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HOLOMORPHICALLY CLOSED ALGEBRAS OF
ANALYTIC FUNCTIONS
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Synopsis.

Closed subalgebras of the disc algebra which are generated by func-
tions with smooth boundary values are considered. Each such algebra 4
is shown to be holomorphically closed, i.e. to contain each function which
is locally A-approximable on the dise. This result is used to obtain a
generalization of an approximation theorem of John Wermer.

Let o/ denote the disc algebra, i.e. the algebra of all continuous
functions defined on the closed unit disc D in C which are analytic in
the interior D° of D. A function f e & is smooth if its restriction to the
unit circle T is continuously differentiable. Our object is to prove the
following generalization of a result of Wermer [7, Theorem 1.2] and
[8, Lemma 3.2].

THEOREM 1. Suppose that

(1) A 48 a closed, point-separating subalgebra of &/ such that 1 € A which
contains a dense subalgebra of smooth functions.

(2) For each z € T there exists a smooth function in A whose derivative at
2 18 mon-zero.

Then there exists a polynomial g(z)=TI7.,(z—2,)™%, where 2z, € D°,
t=1,...,n, such that A contains the ideal g/ of .

Wermer’s result yields the same conclusion but requires the stronger
assumption that the algebra in question contains a dense subalgebra
generated by finitely many functions, each of which is analytic on a
neighborhood of D. A related but more general theorem was obtained by
Bishop [1, Corollary 1] who considered the restrictions of algebras of
analytic functions defined on Riemann surfaces to compact subsets.
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Theorem 1 is actually a consequence of a result (Theorem 2) for alge-
bras A which satisfy only the first of the above two conditions. A func-
tion f € C(D) is called locally A-approximable on D [6, I1. 14.8] (or A-holo-
morphic on D [3, TI1.9]) if there exists an open covering {U,} of D such
that for each y f|U,e(4|U,)-, where (4|U,)- denotes the uniform
closure on U, of the restriction algebra A|U,. A is holomorphically
closed on D if it contains each function which is locally 4-approximable
on D.

THEOREM 2. If A satisfies (1), then A is holomorphically closed on D.

Our proofs are strongly inspired by Bishop’s, but make free use of
results from the theory of uniform algebras (see e.g. [3], [6]). An essen-
tial ingredient of the proof of Theorem 2 is the following recent result
of Bjork [2, Theorem 2.1].

Biork’s THEOREM. If A satisfies (1), then the maximal ideal space of
A 13 equal to D.

Bjork’s Theorem and a basic result [3, I1.6.1], [6, 1.9.11] imply that
each subset K of D such that

K = {zeD: |f(z)| 2||flg for each fe 4}

is the maximal ideal space of the restriction algebra (4 |K)-; such sub-
sets K are called A4-convex.

A theorem related to Theorem 2 is mentioned in a recent article by
Gamelin [4]. B. S. Lund [5] has recently proved that algebras which
satisfy the conclusion of Theorem 1 are generated by a finite number of
polynomials.

2.

We assume in this section that A satisfies (1). We begin by stating
two lemmas which are implicit in Bishop’s argument (see [1, the proof of
Lemma 5]).

Lemma 1. Let K be a compact subset of C, let z € K lie in the closure of
the unbounded component of C\ K and let V be a neighborhood of z in K.
Then there exists a polynomial which ts one-to-one on a neighborhood of K
and which asswmes its maximum modulus on K at a unigue point z' € V.,
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Lemma 2. Let K be a compact subset of D. Suppose there exists a smooth
function h € A and a point g € K such that h assumes its maximum modulus
on K only at q, h'(q) +0, and h=Y(h(q))NK is finite. Then

(3) there exists a smooth function fe A and a point pe K such that
F'(p)+0 and p is the unique point of K at which f assumes its maximum
modulus.

The next lemma was proved by Bjork for the case when K=T [2,
Lemma 2.3].

Lemma 3. If K is a compact subset of D which is not totally disconnected,
then (3) is satisfied.

