, in
general, admit combinatorial models.
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Proposition 4.2. The homotopy theory encoded by the AHRT model struc-
ture on Cat of [1] is a non-presentable ∞-category and cannot admit any
combinatorial model.

Proof. Consider the class of trivially fibrant objects in the category Pos of
posets, with the AHRT model structure. Proposition 3.4 of [1] implies that this
class is not closed under λ-filtered colimits, no matter how large λ is allowed
to become. On the level of the∞-category associated to Pos, this implies the
class of equivalences is not accessible. It follows that the∞-category cannot
be presentable, hence cannot admit any combinatorial model. The argument
of [1, Proposition 3.5] implies the same conclusion for Cat with the AHRT
model structure.

Pro-categories pro-C are not presentable, and often not copresentable either
[23, Chapter 7], hence the homotopy theory of Section 4.5 is not presentable
either.

Remark 4.3. There are several other examples of non-cofibrantly generated
model structures, that we did not include because we did not know whether or
not they were monoidal model categories. For example, all of the following
model structures are not cofibrantly generated:

(1) the trivial model structure of [21, Proposition 4.18] on the 2-category of
arrows in Cat;

(2) the projective model structure of [4, Theorem 2.4] on small functors
from a simplicial category K to simplicial sets;

(3) the model structure of [8, Theorem 1.2] on the arrow category of sim-
plicial sets;

(4) the localization of the category of small functors from sSet to itself
constructed in [9, Example 3.16];

(5) the weak factorization system on Cat of [5, §6.2].

As categories of functors, the first four examples above can be endowed with
the Day convolution product. However, the authors do not know if this product
turns these model structures into monoidal model categories.

5. Application to cubical homotopy theory

5.1. Cubical diagram categories of monoidal model categories

Cubical homotopy theory is an alternative to simplicial homotopy theory that
has recently found powerful applications in Goodwillie calculus [27], Blakers-
Massey theorems [7], homotopy type theory [2], [11], [12], rewriting the-
ory [22], concurrency theory [26], the homotopy theory of C∗-algebras [28],
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and classical homotopy theory [6]. Jardine [20] produced the first model struc-
ture on cubical sets, and pointed out several advantages of the cubical setting
over simplicial sets.

The idea of cubical sets is to replace the simplex category 	 by the cubical
category �. A cubical set is a functor X: �op → Set, i.e. a collection of sets
(Xn)n∈N, where Xn is thought of as the set of n-cubes. Jardine [20] proved that
the homotopy theory of cubical sets agrees with that of topological spaces.
Just as one can consider simplicial objects in a model category M, so can
one consider cubical objects in M, namely functors X: �op → M, where Xn

encodes n-cubes in M.
As a category of functors, the category of cubical objects in M admits the

Day convolution product. The monoidal structure on cubical objects has had
powerful applications in numerous settings, notably in [6], [18], and [28]. This
product agrees with the levelwise product, where the product in level n is the
pushout product, obtained by viewing the category of n-cubes in M as the
arrow category of the category of n−1 cubes. We denote by MI×n

the category
of n-cubes; its objects are commutative n-cubes in M and its morphisms are

commutative n+ 1 cubes. For example, MI×2
is the arrow category of −→M �

proj.
Its objects are commutative squares in M and its morphisms are commutative
cubes in M. An example of such a morphism γ : (fV → fW)→ (fX → fY )

is displayed below.

V0
α0

W0

fV

fW

α1V1 W1

β0

fX

fY

β1

X0 Y0

X1 Y1

γ00

γ01

γ10

γ11

The map γ is a weak equivalence (resp., fibration) in MI×2
with the projective

model structure if and only if each of the four maps γij is a weak equivalence
(resp., fibration) in M. The projective model structure on MI×n

, for n > 2, is
defined similarly.

An inductive argument, using Theorem A for the base n = 1, verifies the
pushout product axiom on MI×n = Arr(MI×(n−1)

) by appealing to Theorem A
applied to MI×(n−1)

. This proves Corollary B.
Despite the failure of the model structures in Section 4 to be cofibrantly

generated, Corollary B allows for a monoidal cubical homotopy theory to be
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built in these settings. We conclude with a corollary, summarizing the consid-
erations of the previous two sections.

Corollary 5.1. Let M be any of the examples in Section 4, i.e. Ch(Z),
dgRmodr , Cat, Top, or pro-C (for a tensor model category C ). Then, by
Corollary B, the projective model structure on each MI×n

satisfies the pushout
product axiom for every n, and hence so does M�op

.
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