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ISOMORPHISMS OF SPACES OF AFFINE
CONTINUOUS COMPLEX FUNCTIONS

JAKUB RONDOŠ and JIŘÍ SPURNÝ

Abstract
Let X and Y be compact convex sets such that their each extreme point is a weak peak point. We
show that ext X is homeomorphic to ext Y provided there exists a small-bound isomorphism of the
space �(X,C) of continuous affine complex functions on X onto �(Y,C). Further, we generalize
a result of Cengiz to the context of compact convex sets.

1. Introduction

The notation and notions used in the introduction are explained in the next
section. The starting point of our paper is the classical Banach-Stone theorem
asserting that, given a pair of compact spaces K and L, they are homeomorphic
provided C (K, F) is isometric to C (L, F) (see [13, Theorem 3.117]).

This can be reformulated in the framework of compact convex sets as fol-
lows: if X, Y are Bauer simplices and �(X, F) is isometric to �(Y, F), then
ext X is homeomorphic to ext Y .

A generalization of this classical result was given by Lazar in [23], who
proved that for general simplices X, Y , the spaces �(X,R) and �(Y,R) are
isometric only if X is affinely homeomorphic to Y .

A result of Rao (see [27]) precisely describes isometries of �(X,C) for a
simplex X.

A remarkable generalization of the Banach-Stone theorem was given by
Amir [3] and Cambern [6]. They showed that compact spaces K , L are homeo-
morphic if there exists an isomorphism T : C (K, F) → C (L, F) with ‖T ‖ ·
‖T −1‖ < 2. Alternative proofs were given by Cohen [10] and Drewnow-
ski [12].

A reformulation of this result for simplices reads as follows: given Bauer
simplices X and Y , the sets ext X and ext Y are homeomorphic, provided there
exists an isomorphism T : �(X, F) → �(Y, F) with ‖T ‖ · ‖T −1‖ < 2.

This theorem was improved by Chu and Cohen in [8], who proved that for
compact convex sets X and Y , the sets ext X and ext Y are homeomorphic
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provided there exists an isomorphism T : �(X,R) → �(Y,R) with ‖T ‖ ·
‖T −1‖ < 2 and one of the following conditions hold:

(i) X and Y are simplices such that their extreme points are weak peak
points;

(ii) X and Y are metrizable and their extreme points are weak peak points;

(iii) ext X and ext Y are closed and extreme points of X and Y are split faces.

In [24], it was showed that extreme points of X and Y are homeomorphic,
provided there exists an isomorphism T : �(X,R) → �(Y,R) with ‖T ‖ ·
‖T −1‖ < 2, extreme points are weak peak points and both ext X and ext Y are
Lindelöf sets.

In [11] the same result is proved without the assumption of the Lindelöf
property.

It turns out that this result is in a sense optimal since the bound 2 cannot be
improved (see [9]) and the assumption on weak peak points cannot be omitted
(see [17]).

The main result of our paper is a variant of [11, Theorem 2.1] for complex
spaces. It reads as follows.

Theorem 1.1. Let X, Y be compact convex sets and let T : �(X,C) →
�(Y,C) be an isomorphism satisfying ‖T ‖ · ‖T −1‖ < 2.

If each point of ext X and ext Y is a weak peak point, ext X is homeomorphic
to ext Y .

We use the obtained results for affine complex functions on compact convex
sets to obtain corollaries on selfadjoint function spaces, see Theorem 5.3.

2. Notation and basic concepts

First we recall several notions. We work within the framework of real or com-
plex vector spaces and write F for the respective field R or C. Further we
write T for the set {λ ∈ C : |λ| = 1}. If X is a compact convex set in a
locally convex space, we write �(X, F) for the space of all affine continuous
F-valued functions on X endowed with the sup-norm. Let ext X stand for the
set of all extreme points of X. If K is compact (Hausdorff) topological space,
let C (K, F) stand for the space of all continuous F-valued functions on K

endowed with the sup-norm.
We identify the dual space (C (K, F))∗ with the space M(K, F) of all Radon

measures on K . We write M+(K) for positive Radon measures and M1(K)

for probability Radon measures on K .
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A point x in a compact convex set X is called a weak peak point if

given ε ∈ (0, 1) and an open set U ⊂ X containing x,
there exists a in the unit ball B�(X,C) of �(X,C) such that
|a| < ε on ext X \ U and a(x) > 1 − ε.

(2.1)

For any μ ∈ M1(X) there exists a unique point r(μ) ∈ X such that μ(a) =
a(r(μ)), a ∈ �(X,C), see [2, Proposition I.2.1]. We call r(μ) the barycenter
of μ. A function f : X → F satisfies the barycentric formula (or is called
strongly affine) if μ(f ) = f (r(μ)), μ ∈ M1(X).

If μ, ν ∈ M+(X), then μ ≺ ν if μ(k) ≤ ν(k) for each convex continuous
function k on X. A measure μ ∈ M+(X) is maximal if μ is ≺-maximal. A
measure μ ∈ M(X, F) is called boundary if its total variation |μ| is maximal.

By the Choquet-Bishop-de-Leeuw representation theorem (see e.g. [2, The-
orem I.4.8]), for each x ∈ X there exists a maximal measure μ ∈ M1(X) with
r(μ) = x. If this measure is uniquely determined for each x ∈ X, the set X

is called a simplex. It is called a Bauer simplex if, moreover, the set ext X is
closed. In this case, the space �(X, F) is isometric to the space C (ext X, F)
(see [2, Theorem II.4.3]). On the other hand, given a space C (K, F), it is
isometric to �(M1(K), F) ([2, Corollary II.4.2]).

A face F ⊂ X is called a split face if the complementary set F ′ (i.e., the
union of all faces disjoint from F ) is convex and X is a direct convex sum
of F and F ′, i.e., every point in X can be uniquely represented as a convex
combination of a point in F and a point in F ′ (see [2, p. 133]). If F is a closed
split face, then the upper envelope of the characteristic function χF defined as

χ∗
F (x) = inf{a(x) : a ∈ �(X,R), a > χF }, x ∈ X,

is upper semicontinuous and affine, F = (χ∗
F )−1(1) and F ′ = (χ∗

F )−1(0),
see [2, Propositions II.6.5 and II.6.9]. Moreover, the family {a ∈ �(X,R) :
χF < a} is downward directed.