Proor. Let g be a smooth, non-constant function in 4. Set
G=1{zeK: ¢g'(=0} and L =g g@)nK.

Notice first that if p, — p, and g(p,)=g(p,) where p, € K and p, =+ p,
for n=1,2,..., then g'(p,)=0. Hence

(4) g7 Y(9(p))nK is finite for each pe K\ L,

since if g-Y(g(p))n K were infinite, g(p) would lie in g(G).
Next, let 2 denote the closure of the unbounded component of C\ g(K)
and let
K,={2zeK: g(z)e2}.

Assume it is known that
(5) Ko\L+0,

and let w e K\ L. We apply Lemma 1, taking g(K), g(w) and g(K)\ g(@)
as our set, point and neighborhood respectively. Let P(z) denote the
polynomial thus obtained. Then, with the aid of (4), we see that
h=Pog, K and some point ¢ € K, \ L satisfy the hypotheses of Lemma 2,
the application of which yields the conclusion to the lemma.

Thus, to complete the proof it suffices to show

(6) L is totally disconnected.
(7) K, is not totally disconnected.

Since g is smooth, g’ € o/. Hence, G is totally disconnected. An elementary
version of Sard’s theorem [6, VI.30.14] now implies that g(G@) is totally
disconnected, from which (6) follows. If (7) were false, g(K,) would be
totally disconnected and thus polynomially convex. This would imply
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g(K)=g(K,) [6, 1.7.12], contradicting the assumption that K is not
totally disconnected.

The significance of the conclusion that f'(p)+0 in the preceding
lemma, is that it implies the existence of a closed neighborhood W of p
in D on which the polynomials in f are dense in (&7 |W)-. This is easy
to see when p € D° so suppose p e T. Let W be a closed neighborhood
of p in D on which f is one-to-one which is bounded by a closed Jordan
curve J. Then f(J) is a closed Jordan curve whose interior is f(W)\ f(J),
and f-1|f(W) is uniformly approximable by polynomials. Hence, the
uniform closure on W of polynomials in f contains the identity function.
The assertion follows.

Lemwma 4. Let K be a closed subset of D which s not totally disconnected.
Then there exists a function f € A, a point p € K and open subsets U and W
of D with pe W and WUK g U such that

(8) f achieves its maximum modulus over K only at p.
(9) If z€ U, 2' € W and z+2', then f(2)+f(z').

(In particular, f is one-to-one on W.)

(10) The polynomials in f are dense in (o |W)~.

Proor. Lemma 3 and the preceding remarks imply the existence of a
function fe A4, a point p € K and an open neighborhood W, of p in D
which satisfy (8) and (10). Since f achieves its maximum modulus on K
only at p, for each ze K\ W, there exist open neighborhoods U, of 2z
and W, of p such that f(U,)nf(W,)=@. Finitely many of the U, cover
K\W,,say U,, i=1,...,n Now, take

U=UL U,uW, and W=\ W,nW,.

t=1

3

C(X)*, the dual space of C(X) where X is a compact Hausdorff space,
is identified with the space of all regular, Borel measures on X. If § is
a subspace of C(X), §* is the space of all u € C(X)* such that {fdu=0
for each fe S. If E is a Borel subset of X, the restriction of u to E,
denoted uy, is the measure defined by pz(S)=u(EnS). Suppu denotes
the support of u, the smallest closed subset K of X such that u=pug.
If K, and K, are closed subsets of D, K,< K,, we define

o(K;, K;) = sup{inf{lp—gq|: ge Ky}: pe K,}.
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Proor or THEOREM 2. Let g be a locally A-approximable function on
D, and let u € A*. We want to show {gdu=0. Let & denote the set of all
A-convex subsets K of D which support a measure v(K) € A* such that

§gdu = §gdn(K) .

We define a sequence of sets {K,} from & by taking K, =D and choosing
K, ,, € such that K,,,c K, and

oKy Kpia) 2 $sup{o(K,,K): KsK,,KeS}.

