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LIMIT MEASURES ON COMPACT SEMITOPOLOGICAL
SEMIGROUPS

HING LUN CHOW

Let S be a compact semitopological semigroup, i.e. the multiplication
is separately continuous. A probability measure on § is a positive
regular Borel measure with norm one, and the set P(S) of probability
measures is also a compact semitopological semigroup under convolution
and the weak* topology [6]. In this paper we are concerned with limit
theorems about P(S) by extending some results known for compact
jointly continuous topological semigroups to the separately continuous
situation.

For a measure u € P(S) we use suppu to denote its support which is
the smallest closed subset of § with u-mass one. A very useful property
of probability measures is formulated in the next theorem, where the bar
denotes closure.

THEOREM 1. (Glicksberg [6].) For u,» = P(8),

suppuy = (Suppu supp»)” .

It follows by induction and [1, I1.3.1] that for any finite family of meas-
ures pu; € P(S), t=1,...,n,

SUPP (f4y - - - ) = (SUPP Yy . . . SUPPUy,) ™ .

A semigroup S is said to be topologically simple if every two-sided ideal
is dense.

THEOREM 2. (Pym [8].) The support of an idempotent measure in P(S)
s a topologically simple semigroup in S.

The result in Theorem 2 is best possible in the sense that the word
“topologically” cannot be omitted, for it may occur that the support of
an idempotent measure is not its own minimal ideal. This can be seen
from the idempotent 7 given in Example 2 of [3]. Incidentally, we can
also see from that example — however, one has no difficulty in obtain-
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ing simpler examples — that the result in Theorem 1 requires the closure

sign since supp# suppz =supp7.

For a compact jointly continuous semigroup the following theorem
was stated in [4, § 3.5], and interested readers can find references listed
there.

THEOREM 3. Suppose u € P(S) and let vy=N-"Yu+ ...+ u"). Then the
sequence (vy) converges, as N — oo, to an tdempotent measure L(u) € P(S).
Moreover, L(u)u=uL(u) = L(u) and

suppL(u) = (K(S(u)))-,
where K(S(u)) ts the minimal ideal of the compact semigroup S(u) generated
by suppu.

Proor. The existence of the limit L(u) with the property that L(u)u=
uL(p)=L(u) and that suppL(u) is an ideal in

S(p) = (UiZ: (suppp)i)-

can be proved by an argument similar to that given in Proposition 3.4
of [7]. Thus

supp L(x) 2 K(S(u)) -
Since K(S(u)) is an ideal of supp L(x), the result follows from Theorem 2.

Throughout the remainder of this paper the notations in Theorem 3
will be used.
We say a measure u € P(S) is central if uv=wu for all » € P(8).

THEOREM 4. Suppose u,v € P(S). If L(uv) and L(vu) are central, then
L(pv) = L(vp).

Proovr. Since L(uv)uv = L(uv) which is central, we see that

Liu)op)t =

L(pv)ypvu . . .vp = fLipv)wo) . . .op =
vL(pv)u .. .vu = ... = vL(wv)u = Luwvvu

for all ¢, and so
L)N-3X, ) = Liwvpp .

It follows that L(uv)L(vu)= L(uv)vu. Thus

uL(pv)Lvuyy = uL(pyypy = L(uv)pvuy = L(pw)py = L(uv) .
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As pL(uv)L(vp)y = L(pv)uv L(vp) = L(uv) L(vp), we get
L(uv) = L(pv)L(vy) .
Similarly L(vu)= L(uv)L(vu), and the result follows.
The theorem of § 3.6 of [4] for compact jointly continuous semigroups

is improved and extended to compact semitopological semigroups in the
next theorem.

THEOREM 5. Suppose u,v € P(S) such that L(uv) and L(v) are central.
If the family
{supppi: i=1,2,...}

has the finite intersectiom property, then L(uv)=L(u)L(»).

Proor. Since L(uv)=L(uv)ur and L(u») is central, it follows that
Lw) = pwtL(pvpt, 1=1,2,....

Because § is compact we see that 32, suppu’<+0, that is, there exists a
point a € supput for all <. Hence for each ¢,

a supp L(uv) suppy* < suppu’ supp L(uv) suppy’ < supp utL(uv)vt
= supp L(u) .
Consequently,

o supp L{wv) supp L(») < suppLim) ,
whence we have, by Lemma 3 of [8], that
Liw) = L(u)d(@)L{w) L) L) = 8(@) L)L),
where 6(a) is the unit point mass at a. Since L(») is central, we obtain
NN (w)iL(») = N13IY, (uwL()):
~ NASY, (uL))i = N3N, wL)
and so L(uv)L(v) = L(u)L(»). It follows that

8(a)L(u)Liv) = L) L(»)8(@) L)L) = L(w)L(»)d(a)L()L()
= L(pd@L()L) = L(u)Liu)8(@)L(u) L(v)
= L)L),

by applying again Lemma 3 of [8] since supp L(¢)d(a) < supp L(u). Hence
L(w) = L(p)L()-
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CoROLLARY 6. Suppose u,v € P(S) such that L(uv) and L(v) are central.
If suppu csuppu?, or there exists an idempotent e € suppy, then L(uv)=
L(p)L(»).

Proor. If suppussuppu?, we can deduce that

suppu® < suppu® S ... < suppu® < ..