In what follows, we consider the weak∗-topology on (�(X,C))∗, and we
understand X as a subset of B(�(X,C))∗ via the evaluation mapping, i.e., x(f ) =
f (x), f ∈ �(X,C), x ∈ X.

3. Isomorphisms with a small bound

The proof of Theorem 1.1 follows the strategy of the proof of [8], but we
use [11, Corollary 1.3(b)] as the main tool. Thus we need the key Lemma 3.4
which allows us to represent upper semicontinuous affine functions on X as
elements of (�(X,C))∗∗.

We start with a lemma describing extreme points of B(�(X,C))∗ , see also
Lemma 1 in [19].



ISOMORPHISMS OF SPACES OF AFFINE CONTINUOUS COMPLEX FUNCTIONS 273

Lemma 3.1. Let X be a compact convex set. Then

ext B(�(X,C))∗ = T · ext X.

Proof. We denote K = B(�(X,C))∗ . First we prove that ext K ⊂ T · X.
Since T · X is compact, by the Milman theorem it is enough to show that
co(T · X) = K .

Assuming the contrary, there exist s ∈ K \ co(T · X), α ∈ R, and f ∈
�(X,C) such that

Re s(f ) > α > sup{Re r(f ) : r ∈ co(T · X)}.
Let μ ∈ BM(X,C) be a Hahn-Banach extension of s. Since

Re tf (x) < α, t ∈ T, x ∈ X,

we obtain |f (x)| < α, x ∈ X. Then

α < Re s(f ) = Re μ(f ) ≤
∣∣∣∣
∫

X

f dμ

∣∣∣∣ ≤
∫

X

|f | d|μ| <

∫
X

α d|μ| = α

gives a contradiction. Thus ext K ⊂ T · X.
Now we show that ext K = T · ext X. Let s ∈ ext K be given. Then s = tx

for some t ∈ T and x ∈ X. If x = 1
2 (x1 + x2) for some distinct points

x1, x2 ∈ X, then
s = 1

2 (tx1 + tx2),

where tx1 
= tx2. Thus s /∈ ext K , which is impossible. This proves “⊂”.
On the other hand, let tx = 1

2 (s1 + s2) for some t ∈ T, x ∈ ext X and
s1, s2 ∈ K . Then x = 1

2 (t−1s1 + t−1s2). Let μ1, μ2 ∈ BM(X,C) be Hahn-
Banach extensions of t−1s1 and t−1s2, respectively. Then

f (x) = 1
2 (μ1(f ) + μ2(f )), f ∈ �(X,C).

If μ = 1
2 (μ1 + μ2), then μ(1) = 1 = ‖μ‖, and thus μ ∈ M1(X). Further,

x is the barycenter of μ. Since x ∈ ext X, we obtain that μ = εx , the Dirac
measure centered at the point x. Since

μ1(1) = μ2(1) = ‖μ1‖ = ‖μ2‖,
it follows that μ1 = μ2 = εx , and thus t−1s1 = t−1s2 = x. Thus s1 = s2 = tx

and tx ∈ ext K .
This proves “⊃” and finishes the proof.
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Lemma 3.2. Let μ ∈ M1(K) be a probability measure on a compact space
K and let {fj }j∈J be a bounded downward directed net of functions in C (K,R)

converging to a function f . Then for any g ∈ C (K,C) it holds

lim
j∈J

∫
K

gfj dμ =
∫

K

gf dμ.

Proof. It is known (see [15, Corollary 414B]), that for a bounded down-
ward directed net {hj }j∈J in C (K,R) pointwise converging to h we have
μ(h) = limj∈J μ(hj ). We decompose g = ∑3

k=0 ikgk , where g0, . . . , g3 ∈
C (K,R) positive, and apply this fact to the bounded downward directed nets
{gkfj }j∈J , k = 0, . . . , 3, and obtain

μ(gf ) =
3∑

k=0

ikμ(gkf ) =
3∑

k=0

ik lim
j∈J

μ(gkfj ) = lim
j∈J

μ(gfj ),

which finishes the proof.

If K is a compact topological space and T is a topological space, a function
f : K → T is said to be of the first Borel class if, for each U ⊂ T open, the
set f −1(U) can be written as a countable union of differences of closed sets
in K , see [29, Definition 3.2]. In case of T = R, any semicontinuous function
is of the first Borel class.

Lemma 3.3. Let K be a compact topological space. If f1, f2: K → C are
two functions of the first Borel class, then their product

h: x ∈ K �→ f1(x)f2(x) ∈ C

is of the first Borel class as well.

Proof. Consider the mappings f : x ∈ K �→ (f1(x), f2(x)) ∈ C2 and
φ: (y, z) ∈ C2 �→ yz ∈ C. Since φ is continuous and h = φ ◦ f , it is enough
to show that the mapping f is of the first Borel class. To this end, let U be a
countable basis of C and U1, U2 ∈ U. Write

f −1
i (Ui) =

⋃
n∈N

(Hn
i \ Fn

i ), i = 1, 2,
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where Fn
i , Hn

i ⊆ K are closed sets. Then

f −1(U1 × U2) = f −1
1 (U1) ∩ f −1

2 (U2)

=
(⋃

n∈N
(Hn

1 \ Fn
1 )

)
∩

(⋃
m∈N

(Hm
2 \ Fm

2 )

)

=
⋃

n,m∈N
(Hn

1 \ Fn
1 ) ∩ (Hm

2 \ Fm
2 )

=
⋃

n,m∈N
(Hn

1 ∪ Hm
2 ) \ (F n

1 ∪ Fm
2 ).

