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ALGEBRAS OF CONTINUOUS FUNCTIONS
INVARIANT UNDER THE BACKWARD SHIFT

STEPHEN D. FISHER
Introduction.

Let D be a domain in the complex plane which contains the origin
and let f be a function analytic on D with power series expansion

fR) =3 a,zr, 2| <6

near 0. The backward shift is the operator 7' which sends f to the ana-
lytic function

Tf(z) = 3P a2, [2] <6
Tf(2) = (f(z)—ap)z™, zeD

in general. If f is bounded or is continuous on the closure of D, then it
is clear that 7'f will again have the same property.

In Section 1 we prove that if K is a compact set whose interior is
connected and dense in K and if 4 is a closed subalgebra of A(K) which
contains the constants and which is invariant under the backward shift
then A lies between R(X) and A(X) where X is a compact set contai-
ning K and 0X < 0K or else every function in 4 extends to be continu-
ous on the sphere and analytic off 0K. The definitions of R(K) and A(K)
and the precise statement of the theorem are in Section 1.

In Section 2 we discuss an extension of the backward shift operator
to C(I'), where I' is a simple closed curve; we consider a closed subalge-
bra 4 of C(I") which contains 1 and which contains f(z)x—! whenever
fe A and § fdu=0 where u is some finite regular Borel measure on I
Theorem 2 shows that such an algebra, if it is not all of C(I'), must
consist entirely of analytic functions.

This paper is a continuation of investigations in [2].

near 0 and

1. Invariant subalgebras of A(K).
If K is a compact set in the plane, R(K) denotes the uniform closure
on K of the rational functions with poles off K and A(K) the algebra
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of functions which are continuous on K and analytic on the interior
of K; clearly, R(K)< A(K). We shall always assume that the origin is
an interior point of K.

Let D be the interior of K which we assume to be connected and dense
in K and suppose A is a closed subalgebra of A(K) which contains 1
and is invariant under the backward shift. If f € A, we shall show that
(f(2)—f(a))(z—a) L is in A for all a € D. To see this let A be a measure on
2K, the boundary of K, with A1 4. Then

F(a) = $ox (f(2) —f(@)(z—a)2dA(2)

is an analytic function of a for @ € D and
Fm(0) = § (f(2)— 2% a;2)z""1dA(2)

where f(z)=37 a2’ is the power series expansion of f near 0. Since the
integrand is just the backward shift applied to f and iterated »n times,
F®(0)=0 for all n and hence F=0. Thus, (f(z)— f(a))(z—a)~ is in A.
Now let
I = {f(z)[z: fe A and f(0)=0}.

We define a projection = from the maximal ideal space M of 4 into the
sphere 82 by n(m)= o if Icm and
(1.1) nm) = (§ fapu)(§ fle)e2dp(z)) 2

if f(0)=0 but f(z)2~! ¢ m, and u is a representing measure on 9K for m.
Ifge A, g(0)=0, but g ¢ m, then

0 + {gdu §f(2)e-2dpu = (g(2)f(z)e2du = (fdu §g(z)z~"dp .

Hence, if g(0)=0 and g ¢ m, then g(z)2~*ém and so in (1.1) we may
use any f with f(0)=0 and f ¢ m. It is a simple matter to check that =
is continuous from M with the weak-* topology into §2. Further, if
c¢=n(m), then replacing f by

(f@) -fw))(z—w)?tz, weD,
in (1.1) and doing a bit of manipulation we find that
(1.2)  (c—w) §(f)—fw))z—w)Ldu(z) = fm)—fw), fedweD.

This immediately implies that if n(rﬂ) =ce D, then m(f)=f(c) and
hence x is 1 —1 over D.

THEOREM 1. Let K be a compact set whose interior D i3 connected and
dense in K. Let A be a closed subalgebra of A(K) which contains 1 and
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which s invariant under the backward shift. Then either there is a
compact set X on the sphere with X 2K and X < 0K such that R(X)<
A g A(X) or else each function in A is continuous on S2 and analytic off 0K.

Proor. Let 4g={fe A: f(0)=0}. Let M be the maximal ideal space
of A and let X =n(M). If ¢ ¢ X, then

I, = {(z—0)f(elet: fe Ay

is a closed ideal in 4 which lies in no maximal ideal, for if I,<m, then
let u represent m. For every f e A, we have

0 = §(z—0)f(2)edpl2)
o /@ du = {fd

which implies z(m)=c, contradicting the fact that ¢ ¢ X. Hence, 1 lies
in I,; equivalenty, (2—c)~* € A which shows that R(X)c 4.