Thus suppuc N, supput. If there exists an idempotent e € suppy,
then

e€ ()32, suppu’ .
The result follows immediately from Theorem 5.
THEOREM 7. Suppose u € P(S). Then L(u)=L(u") isf and only if
suppL(u) = suppL(p®), n=1,2,....

Proor. Assume that suppL(u)=suppL(u®). Then Lemma 3 of [8]
implies

L(p™)L(u)L(p™) = L(p™) .

On the other hand, by Theorem 3 we have L(u)u®= u*L(u) = L(u) for all ¢
and so

L(p)L(p™) = L(u*)L(n) = L(u) .
Accordingly, L(u™)L(u)L(u™) = L(x), and the result follows.

Theorem 1 of [5] shows that if S is a compact group and suppu con-
tains the identity then

L(,u') = L(‘un)a n=12,...
Clearly it is an immediate consequence of the corollary below.

CoROLLARY 8. For u € P(S), if suppu < (suppy)?, then
L(,u) = L(,un): n=1,2,....

Proor. Clearly (supppu)t< (suppp)i+! for all ¢. It follows that S(u)=
S(u™), n=1,2,.... Thus

suppL(p) = (K(S(w))~ = (K(S(u))~ = suppL(u") .

Then apply Theorem 7 to complete the proof.
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Now we come to the monothetic semigroup I'(u) generated by a meas-

ure u € P(8), that is
= {ut: 1,2,...}.

Since I'(u) is a compact commutative semigroup [1, p. 67], its minimal
ideal K(I'(x)) is a compact topological group with identity E(u) [1, II 3.3].
Note that supp E(u) < S(u); for if not, by Urysohn’s lemma we can find
a continuous function f on S such that f(S(x)) = 0 and E(u)(f) > 0. But there
exists a subnet (u*) of the sequence (u) such that u* — E(u), that is

s5(f) = E(u)(f). Since pu*(f)=0, it follows that E(u)(f)=0, a contradic-
tion.

TareoREM 9. The following statements are equivalent:

(1) L(p)=E(p),

(2) K(I'(w))={B(u)},

(3) (suppE(u) suppu supp E(u))~ = supp E(u),
(4) suppL(u)ssupp E(p).

Proovr. (1) implies (2). As L(u)u=pL(p)=L(u) and L(u)=E(u) € I'(u),
we see that L(u) is the zero element in the semigroup I'(x) and so (2)
follows.

(2) implies (3). Obviously we have E(u)uE(u)=E(u) which gives (3)
by Theorem 1.

(3) implies (4). Since E(u) € K(I'(1)) we have E(u)u € K(I'(n)). Clearly
E(uw)uE(u) = E(p)u, since E(u) is the identity in K(I'(x)). Thus

supp E(u) = (supp E(u) suppu supp E(u))~
= (suppE(u) suppp)~ 2 suppH(u) supp u.

As a consequence, we get supp E(u)=2suppE(u) (suppu)t for all ¢ and so
supp E(u) 2 (suppE(p)S(p) -

Similarly, by considering uE(u) € K(I'(x)) we can obtain
supp E(u) 2 S(u) supp E(u) .

So suppE(u) is an ideal of S(u). It follows that suppZ(u) 2 K(S(u)),
whence

supp E(u) 2 K(S(u))~ = suppLip)
implying (4).

(4) implies (1). In view of Lemma 3 of [8] we get B (u)L(u)E(p) =E(u).
On the other hand, since L(u)u®=puiL(u)=L(u) for all ¢ and E(u) € I'(u)
we see that L(u)E(u)=E(u)L(u)=L(u) which implies that E(u)L(u)E(x)
= L(u). Thus L(u)=E(u), and the proof is complete.
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THEOREM 10. If the sequence (u') converges, then each of the conditions
in Theorem 9 holds. Moreover, lim u' = L(u).

Proor. Suppose the sequence (u?) converges to v e I'(u). Then se-
quences (uu’) and (u*u) must converge to uv and tu, respectively. There-
fore ur=7u=1. Clearly K(I'(u))={r}. It follows that E(u)=7 and so
K(I'(u))={E(u)}, that is Theorem 9 (2) holds. That L(u)=7 is clear.

CorOLLARY 11. If the sequence (u?) converges, them L(u)=L(u"),
n=1,2,....

Proor. If (uf) converges to 7, then L(u)=<7. Since the subsequence
(w2, also converges to v, we must have L(u™) =7 which gives the
result.

The converse of Theorem 10 holds for compact jointly continuous
semigroups, that is each of the conditions in Theorem 9 implies that the
sequence (uf) converges [5, Theorem 2], due to the fact that the cluster
points of (u?) belong to K(I'()). But the situation is different for a com-
pact separately continuous monothetic semigroup since it may contain
more than one idempotent ([9], [2]), each of which is a cluster point of (u?).

ExampLE 12. Take the semigroup S =8,,(¢), the monothetic semigroup
generated by u (in the notation of [2]), with u defined in Example 2
of [2], which has zero 0 and identity 1 such that "> - 0 and «™ — 1.
Now we let v=46(u) € P(S). It follows that 6(0) € I'(»), 6(1) € I'(), and so
K(I'(v))={6(0)}, that is Theorem 9 (2) holds. However, as both 4(0) and
4(1) are cluster points of (uf), we conclude that the sequence (ut) fails
to converge.
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