Further, any open subset V of C2 may be written as a countable union of
sets Ri of the form Ri = U 1

i × U 2
i , where U 1

i , U 2
i ∈ U. Thus we have that

f −1(V ) can be written as a countable union of differences of closed sets in K ,
i.e., f is of the first Borel class.

Lemma 3.4. Let X be a compact convex set and f : X → R be an upper
semicontinuous affine function. Then the following assertions hold.

(a) There exists an element a∗∗ ∈ (�(X,C))∗∗ such that a∗∗(x) = f (x),
x ∈ X.

(b) If {aj }j∈J is a bounded downward directed net in �(X,R) satisfying

f (x) = lim
j∈J

aj (x) = inf
j∈J

aj (x), x ∈ X,

then aj → a∗∗ weak∗.

(c) The function a∗∗ is of the first Borel class on T · X.

(d) For each μ ∈ M1(T · X), it holds μ(a∗∗) = a∗∗(r(μ)).

(e) The function a∗∗ is of the first Borel class on any rB(�(X,C))∗ , r > 0.

(f) There is only one element a∗∗ ∈ (�(X,C))∗∗ extending f .

Proof. (a) Since f is upper semicontinuous and affine, it is bounded (see
e.g. [26, Lemma 4.20 and Theorem 4.21]). Hence we may assume that −M <

f < M for some constant M > 0. By [26, Proposition 4.12],

f (x) = inf{a(x) : a ∈ �(X,R), f < a ≤ M}, x ∈ X,

in other words, the downward directed net {a ∈ �(X,R), f < a ≤ M}
converges pointwise to f . We consider the family

{a ∈ �(X,R) : f < a ≤ M}
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as a net of elements in (�(X,C))∗∗. We claim that this net converges weak∗ to
an element a∗∗ ∈ (�(X,C))∗∗.

Indeed, let s ∈ �(X,C)∗ be given. We extend s by the Hahn-Banach
theorem to an element μ ∈ M(X,C) with ‖μ‖ = ‖s‖ and write μ =∑3

k=0 ikckμk , where ck ≥ 0 and μk ∈ M1(X), k = 0, . . . , 3. Let xk be
the barycenter of μk , k = 0, . . . , 3. Then

s(a) = μ(a) =
3∑

k=0

ikckμk(a) =
3∑

k=0

ikcka(xk), a ∈ �(X,C).

Since the net {a(xk) : a ∈ �(X,R), f < a ≤ M} converges to f (xk) for each
k = 0, . . . , 3, the net {s(a) : a ∈ �(X,R), f < a ≤ M} converges.

By setting

a∗∗(s) = lim{s(a) : a ∈ �(X,R), f < a ≤ M}, s ∈ (�(X,C))∗,

we obtain a linear functional on (�(X,C))∗.
To conclude the proof it is enough to show that it is bounded. Considering

s ∈ (�(X,C))∗ as above, let μ ∈ M(X,C) be again a Hahn-Banach extension
of s, i.e., ‖μ‖ = ‖s‖. Then we can decompose μ as μ = ∑3

k=0 ikckμk , where
ck ≥ 0 and μk ∈ M1(X), k = 0, . . . , 3, and, moreover, c0 + c1 + c2 + c3 ≤
2‖μ‖.

Then the inequalities∣∣a∗∗(s)
∣∣ = ∣∣lim{s(a) : a ∈ �(X,R), f < a ≤ M}∣∣
=

∣∣∣∣lim
{ 3∑

k=0

ikcka(r(μk)) : a ∈ �(X,R), f < a ≤ M

}∣∣∣∣
≤

3∑
k=0

ckM ≤ 2M‖μ‖ = 2M‖s‖

imply the boundedness of a∗∗, i.e., a∗∗ ∈ (�(X,C))∗∗.
(b) Let {aj }j∈J be a bounded downward directed net in �(X,R) pointwise

converging to f on X. Given s ∈ (�(X,C))∗, we extend s to μ ∈ M(X,C)

as above and write μ = ∑3
k=0 ikckμk , where ck ≥ 0, μk ∈ M1(X). Then

a∗∗(s) = lim{s(a) : a ∈ �(X,R), f < a ≤ M} =
3∑

k=0

ikckf (r(μk))

=
3∑

k=0

ikck lim
j∈J

aj (r(μk)) = lim
j∈J

( 3∑
k=0

ikckr(μk)

)
(aj ) = lim

j∈J
s(aj ).
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(c) We remind that we understand X as a subset of (�(X,C)∗, and we
consider a homeomorphic mapping ϕ:T×X → T·X defined by ϕ(t, x) = tx,
(t, x) ∈ T× X.

Then the function h:T×X → C defined as h(t, x) = tf (x), (t, x) ∈ T×X,
as a product of a continuous function and a function of the first Borel class, is
of the first Borel class as well by Lemma 3.3.

Thus a∗∗ = h ◦ ϕ−1 is of the first Borel class on T · X also.
(d) Let μ ∈ M1(T ·X) be given. Then its barycenter r(μ) belongs to the set

B�(X,C)∗ . We denote ν = ϕ−1μ ∈ M1(T× X) and pick a bounded downward
directed net {aj }j∈J in �(X,R) converging to f .

Then we have using Lemma 3.2 and (b)

μ(a∗∗) = (ϕν)(a∗∗) = ν(a∗∗ ◦ ϕ) = ν(h) = lim
j∈J

∫
T×X

taj (x) dν(t, x)

= lim
j∈J

∫
T·X

aj dμ = lim
j∈J

aj (r(μ)) = a∗∗(r(μ)).

(e) We first show that a∗∗ is of the first Borel class on B(�(X,C))∗ . To this end
we recall that

extB(�(X,C))∗ ⊂ T · X.

We know from (d) that the function a∗∗ satisfies the barycentric formula for
each μ ∈ M1(extB(�(X,C))∗). By [28, Theorem 3.3], a∗∗ is strongly affine
on B(�(X,C))∗ . Since a∗∗ is of the first Borel class on extB(�(X,C))∗ , [25, The-
orem 3.5] implies that a∗∗ is of the first Borel class on B(�(X,C))∗ .

