HOLOMORPHICALLY CLOSED ALGEBRAS OF ANALYTIC FUNCTIONS

ROBERT GEORGE BLUMENTHAL

Synopsis.

Closed subalgebras of the disc algebra which are generated by functions with smooth boundary values are considered. Each such algebra A is shown to be holomorphically closed, i.e. to contain each function which is locally A-approximable on the disc. This result is used to obtain a generalization of an approximation theorem of John Wermer.

1.

Let \mathscr{A} denote the disc algebra, i.e. the algebra of all continuous functions defined on the closed unit disc D in C which are analytic in the interior D° of D. A function $f \in \mathscr{A}$ is *smooth* if its restriction to the unit circle T is continuously differentiable. Our object is to prove the following generalization of a result of Wermer [7, Theorem 1.2] and [8, Lemma 3.2].

THEOREM 1. Suppose that

- (1) A is a closed, point-separating subalgebra of \mathcal{A} such that $1 \in A$ which contains a dense subalgebra of smooth functions.
- (2) For each $z \in T$ there exists a smooth function in A whose derivative at z is non-zero.

Then there exists a polynomial $g(z) = \prod_{i=1}^{n} (z - z_i)^{N_i}$, where $z_i \in D^{\circ}$, $i = 1, \ldots, n$, such that A contains the ideal $g\mathscr{A}$ of \mathscr{A} .

Wermer's result yields the same conclusion but requires the stronger assumption that the algebra in question contains a dense subalgebra generated by finitely many functions, each of which is analytic on a neighborhood of D. A related but more general theorem was obtained by Bishop [1, Corollary 1] who considered the restrictions of algebras of analytic functions defined on Riemann surfaces to compact subsets.

Theorem 1 is actually a consequence of a result (Theorem 2) for algebras A which satisfy only the first of the above two conditions. A function $f \in C(D)$ is called locally A-approximable on D [6, II. 14.8] (or A-holomorphic on D [3, III.9]) if there exists an open covering $\{U_{\gamma}\}$ of D such that for each γ $f|U_{\gamma} \in (A|U_{\gamma})^-$, where $(A|U_{\gamma})^-$ denotes the uniform closure on U_{γ} of the restriction algebra $A|U_{\gamma}$. A is holomorphically closed on D if it contains each function which is locally A-approximable on D.

THEOREM 2. If A satisfies (1), then A is holomorphically closed on D.

Our proofs are strongly inspired by Bishop's, but make free use of results from the theory of uniform algebras (see e.g. [3], [6]). An essential ingredient of the proof of Theorem 2 is the following recent result of Björk [2, Theorem 2.1].

BJÖRK'S THEOREM. If A satisfies (1), then the maximal ideal space of A is equal to D.

Björk's Theorem and a basic result [3, II.6.1], [6, I.9.11] imply that each subset K of D such that

$$K = \{z \in D : |f(z)| \le ||f||_K \text{ for each } f \in A\}$$

is the maximal ideal space of the restriction algebra $(A \mid K)^-$; such subsets K are called A-convex.

A theorem related to Theorem 2 is mentioned in a recent article by Gamelin [4]. B. S. Lund [5] has recently proved that algebras which satisfy the conclusion of Theorem 1 are generated by a finite number of polynomials.

2.

We assume in this section that A satisfies (1). We begin by stating two lemmas which are implicit in Bishop's argument (see [1, the proof of Lemma 5]).

LEMMA 1. Let K be a compact subset of C, let $z \in K$ lie in the closure of the unbounded component of $C \setminus K$ and let V be a neighborhood of z in K. Then there exists a polynomial which is one-to-one on a neighborhood of K and which assumes its maximum modulus on K at a unique point $z' \in V$.

LEMMA 2. Let K be a compact subset of D. Suppose there exists a smooth function $h \in A$ and a point $q \in K$ such that h assumes its maximum modulus on K only at q, $h'(q) \neq 0$, and $h^{-1}(h(q)) \cap K$ is finite. Then

(3) there exists a smooth function $f \in A$ and a point $p \in K$ such that $f'(p) \neq 0$ and p is the unique point of K at which f assumes its maximum modulus.