Since 7 is one-to-one over D, D is an open subset of M ;let Y =M\ D.
If meY and fe A, with f(m)+0, then 1/f can be approximated near
m by polynomials in f—m(f). Thus, 1/z can be uniformly approximated
near m by elements of 'A. Let B be the closed algebra on Y generated
by A4 and 1/z. By a theorem of C. E. Rickart (see [3; p. 60]) the Silov
boundary of B is just the Silov boundery of A4 ; that is, the Silov boundary
of B lies in dK. Hence, B can be identified with the algebra on 0K
generated by 4 and 1/z. This algebra is R(Z) for some compact subset
Z of S2\ D with 0Z<c oK.

Now if ¥ € M(B), then

o(¥) = ¥() P(f(2)[2)

for fe A, and hence #(¥)=¥(1/2)-, because ¥ is multiplicative on B.
If ¢c¢ ZuD, then as before (z—c)-1 € B so that z/(z—c) is invertible in
B. If n(¥)=c, then

or

Y(z—clz) = 1—c¥P(1fz) = 0
which implies that
1= %)= Y((z—cfz)(zfz—c)) = 0 - ¥(z]z—0)

a contradiction. Hence, n(Y)< Z, so that A < A(Z)uA(D)c A(X).
Clearly, X =ZuD and the proof is complete.

2. Invariant subalgebras of C(I").

In this section we extend the backward shift operator to C(I'); spe-
cifically, we consider a simple’ closed. curve I" and a closed subalgebra
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A of C(I') which contains 1 and which contains f(z)x—! whenever fe 4
and (.. fdu=0 where y is a (fixed) finite regular Borel measure. Theo-
rem 2 provides a characterization of such algebras but it is illustrative
to give some examples before beginning the proof. We denote by A(U)
those analytic functions on the domain U which are continuous on the
closure of U.

ExampLE 1. Let D be the bounded component of the complement
of I" and suppose that the origin is in D. Let u=w,, harmonic measure
on I" for 0, and let 4 be A(D); or take A to be a closed subalgebra in
A(Q) containing 1, where £ is the unbounded component of the comple-
ment of I', and let x be multiplicative on A. Note that in the first case
the maximal ideal space of A is DU, while in the second it is QuUI.

ExampLE 2. Let « be an arc with positive continuous analytic capa-
city; that is, the set A(S2—«) of all functions which are continuous on
82 and analytic off « contains non-constant functions. This will be true,
for example, if & has positive 2-dimensional Lebesgue measure. Let I’
be a simple closed curve containing « and define 4 to be all those
continuous functions f on I" with flo € A(S2\ «). Then A is not a subset
of A(D) or A(2) and A +C(I") since

A(S2\ )| + Cla) .

Further, note that the maximal ideal space of 4 is S2U{I"\ «} and each
point ¢ € I'\ &« has two homomorphisms over it: one is evaluation of
f at ¢ and the other is evaluation at ¢ of the analytic extension to S\ «
of the restriction of f to «. If the origin is not in «, then there is a measure
@ on K such that { fdu=f(0) for all fe A and if {fdu=0, then clearly
f(2)/z is again in 4.

A slight variant of this example is to take 4 to be the restriction to
I' of A(82\ «); in this case the maximal ideal space of A is the sphere.

ExampLE 3. Let S be a compact (connected) Riemann surface on
which there is a meromorphic function F which assumes every value
on the sphere exactly twice. For example, 8 can be a torus.

Let a and b be distinet points of S with F(a)=F(b)=0. Then F is
1-1 in some neighborhood of a and hence there is an 7> 0 and a neigh-
borhood 4 of a such that F is a homeomorphism of 4 onto {|2| <7} and
F is a homeomorphism of I'=94 onto {|z|=r}. Let

R = 8\ (4ul)
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and let B consist of all functions which are continuous on RUI" and

holomorphic on R. The restriction of B to I" is an isometry of B onto

a closed subalgebra of C(I"). Let » be a measure on I'" which represents

the homomorphism f—f(b) of B. If fe B and {,fdv=0, then f/F € B.
Let

A = {geC(z|=r): g=foF-! where fe B}

and let u be the measure on |z|=r defined by u(E)=»(F-(E)). Then
A is a closed subalgebra of C(jz|]=7) and if ge 4 and {gdu=0, then
g(2)[z € A. Note that the maximal ideal space of 4 is Rul' and F is a
continuous function on M which is 1-1 over {|z|<r} and 2-to-1 over
{|z| >}, counting multiplicities.