If r > 0 is arbitrary, we realize that rB(�(X,C))∗ is affinely homeomorphic to
B(�(X,C))∗ and a∗∗ is linear. Hence a∗∗ is of the first Borel class on rB(�(X,C))∗ .

(f) It is enough to show that, given a∗∗ ∈ (�(X,C))∗∗, a∗∗ = 0 provided
a∗∗ = 0 on X. Let s ∈ (�(X,C))∗ be arbitrary. We extend s to an element
μ ∈ M(X,C) and write μ = ∑3

k=0 ikckμk , where ck ≥ 0, μk ∈ M1(X),
k = 0, . . . , 3. Then s = ∑3

k=0 ikckr(μk), and thus

a∗∗(s) =
3∑

k=0

ikcka
∗∗(r(μk)) = 0.

Hence a∗∗ = 0 as needed. The proof is finished.

Next we need a decomposition lemma which is well known for real spaces
�(X,R).

Lemma 3.5. Let X be a compact convex set and F ⊂ X be a closed split face.
LetF ′ be the complementary face ofF . Then (�(X,C))∗ = span F⊕	1 span F ′.



278 J. RONDOŠ and J. SPURNÝ

Proof. Let s ∈ (�(X,C))∗ be given. We extend s to μ ∈ M(X,C) which
is boundary (see [19, Theorem], [18] and [16, Theorem 1.2]). Then |μ|(χF ) =
|μ|(χ∗

F ) (see [2, Proposition I.4.5 and the subsequent Remark]), and thus μ is
carried by the set {χF = χ∗

F } = F ∪ F ′. We write μ|F = ∑3
k=0 ikckμk and

μ|F ′ = ∑3
k=0 ikdkνk , where ck, dk ≥ 0, μk ∈ M1(F ) and νk ∈ M1(F ′), k =

0, . . . , 3. Let xk = r(μk), yk = r(νk), k = 0, . . . , 3. By [2, Corollary II.6.11],
xk ∈ F and yk ∈ F ′. Thus

sF =
3∑

k=0

ikckxk ∈ span F, sF ′ =
3∑

k=0

ikdkyk ∈ span F ′

and for a ∈ �(X,C) we have

s(a) = μ(a) = μ|F (a) + μ|F ′(a) =
3∑

k=0

ikcka(xk) +
3∑

k=0

ikdka(yk)

= sF (a) + sF ′(a).

Thus s = sF + sF ′ ∈ span F + span F ′.
Further, ‖sF ‖ ≤ ‖μ|F ‖ and ‖sF ′ ‖ ≤ ‖μ|F ′ ‖, and thus

‖s‖ = ‖μ‖ = ‖μ|F ‖ + ‖μ|F ′ ‖ ≥ ‖sF ‖ + ‖sF ′ ‖.
Hence ‖s‖ = ‖sF ‖ + ‖sF ′ ‖.

Let s ∈ span F ∩ span F ′. Then there exists ck ≥ 0, dk ≥ 0, xk ∈ F ,
yk ∈ F ′, k = 0, . . . , 3, such that

s = (c0x0 − c1x1) + i(c2x2 − c3x3) = (d0y0 − d1y1) + i(d2y2 − d3y3).

If we apply s to an arbitrary a ∈ �(X,R), we obtain

(c0x0 −c1x1)(a) = (d0y0 −d1y1)(a), (c2x2 −c3x3)(a) = (d2y2 −d3y3)(a).

Thus

c0x0 − c1x1 = d0y0 − d1y1, c2x2 − c3x3 = d2y2 − d3y3.

An application of s to a constant function 1 yields

c = c0 + d1 = d0 + c1, d = c2 + d3 = d2 + c3.

If c = 0, then c0 = c1 = d0 = d1 = 0, and thus c0x0 − c1x1 = 0. Otherwise
we have the following equality

c0

c
x0 + d1

c
y1 = d0

c
y0 + c1

c
x1.
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Since X is a direct convex sum of F and F ′, these convex combinations must
be equal, i.e.,

c0x0 = c1x1, d1y1 = d0y0.

Hence c0x0 − c1x1 = 0.
Similarly we handle the second term c2x2 − c3x3 = d2y2 − d3y3 and obtain

s = 0.
Thus (�(X,C))∗ = span F ⊕	1 span F ′ as claimed.

Lemma 3.6. Let X be a compact convex set and f : X → C be an affine
function of the first Borel class. Then

sup
x∈X

|f (x)| = sup
x∈ext X

|f (x)|.

Proof. It is proved in [22, Theorem 2.3] that every complex function of
the first Borel class on a compact space has the point of continuity property.
For the rest of the proof see [11, Corollary 1.5(b)].

Lemma 3.7. Let x be a weak peak point of a compact convex set X. Then
{x} is a split face of X.

Proof. Suppose that x is a weak peak point. First we prove that x is an
extreme point. To this end, let μ ∈ M1(X) be a maximal measure representing
x. For the proof that x is extreme it is enough to show that μ = εx , the Dirac
measure centered at the point x. We fix an arbitrary closed neighborhood U of
x and ε > 0. Then there is a function a ∈ B�(X,C) satisfying

a(x) > 1 − ε and |a| < ε on ext X \ U.

Since a is continuous and U is closed, it even holds that |a| ≤ ε on the set
ext X \ U ⊆ ext X \ U . So, since μ is maximal measure, we have by [2,
Proposition I.4.6]

1 − ε < a(x) ≤
∫

X

|a|dμ =
∫

ext X
|a|dμ

=
∫

U

|a|dμ +
∫

ext X\U
|a| dμ ≤ μ(U) + ε.

In other words, μ(U) > 1 − 2ε. Since ε > 0 is chosen arbitrarily, we have
that μ(U) = 1. Hence μ(V ) = 1 for each closed neighborhood V of x. From
this it easily follows that μ = εx .

For the fact that x is actually a split face it is enough to follow the proof
of [8, Proposition 1].
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Now we can prove Theorem 1.1.