The next lemma was proved by Björk for the case when K=T [2, Lemma 2.3].

Lemma 3. If K is a compact subset of D which is not totally disconnected, then (3) is satisfied.

PROOF. Let g be a smooth, non-constant function in A. Set

$$G = \{z \in K : g'(z) = 0\}$$
 and $L = g^{-1}(g(G)) \cap K$.

Notice first that if $p_n \to p_0$ and $g(p_n) = g(p_0)$ where $p_n \in K$ and $p_n \neq p_0$ for n = 1, 2, ..., then $g'(p_0) = 0$. Hence

(4) $g^{-1}(g(p)) \cap K$ is finite for each $p \in K \setminus L$,

since if $g^{-1}(g(p)) \cap K$ were infinite, g(p) would lie in g(G).

Next, let Ω denote the closure of the unbounded component of $C \setminus g(K)$ and let

$$K_0 = \{z \in K : g(z) \in \Omega\}.$$

Assume it is known that

(5)
$$K_0 \setminus L \neq \emptyset$$
,

and let $w \in K_0 \setminus L$. We apply Lemma 1, taking g(K), g(w) and $g(K) \setminus g(G)$ as our set, point and neighborhood respectively. Let P(z) denote the polynomial thus obtained. Then, with the aid of (4), we see that $h \equiv P \circ g$, K and some point $q \in K_0 \setminus L$ satisfy the hypotheses of Lemma 2, the application of which yields the conclusion to the lemma.

Thus, to complete the proof it suffices to show

- (6) L is totally disconnected.
- (7) K_0 is not totally disconnected.

Since g is smooth, $g' \in \mathcal{A}$. Hence, G is totally disconnected. An elementary version of Sard's theorem [6, VI.30.14] now implies that g(G) is totally disconnected, from which (6) follows. If (7) were false, $g(K_0)$ would be totally disconnected and thus polynomially convex. This would imply

 $g(K) = g(K_0)$ [6, I.7.12], contradicting the assumption that K is not totally disconnected.

The significance of the conclusion that $f'(p) \neq 0$ in the preceding lemma is that it implies the existence of a closed neighborhood W of p in D on which the polynomials in f are dense in $(\mathscr{A}|W)^-$. This is easy to see when $p \in D^\circ$ so suppose $p \in T$. Let W be a closed neighborhood of p in D on which f is one-to-one which is bounded by a closed Jordan curve J. Then f(J) is a closed Jordan curve whose interior is $f(W) \setminus f(J)$, and $f^{-1}|f(W)$ is uniformly approximable by polynomials. Hence, the uniform closure on W of polynomials in f contains the identity function. The assertion follows.

LEMMA 4. Let K be a closed subset of D which is not totally disconnected. Then there exists a function $f \in A$, a point $p \in K$ and open subsets U and W of D with $p \in W$ and $W \cup K \subseteq U$ such that

- (8) f achieves its maximum modulus over K only at p.
- (9) If $z \in U$, $z' \in W$ and $z \neq z'$, then $f(z) \neq f(z')$.

(In particular, f is one-to-one on W.)

(10) The polynomials in f are dense in $(\mathcal{A}|W)^-$.

PROOF. Lemma 3 and the preceding remarks imply the existence of a function $f \in A$, a point $p \in K$ and an open neighborhood W_0 of p in D which satisfy (8) and (10). Since f achieves its maximum modulus on K only at p, for each $z \in K \setminus W_0$ there exist open neighborhoods U_z of z and W_z of p such that $f(U_z) \cap f(W_z) = \emptyset$. Finitely many of the U_z cover $K \setminus W_0$, say U_{z_i} , $i = 1, \ldots, n$. Now, take

$$U = \bigcup_{i=1}^n U_{g_i} \cup W_0$$
 and $W = \bigcap_{i=1}^n W_{g_i} \cap W_0$.

3.

 $C(X)^*$, the dual space of C(X) where X is a compact Hausdorff space, is identified with the space of all regular, Borel measures on X. If S is a subspace of C(X), S^1 is the space of all $\mu \in C(X)^*$ such that $\int f d\mu = 0$ for each $f \in S$. If E is a Borel subset of X, the restriction of μ to E, denoted μ_E , is the measure defined by $\mu_E(S) = \mu(E \cap S)$. Supp μ denotes the support of μ , the smallest closed subset K of X such that $\mu = \mu_K$.