Clearly, o(K,,K, ;) + 0 as n - oo. Set Ko=MN,_,K,.

We will prove below that K is totally disconnected but first we will
show that this implies that {gdu =0. We can find finitely many, pairwise
disjoint open subsets of D, U,;, 1=1,...,n which cover K, such that
g|U,e(4|U,)- for each i. Choose m so large that K,,cU?_ ,U,. If we
define J; =K, nU,; and let »;, denote the restriction of »(K,) to J,, then
it is easy to show, using the Shilov idempotent theorem [3], [6], that
v; € AL, It follows that § gdv;=0, i=1,...,n, and hence {gdu=0.

Suppose now that K, is not totally disconnected. We apply Lemma 4
to K =K, and obtain fe 4, p € K, and open subsets U and W of D with
pe W and WUK < U which satisfy (8), (9) and (10). We may assume
f(p)> 0. Choose b < f(p) so that

{ze K,: Ref(z)2b} = W.
Let
P, ={zeK,: Ref(z)2b} and @, = {z€K,: Ref(z)<b}

for n=0,1,2,.... Since N,_, P,=P,, we may choose a positive integer
N for which Kyc U, Pyc W and

20(Ky, Kyyy) < inf{|p—2|: zeQy}.

The inequality implies o(K y, Qy) > 20(K y, K y41). It suffices now to prove
that Qy € &, for then this last inequality will yield a contradiction with
the choice of Ky,,.

Let »=v{Ky). Since suppyrc Ky, we have ve[(4|Ky)-]*. Set F=
f(Ky) and define a measure v on F by setting 7(8)=#(f-1(S)). Then
7 € R(F)*, where R(F) denotes the closure on F of the rational functions
with poles in the complement of F. For if r € R(F), then rof € (4| Ky)-,
and hence

§rdv = (rofdv = 0.

By (9), (KynW)=F\f(Ky\ W) and f(Ky\Py)=F\f(Py). Thus, if
Gy =f(EynW) and G, =f(Ky\Py),
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then {G,,G,} is a covering of F' by open sets. By the Bishop splitting
lemma [3, I1.10.2] there exist 7; € R(F)*, 1=1,2, such that suppr, =@,
1=1,2, and v=1,+17,.

By means of (9) we can define a measure »' on KynW by setting
v'(8)=1y(f(8)). If ScPy, then S=f-f(8)) and f(S)c W,\ W,; hence

»(8) = 7(f(8)) = n(f(8)) = +'(S) .
Thus

(11) »(S) = »'(S) if ScPy.

Moreover, ' € At; this follows from (10) and the observation that if A
is a polynomial, then
(h(f)dy' = (hdr, = 0.

We now define »"' =y —3’. Then »"’ € 4*
b

§gdv" = (gdv

and, by (11), supp»”’ €@y . Since @y is clearly A-convex, the proof that
Qy € & is complete.

Bjork has observed that Theorem 2 can be stated in a slightly sharper
way as a consequence of the following fact: If A satisfies (1), the proof
in [2] of Bjork’s theorem also shows that every measure on T in 4 is
absolutely continuous. Say that f is weakly locally A-approximable if

(i) to each p €T there is an open neighborhood U of p in D and a
sequence {a,} from A such that for each ze UnD",

lima,(z) = f(z)
while ||a,||; < C for some constant C' depending on f and U,
(ii) f is locally A-approximable in D°.
Then, if A satisfies (1) and f is weakly locally A-approximable, fe 4.

Proor oF THEOREM 1. Theorem 1 is an immediate consequence of
Theorem 2, the remarks following Lemma 3, and the following lemma
which is implicit in Bishop’s argument (see [1, the proof of Lemma 2]).

LEMMA 5. Let B be a closed, point-separating subalgebra of £ containing
the constants. Let p € D°, and suppose f'(p)=0 for each f e B. Then there
exists a closed neighborhood V of p in D° and a positive integer N such that
B|V)2@-pNd|V.
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