Proof of Theorem 1.1. We write 〈·, ·〉 for the duality mapping. We write
A = �(X,C) and B = �(Y,C).

We assume that there exist c′ ∈ R such that 1 < c′ < 2 and ‖T ‖ < 2
and ‖T a‖ > c′‖a‖ for all a ∈ A \ {0} (otherwise we would find 1 < c′ < 2
such that ‖T ‖ · ‖T −1‖ < 2

c′ < 2 and consider the mapping c′‖T −1‖T ; see [8,
p. 76]). We fix c ∈ R satisfying 1 < c < c′.

Claim 1. For any a∗∗ ∈ A∗∗ \ {0} and b∗∗ ∈ B∗∗ \ {0} we have ‖T ∗∗a∗∗‖ >

c‖a∗∗‖ and ‖(T −1)∗∗b∗∗‖ > 1
2‖b∗∗‖.

Indeed, for a∗∗ ∈ A∗∗ \ {0} we have

‖a∗∗‖ = ‖(T −1)∗∗T ∗∗a∗∗‖ ≤ (c′)−1‖T ∗∗a∗∗‖ < c−1‖T ∗∗a∗∗‖.
The second inequality is analogous.

For each x ∈ ext X we consider the function fx = χ∗
{x}. Since {x} is a split

face, fx is an upper semicontinuous affine function on X. We extend fx using
Lemma 3.4 to an element a∗∗

x ∈ A∗∗. By Lemma 3.4(e), a∗∗
x is of the first Borel

class on any ball in A∗.
Analogously we define for y ∈ ext Y the function gy and the element

b∗∗
y ∈ B∗∗.

We define mappings ρX and ρY as follows:

ρX(x) = {
y ∈ ext Y :

∣∣〈x, (T −1)∗∗b∗∗
y 〉∣∣ > 1

2

}
, x ∈ ext X, and

ρY (y) = {
x ∈ ext X :

∣∣〈y, T ∗∗a∗∗
x 〉∣∣ > c

}
, y ∈ ext Y.

Claim 2. ρX and ρY are mappings.

Let x ∈ ext X be such that there exist distinct points y1, y2 ∈ ext Y with∣∣〈(T −1)∗x, b∗∗
yi

〉∣∣ = ∣∣〈x, (T −1)∗∗b∗∗
yi

〉∣∣ > 1
2 , i = 1, 2.

Using Lemma 3.5 we write

(T −1)∗x = λ1y1 + μ1 = λ2y2 + μ2,

where λ1, λ2 ∈ C, μ1 ∈ span{y1}′ and μ2 ∈ span{y2}′. Then

1
2 <

∣∣〈(T −1)∗x, b∗∗
yi

〉∣∣ = ∣∣〈λiyi, b
∗∗
yi

〉 + 〈μi, b
∗∗
yi

〉∣∣ = |λi |, i = 1, 2.

Since
1 ≥ ‖(T −1)∗x‖ = |λi | + ‖μi‖ > 1

2 + ‖μi‖, i = 1, 2,
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we obtain

1 > ‖μ1‖ + ‖μ2‖ ≥ ‖μ1 − μ2‖ = ‖λ1y1 − λ2y2‖ = |λ1| + |λ2| > 1,

i.e., a contradiction.
Analogously we show that ρY (y) is at most single-valued.
Let X̂ and Ŷ denote the domain of ρX and ρY , respectively.

Claim 3. The mappings ρX: X̂ → ext Y and ρY : Ŷ → ext X are surjective.

Let y ∈ ext Y be given. We assume that |〈x, (T −1)∗∗b∗∗
y 〉| ≤ 1

2 for each
x ∈ ext X and seek a contradiction.

We show that the element (T −1)∗∗b∗∗
y ∈ A∗∗ is of the first Borel class on

BA∗ .
Indeed, we know that b∗∗

y is of the first Borel class on any ball in B∗, in partic-
ular on 2BB∗ . Since (T −1)∗ is a weak∗-weak∗ homeomorphism,
(T −1)∗(BA∗) ⊂ 2BB∗ and (T −1)∗∗b∗∗

y = b∗∗
y ◦ (T −1)∗, it follows that

(T −1)∗∗b∗∗
y is of the first Borel class on BA∗ as well.

By Lemma 3.6,

1
2 ≤ 1

2‖b∗∗
y ‖ <

∥∥(T −1)∗∗b∗∗
y

∥∥ = sup
a∗∈ext BA∗

∣∣〈a∗, (T −1)∗∗b∗∗
y 〉∣∣

= sup
a∗∈T·ext X

∣∣〈a∗, (T −1)∗∗b∗∗
y 〉∣∣ = sup

x∈ext X

∣∣〈x, (T −1)∗∗b∗∗
y 〉∣∣ ≤ 1

2 .

This contradiction implies that ρX is surjective.
Analogously we check that ρY is surjective.

Claim 4. We have X̂ = ext X and Ŷ = ext Y and ρY (ρX(x)) = x, x ∈
ext X, and ρX(ρY (y)) = y, y ∈ ext Y .

Let y ∈ Ŷ be given. We want to show that ρX(ρY (y)) = y, i.e., that∣∣〈ρY (y), (T −1)∗∗b∗∗
y 〉∣∣ > 1

2 . (3.1)

We have

d = sup
x∈ext X

∣∣〈x, (T −1)∗∗b∗∗
y 〉∣∣ = sup

s∈T·ext X

∣∣〈s, (T −1)∗∗b∗∗
y 〉∣∣

= ∥∥(T −1)∗∗b∗∗
y

∥∥ > 1
2‖b∗∗

y ‖ ≥ 1
2 .

Since c > 1, we have d > max{ d
c
, 1

2 }. Hence there exists x ∈ ext X such that∣∣〈x, (T −1)∗∗b∗∗
y 〉∣∣ > max

{
d
c
, 1

2

} ≥ 1
2 .