If K_1 and K_2 are closed subsets of D, $K_2 \subseteq K_1$, we define

$$\varrho(K_1,K_2) \,=\, \sup \left\{\inf \left\{ |p-q| \,:\; q \in K_2 \right\} \,:\; p \in K_1 \right\} \,.$$

PROOF OF THEOREM 2. Let g be a locally A-approximable function on D, and let $\mu \in A^{\perp}$. We want to show $\int g d\mu = 0$. Let $\mathscr S$ denote the set of all A-convex subsets K of D which support a measure $v\langle K \rangle \in A^{\perp}$ such that

$$\int g d\mu = \int g d\nu \langle K \rangle .$$

We define a sequence of sets $\{K_n\}$ from $\mathcal S$ by taking $K_1 = D$ and choosing $K_{n+1} \in \mathcal S$ such that $K_{n+1} \subseteq K_n$ and

$$\varrho(K_n,K_{n+1}) \, \geqq \, \tfrac{1}{2} \sup \{\varrho(K_n,K): \, K \subseteq K_n, K \in \mathcal{S}\} \; .$$

Clearly, $\varrho(K_n, K_{n+1}) \to 0$ as $n \to \infty$. Set $K_0 = \bigcap_{n=1}^{\infty} K_n$.

We will prove below that K_0 is totally disconnected but first we will show that this implies that $\int g d\mu = 0$. We can find finitely many, pairwise disjoint open subsets of D, U_i , $i=1,\ldots,n$ which cover K_0 such that $g \mid U_i \in (A \mid U_i)^-$ for each i. Choose m so large that $K_m \subseteq \bigcup_{i=1}^n U_i$. If we define $J_i = K_m \cap U_i$ and let v_i denote the restriction of $v \langle K_m \rangle$ to J_i , then it is easy to show, using the Shilov idempotent theorem [3], [6], that $v_i \in A^1$. It follows that $\int g dv_i = 0$, $i=1,\ldots,n$, and hence $\int g d\mu = 0$.

Suppose now that K_0 is not totally disconnected. We apply Lemma 4 to $K = K_0$ and obtain $f \in A$, $p \in K_0$ and open subsets U and W of D with $p \in W$ and $W \cup K \subseteq U$ which satisfy (8), (9) and (10). We may assume f(p) > 0. Choose b < f(p) so that

$$\{z \in K_0 : \operatorname{Re} f(z) \geq b\} \subseteq W$$
.

Let

$$\boldsymbol{P_n} = \{\boldsymbol{z} \in \boldsymbol{K_n}: \; \mathrm{Re} f(\boldsymbol{z}) \! \geq \! b\} \quad \text{ and } \quad \boldsymbol{Q_n} = \{\boldsymbol{z} \in \boldsymbol{K_n}: \; \mathrm{Re} f(\boldsymbol{z}) \! \leq \! b\}$$

for $n=0,1,2,\ldots$ Since $\bigcap_{n=1}^{\infty} P_n = P_0$, we may choose a positive integer N for which $K_N \subseteq U$, $P_N \subseteq W$ and

$$2\varrho(K_N,K_{N+1}) < \inf\{|p-z|: z \in Q_N\}.$$

The inequality implies $\varrho(K_N, Q_N) > 2\varrho(K_N, K_{N+1})$. It suffices now to prove that $Q_N \in \mathcal{S}$, for then this last inequality will yield a contradiction with the choice of K_{N+1} .