Thus y = ρX(x).
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Assume that (3.1) does not hold. Then ρY (y) 
= x. By Claim 3 there exists
ŷ ∈ Ŷ such that ρY (ŷ) = x. Then ŷ ∈ {y}′, and thus 〈ŷ, b∗∗

y 〉 = 0. We write

T ∗ŷ = λx + μ, λ ∈ C, μ ∈ span{x}′.
Then

0 = 〈ŷ, b∗∗
y 〉 = 〈ŷ, T ∗∗(T −1)∗∗b∗∗

y 〉 = 〈T ∗ŷ, (T −1)∗∗b∗∗
y 〉

= 〈λx, (T −1)∗∗b∗∗
y 〉 + 〈μ, (T −1)∗∗b∗∗

y 〉.
Since x = ρY (ŷ), we have

c < |〈ŷ, T ∗∗a∗∗
x 〉| = ∣∣〈T ∗ŷ, a∗∗

x 〉∣∣ = ∣∣〈λx + μ, a∗∗
x 〉∣∣ = |λ|.

Since ‖μ‖ + |λ| = ‖T ∗ŷ‖ < 2‖ŷ‖ = 2,

we obtain ‖μ‖ < 2 − c. By putting everything together we get

d < |λ| d
c

< |λ|∣∣〈x, (T −1)∗∗b∗∗
y 〉∣∣ = ∣∣〈λx, (T −1)∗∗b∗∗

y 〉∣∣
= ∣∣〈μ, (T −1)∗∗b∗∗

y 〉∣∣ ≤ d‖μ‖ ≤ d(2 − c) < d,

a contradiction. Thus (3.1) holds, which means that ρX(ρY (y)) = y, y ∈ Ŷ .
Now, let x ∈ ext X be given. Then there exists y ∈ Ŷ such that ρY (y) = x.

Then y = ρX(ρY (y)) = ρX(x), which means that x ∈ X̂.
Let y ∈ ext Y be given. Then we can find x ∈ X̂ = ext X with ρX(x) = y

and further we can select ŷ ∈ Ŷ such that ρY (ŷ) = x. Then

y = ρX(x) = ρX(ρY (ŷ)) = ŷ ∈ Ŷ .

Hence Ŷ = ext Y .
Finally, if x ∈ ext X, we find y ∈ ext Y with ρY (y) = x and obtain

ρY (ρX(x)) = ρY (ρX(ρY (y))) = ρY (y) = x.

Till now we have proved that ρX: ext X → ext Y is a bijection with ρY

being its inverse. Now we use the assumption on weak peak points to check
that ρX is a homeomorphism. To this end it is enough to follow the proof of [8,
Theorem 7].

4. Cardinality of extreme points

The second result of our paper generalizes a theorem of Cengiz [7] who proved
that a pair of locally compact spaces K, L has the same cardinality provided
C0(K, F) is isomorphic to C0(L, F).
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We show in Theorem 4.2 the same result in the framework of compact con-
vex sets. Before its proof we need the following lemma on finite-dimensional
compact convex sets.

Lemma 4.1. Let X be a compact convex set in a finite-dimensional space
and let each point of ext X be a split face. Then the set ext X is finite and X is
a simplex.

Proof. We identify X with a subset of Rm for a suitable m ∈ N.
First we show that the set ext X is finite. Assuming the contrary, there is a

sequence {xn}∞n=1 of distinct points in ext X converging to a point x ∈ X. By
the Minkowski theorem (see e.g. [2, Corollary I.6.13] or [26, Theorem 2.11]),
x belongs to the convex hull of ext X, thus there exist finite sequences {λi}ki=1
in (0, 1] and {zi}ki=1 in ext X such that

k∑
i=1

λi = 1 and x =
k∑

i=1

λizi .

Now, the function χ∗
z1

is affine, and hence continuous. Since {z1} is a closed split
face and χ∗

z1
= 0 on ext X \ {z1}, the sequence of real numbers {χ∗

z1
(xn)}∞n=n0

is identically zero for some suitable n0 ∈ N. So, by the continuity of χ∗
z1

we
have χ∗

z1
(x) = 0. On the other hand, it holds by the affinity of χ∗

z1
that

χ∗
z1
(x) = χ∗

z1

( k∑
i=1

λizi

)
≥ λ1χ

∗
z1
(z1) = λ1 > 0,

which gives a contradiction. Thus ext X is a finite set.
Now we show that X is a simplex. We write ext X = {xi}ki=1. We fix an

element x ∈ X \ ext X and assume that there are two convex combinations

x =
n∑

i=1

λixi =
n∑

i=1

μixi,

where λi, μi ∈ [0, 1), i = 1, . . . , n. Fix arbitrary j ∈ {1, . . . , n}. By the
assumption, {xj } is a split face. Since {xi : i 
= j} is contained in the comple-
mentary face {xj }′ and

x = λjxj + (1 − λj )
∑
i 
=j

λi

1 − λj

xj = μjxj + (1 − μj)
∑
i 
=j

μi

1 − μj

xj ,

from the uniqueness of the decomposition of X to {xj } and {xj }′ we obtain
λj = μj .
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Thus x is a unique convex combination of extreme points of X, from which
it follows that X is a simplex. This finishes the proof.

Theorem 4.2. Let X, Y be compact convex sets such that �(X,C), �(Y,C)

are isomorphic. If each point of ext X and ext Y is a split face, then the car-
dinality of ext X is equal to the cardinality of ext Y .

Proof. First we suppose that the space �(X,C) is finite-dimensional. Then
also �(Y,C) is finite-dimensional, with dim(�(Y,C)) = dim(�(X,C)), and
also the sets X and Y are finite-dimensional as well. By Lemma 4.1 we have
that X is a Bauer simplex with finitely many extreme points, and so it holds
that

�(X,C) = C (ext X,C) = 	∞(ext X,C),

and the same holds for Y . Thus

| ext X| = dim(	∞(ext X,C)) = dim(	∞(ext Y,C)) = | ext Y |.

Now suppose that the space �(X,C) (and hence also the space �(Y,C)) is
infinite-dimensional. Let T : �(X,C) → �(Y,C) be an isomorphism. We will
show that | ext X| ≤ | ext Y |.

To this end, let y ∈ ext Y be fixed. For each x ∈ ext X we consider the upper
semicontinuous affine function fx = χ∗

{x} and its extension a∗∗
x ∈ (�(X,C))∗∗,

see Lemma 3.4. Let λy(x) = 〈T ∗y, a∗∗
x 〉. We claim that the set

Xy = {x ∈ ext X : λy(x) 
= 0}

is at most countable. Indeed, let s = T ∗y and μ ∈ M(X,C) be a boundary
measure extending s. Let x ∈ ext X be arbitrary. Let {aj }j∈J be a bounded
downward directed net of functions in �(X,R) converging to fx = χ∗

{x}. Then
we have

μ({x}) = μ(χ{x}) = μ(χ∗
{x}) = lim

j∈J
μ(aj ) = lim

j∈J
〈s, aj 〉

= lim
j∈J

〈T ∗y, aj 〉 = 〈T ∗y, a∗∗
x 〉 = λy(x).

Since ‖μ‖ < ∞, μ({x}) 
= 0 for at most countably many x ∈ ext X.
Now we prove that for each x ∈ ext X there exists y ∈ ext Y such that

x ∈ Xy . To this end, we assume the contrary. Let x ∈ ext X be such that

〈T ∗y, a∗∗
x 〉 = 0, y ∈ ext Y.
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Using the same argument as in the proof of Theorem 1.1, Lemma 3.6 yields

0 = sup
y∈ext Y

∣∣〈T ∗y, a∗∗
x 〉∣∣ = sup

y∈ext Y

∣∣〈y, T ∗∗a∗∗
x 〉∣∣ = sup

s∈T·ext Y

∣∣〈s, T ∗∗a∗∗
x 〉∣∣

= sup
s∈B(�(Y,C))∗

∣∣〈s, T ∗∗a∗∗
x 〉∣∣ = ∥∥T ∗∗a∗∗

x

∥∥ 
= 0,

i.e., a contradiction.
Now both the spaces �(X,C) and �(Y,C) are infinite-dimensional, and

thus the sets ext X and ext Y are infinite. Indeed, if ext X were finite, by the
minimum principle we would obtain that the space �(X,C) ⊂ 	∞(ext X,C)

is finite-dimensional.
Now, since we have ext X = ⋃

y∈ext Y Xy , we get | ext X| ≤ | ext Y |.
By reversing the role of X and Y we obtain the converse inequality, which

concludes the proof.

5. Isomorphisms of complex function spaces

This section uses the results of the previous sections to deduce analogous
theorems on selfadjoint function spaces. Throughout this section we consider
a compact (Hausdorff) space K and a closed subspace H ⊂ C (K,C) which
contains constants and separates points of K . By S(H ) we denote the state
space of H , i.e., the set

S(H ) = {s ∈ H ∗ : ‖s‖ = s(1) = 1}
endowed with the weak∗ topology. Let φ: K → S(H ) be the evaluation map-
ping, then φ homeomorphically embeds K into the compact convex set S(H ).
The Choquet boundary ChH K of H is defined as

ChH K = {x ∈ K : φ(x) ∈ ext S(H )}.
By [5, Theorem 2.2.8], ext S(H ) = φ(ChH K). Let �: H → �(S(H ),C) be
defined as �(h)(s) = s(h), s ∈ S(H ), h ∈ H . Then we have the following
identification.

Lemma 5.1. Let H be a selfadjoint closed subspace of C (K,C) for some
compact space K such that H contains constants and separates points of K .
Then the mapping � is a isometric isomorphism of H onto �(S(H ),C).

Proof. Clearly, � is linear and of norm 1. Since

‖h‖ ≥ ‖�(h)‖�(S(H ),C) = sup
s∈S(H )

|s(h)| ≥ sup
x∈K

|h(x)| = ‖h‖,
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� is an isometry. It remains to show that � is onto.
To this end, let f ∈ �(S(H ),C) be given. Any s ∈ H ∗ can be written

as s = ∑3
k=0 ikaksk , where ak ≥ 0, sk ∈ S(H ), k = 0, . . . , 3. We define

f̃ : H ∗ → C as

f̃ (s) =
3∑

k=0

ikakf (sk), s =
3∑

k=0

ikaksk, ak ≥ 0, sk ∈ S(H ), k = 0, . . . , 3.

(5.1)

We have to check that this definition is correct, i.e., that

3∑
k=0

ikakf (sk) =
3∑

k=0

ikbkf (tk),

whenever
∑3

k=0 ikaksk = ∑3
k=0 ikbktk , ak, bk ≥ 0, sk, tk ∈ S(H ), k =

0, . . . , 3.
So let

(a0s0 − a1s1) + i(a2s2 − a3s3) = (b0t0 − b1t1) + i(b2t2 − b3t3). (5.2)

Since any s ∈ S(H ) can be extended by the Hahn-Banach theorem to a measure
μ ∈ M1(K), s(Re h) ∈ R for each h ∈ H . (We remind that Re h, Im h ∈ H

for each h ∈ H since H is selfadjoint.) An application of (5.2) to the constant
function 1 yields

a = a0 + b1 = b0 + a1, b = a2 + b3 = b2 + a3.

If a = 0, a0 = a1 = b0 = b1 = 0, and thus a0f (s0) − a1f (s1) = b0f (t0) −
b1f (t1). Otherwise we have for each h ∈ H equality(
(a0s0 −a1s1)+i(a2s2 −a3s3)

)
(Re h) = (

(b0t0 −b1t1)+i(b2t2 −b3t3)
)
(Re h),

which implies

(a0s0 − a1s1)(Re h) = (b0t0 − b1t1)(Re h), h ∈ H .

In other words,

a

(
a0

a
s0 + b1

a
t1

)
(Re h) = a

(
b0

a
t0 + a1

a
s1

)
(Re h), h ∈ H .