Let $v = v\langle K_N \rangle$. Since $\operatorname{supp} v \subseteq K_N$, we have $v \in [(A \mid K_N)^-]^{\perp}$. Set $F = f(K_N)$ and define a measure τ on F by setting $\tau(S) = v(f^{-1}(S))$. Then $\tau \in R(F)^{\perp}$, where R(F) denotes the closure on F of the rational functions with poles in the complement of F. For if $r \in R(F)$, then $r \circ f \in (A \mid K_N)^-$, and hence

$$\int r d\tau = \int r \circ f d\nu = 0.$$

By (9), $f(K_N \cap W) = F \setminus f(K_N \setminus W)$ and $f(K_N \setminus P_N) = F \setminus f(P_N)$. Thus, if $G_1 = f(K_N \cap W)$ and $G_2 = f(K_N \setminus P_N)$,

then $\{G_1, G_2\}$ is a covering of F by open sets. By the Bishop splitting lemma [3, II.10.2] there exist $\tau_i \in R(F)^1$, i = 1, 2, such that supp $\tau_i \subseteq G_i$, i = 1, 2, and $\tau = \tau_1 + \tau_2$.

By means of (9) we can define a measure ν' on $K_N \cap W$ by setting $\nu'(S) = \tau_1(f(S))$. If $S \subseteq P_N$, then $S = f^{-1}(f(S))$ and $f(S) \subseteq W_1 \setminus W_2$; hence

$$\nu(S) = \tau(f(S)) = \tau_1(f(S)) = \nu'(S)$$
.

Thus

(11)
$$\nu(S) = \nu'(S)$$
 if $S \subseteq P_N$.

Moreover, $v' \in A^{\perp}$; this follows from (10) and the observation that if h is a polynomial, then

$$\int h(f)d\nu' = \int h d\tau_1 = 0.$$

We now define $\nu'' = \nu - \nu'$. Then $\nu'' \in A^{\perp}$,

$$\int g d\nu^{\prime\prime} = \int g d\nu$$

and, by (11), supp $r'' \subseteq Q_N$. Since Q_N is clearly A-convex, the proof that $Q_N \in \mathcal{S}$ is complete.

Björk has observed that Theorem 2 can be stated in a slightly sharper way as a consequence of the following fact: If A satisfies (1), the proof in [2] of Björk's theorem also shows that every measure on T in A^{\perp} is absolutely continuous. Say that f is weakly locally A-approximable if

(i) to each $p \in T$ there is an open neighborhood U of p in D and a sequence $\{a_n\}$ from A such that for each $z \in U \cap D^{\circ}$,

$$\lim a_n(z) = f(z) ,$$

while $||a_n||_U \leq C$ for some constant C depending on f and U,

(ii) f is locally A-approximable in D° .

Then, if A satisfies (1) and f is weakly locally A-approximable, $f \in A$.

PROOF OF THEOREM 1. Theorem 1 is an immediate consequence of Theorem 2, the remarks following Lemma 3, and the following lemma which is implicit in Bishop's argument (see [1, the proof of Lemma 2]).

LEMMA 5. Let B be a closed, point-separating subalgebra of $\mathcal A$ containing the constants. Let $p \in D^{\circ}$, and suppose f'(p) = 0 for each $f \in B$. Then there exists a closed neighborhood V of p in D° and a positive integer N such that $(B \mid V)^{-} \supseteq (z-p)^{N} \mathcal A \mid V$.

BIBLIOGRAPHY

- 1. E. Bishop, Subalgebras of functions on a Riemann surface, Pacific J. Math. 8(1959), 29-50.
- J.-E. Björk, Holomorphic convexity and analytic structures in Banach algebras, Ark. Mat. 9 (1971), 39-54.
- 3. T. W. Gamelin, Uniform Algebras, Prentice-Hall, Englewoodcliff, 1969.
- T. W. Gamelin, Polynomial approximation on thin sets, in Symposium on several Complex Variables, Park City, Utah, 1970 (Lecture Notes in Mathematics 184), Springer-Verlag Berlin, Heidelberg, New York, 1971.
- B. S. Lund, Algebras of analytic functions on the unit disk, (preprint) University of New Brunswick, Fredericton, N. B. Canada.
- E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Tarrytown-on-Hudson, New York, 1971.
- 7. J. Wermer, Rings of analytic functions, Ann. of Math. 67 (1958), 497-516.
- 8. J. Wermer, The hull of a curve in Cⁿ, Ann. of Math. 68 (1958), 550-561.

WELLESLEY COLLEGE, WELLESLEY, MASSACHUSETTS, U.S.A.