Since Im h ∈ H and Re(Im h) = Im h for each h ∈ H ,

a0

a
s0 + b1

a
t1 = b0

a
t0 + a1

a
s1.
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Since f is affine, we obtain

a0

a
f (s0) + b1

a
f (t1) = f

(
a0

a
s0 + b1

a
t1

)

= f

(
b0

a
t0 + a1

a
s1

)
= b0

a
f (t0) + a1

a
f (s1),

i.e.,
a0f (s0) − a1f (s1) = b0f (t0) − b1f (t1).

Similarly we get

a2f (s2) − a3f (s3) = b2f (t2) − b3f (t3),

which shows that f̃ is by (5.1) well defined.
It follows from (5.1) that f̃ : H ∗ → C is linear. Indeed, let s, t ∈ H ∗ be

given and let

s =
3∑

k=0

ikaksk, t =
3∑

k=0

ikbktk,

where ak, bk ≥ 0, sk, tk ∈ S(H ), k = 0, . . . , 3. We select u ∈ S(H ) and
define

uk =
⎧⎨
⎩

ak

ak + bk

sk + bk

ak + bk

tk, ak + bk > 0,

u, ak = bk = 0,

and
ck = ak + bk, k = 0, . . . , 3.

Then uk ∈ S(H ) and

s + t =
3∑

k=0

ikckuk.

Since f is affine on S(H ), we obtain

f̃ (s + t) =
3∑

k=0

ikckf (uk) =
3∑

k=0

ik
(
akf (sk) + bkf (tk)

) = f̃ (s) + f̃ (t).

It is even more straightforward to verify that f̃ (λs) = λf̃ (s), whenever
s ∈ H ∗ and λ ≥ 0, λ = −1, or λ = i. Thus f̃ is linear.

To check that f̃ is given by an element from H it is enough to verify its
weak∗ continuity on H ∗. Since f̃ is linear, it is enough to check its weak∗
continuity on BH ∗ (see [13, Corollary 3.94]). We assume that this is not the
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case and seek a contradiction. So let {sj }j∈J be a net in BH ∗ weak∗ converging
to s ∈ BH ∗ such that |f̃ (sj ) − f̃ (s)| ≥ η for some η > 0. Using the Hahn-
Banach theorem and the decomposition of a complex measure we write each
sj as sj = ∑3

k=0 ika
j

k s
j

k , where a
j

k ≥ 0, sj

k ∈ S(H ) and a1
0 +a

j

1 +a
j

2 +a
j

3 ≤ 2.
By a compactness argument we may assume that a

j

k → ak and s
j

k → sk in the
weak∗ topology, k = 0, . . . , 3. Then s = ∑3

k=0 ikaksk . By the continuity of f

on S(H ), f (s
j

k ) → f (sk) for each k = 0, . . . , 3. But then

η ≤ lim
j∈J

∣∣f̃ (sj ) − f̃ (s)
∣∣ = lim

j∈J

∣∣∣∣
3∑

k=0

ika
j

k f (s
j

k ) −
3∑

k=0

ikakf (sk)

∣∣∣∣ = 0

gives a contradiction. Hence f̃ is weak∗ continuous on BH ∗ , and thus on H ∗.
Thus there exists an element h ∈ H such that f̃ (s) = s(h), s ∈ H ∗. In

particular, �(h) = f . The proof is finished.

As in the first section we say that x ∈ K is a weak peak point if

given ε ∈ (0, 1) and an open set U ⊂ K containing x,
there exists f ∈ BH such that |f | < ε on ChH K \ U and
f (x) > 1 − ε.

(5.3)

Lemma 5.2. Let x ∈ K be a weak peak point in the sense of (5.3). Then
φ(x) is a weak peak point of S(H ) in the sense of (2.1).

Proof. Suppose that x ∈ K is a weak peak point in the sense of (5.3),
and that we are given ε > 0 and an open neighborhood V of φ(x) in S(H ).
Then we have that U = φ−1(V ) is an open neighborhood of x. So there exists
f ∈ BH such that |f | < ε on the set ChH K \U and f (x) > 1−ε. We denote
a = �(f ) ∈ B�(S(H ),C) and we show that a is witnessing the fact that φ(x) is
a weak peak point of S(H ). Firstly, we have that

a(φ(x)) = �(f )(φ(x)) = φ(x)(f ) = f (x) > 1 − ε.

Now, suppose that s ∈ ext S(H )\V . There is y ∈ ChH K such that s = φ(y).
Then φ(y) /∈ V , and hence y /∈ U . Thus

|a(s)| = |�(f )(φ(y))| = |f (y)| < ε,

which concludes the proof.

Now we can extend the results of the previous sections to the context of
function spaces.



ISOMORPHISMS OF SPACES OF AFFINE CONTINUOUS COMPLEX FUNCTIONS 289

Theorem 5.3. For i = 1, 2, let Ki be a compact space and Hi be a sel-
fadjoint closed subspace of C (Ki,C) which contains constants and separates
points of Ki . Let each point of ChHi

Ki be a weak peak point.

(i) If there exists an isomorphism T : H1 → H2 satisfying ‖T ‖·‖T −1‖ < 2,
then ChH1 K1 is homeomorphic to ChH2 K2.

(ii) If there exists an isomorphism T : H1 → H2, then ChH1 K1 has the same
cardinality as ChH2 K2.

Proof. By the identification given by Lemma 5.1, the space �(S(H1),C)

is isomorphic to �(S(H2),C), and by an isomorphism T satisfying ‖T ‖ ·
‖T −1‖ < 2 in case (i). Moreover, Lemma 5.2 allows us to use Theorems 1.1
and 4.2 to conclude that ext S(H1) is homeomorphic to ext S(H2) in case (i),
and in case (ii) those sets have the same cardinality. Hence the assertion follows.

We refer the reader to [21] and [20] for results on function algebras in the
spirit of the above theorems. The case of vector-valued Banach-Stone type
theorems is treated e.g. in [4], [14] or [1].
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