This example can be carried further. Let K be a compact set in I
of zero harmonic measure (for a point in R) and let P = {z;} be a discrete
set in F-1 (|z| >r) whose set of limit points in Rul lies in K. For each
z€ KUP there is a z in Rul such that F(z)=F(z); let

B, = {fe B: f(2) = f(z) for ze KuP}

and define 4, on {|z| =} analogously to 4 above. Then A4, is a uniformly
closed subalgebra of C([z|=r) and if {fdv=0, then f(z)/z is in A4,. The
maximal ideal space of A, is obtained from RUI" by identifying the
points z and z for z€ KUP. Note that F is 1-to-1 over DUKU{F(P)}
and 2-to-1 over the rest of the sphere, again counting multiplicities.

THEOREM 2. Let I' be a simple closed curve with complementary compo-
nents D and 2, 0 € D and oo € Q, and let u be a finite regular Borel measure
on I'. Let A be a closed subalgebra of C(I') which contains 1 and which

contains x-Yf(x) whenever fe A and \,fdu=0. Then one of the following
holds:

@) A4=0(),

(i) A< A(D),

(iii) 4<4(Q),

(iv) there 18 a compact set K in I' such that A|K < A(S*\ K),

(v) if M is the maximal ideal space of A, then M\ T is a connected
one-dimensional analytic variety on which the functions in A are
analytic; there is a meromorphic function 7 on M\ I" which s one-
to-one over D and two-to-one on 2\ P, where P is a discrete set
in Q. Further, n-1(c) has at most two points for each ¢ € I" and the set

K = {ceI': n(c) is a singleton}

has harmonic measure zero and K contains all the limit points of P.
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Proor. Suppose cases (ii)~(v) do not hold; we show A=C(I"). Let

Ay = {fed: § fdu=0}.

If 1€ 4, then 1€ 4 and hence A=A4(2) or A=C(I") by Wermer’s
maximality theorem. Hence, there is no loss in assuming that {,du=1.
Let

I = {&f(x): fedy}.

If 1 lies in the closed ideal generated by I, then x € 4 and hence 4 = A(D)
or A=C(I'), again by Wermer’s theorem. Hence, I lies in at least one
maximal ideal m. Let df be any complex representing measure on I’
for m. Since x~1 ¢ A we may choose § so that {2-1df+0. Since g repre-
sents m we have

0 = {(f(z)—ao)r1dp(x)
for each f € A where ay={fdu. Hence
Srf(a:)x—ldﬁ(x) = ay Sr z1df(x) .
Let fe 4, and g € A. Then f(x)g(z)x—* € m and hence
0 = (g(x)f(x)z-1dp(x) = {gfdu {z1df(x) .
Thus, {gfdu=0 when fe 4, and g € A. Hence,
§fgdu = Sfdu§gdu (f.ge4).

Hence, 4, is an idealin 4 and y is multiplicative on 4. Let Sf(x) =(f(x)—
a,)/x. Now for A € D let

Ay = {(z—2271f(2) : fedo};

then 4, is an ideal in 4 and, if 1 € 4, for some 4, then (2—21)~! lies in 4
and hence 4=A4(2) or A=C(I') once again by Wermer’s maximality
theorem. Suppose L is a linear functional on 4 with L(4,)=0 and
L(1)=0. Then for f € A we have

0 = If(z—A)z7(f—a)) »

AL(Sf) = L(f-a,) = L(f).
Iterating this we find that
L(f) = »L(S"f) ,
so that when A is so small that |1]|||S||<1, we have L=0. Hence, if

|A4]118]|< 1, A, must be a maximal ideal of A4 since it has codimension 1.
Let m, be the corresponding homomorphism. Let

so that
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F(2) = §paz—2)dp(z) ;

F is analytic in D and F(0)=1; thus the zeros of F are discrete. For
fe A and F(4) 40 define

Pf(2) = F() § (e— D)L () dpu(z) -
Then P1=1 and Pg(1)=0 if g € A,. For || sufficiently small,

Ff(2) = my(f)

and thus P(fg) =P(f)P(g) holds for |1| small. Since all of P(f), P(g), and
P(fg) are analytic on D with the except of a discrete set, this equality
holds where all three functions are defined. At a point 4 where F(A)+0
we have

\Pf(A)] = CIIfll

where C does not depend on f. Thus, |Pf(1)|*=C|/f||* for all n and so
|Pf| £]|fl| where F 0. This implies that Pf is analytic on all of D and
that P(fg)=P(f)P(g) on all of D, for f,ge 4.

Let ¢ be a measure on I" which is orthogonal to 4 and set

A(z) = {(f(2) - Pf(2))(@—2)"do(x) .

Then G is holomorphic in D; for |i| small we have f—Pf(1) e 4, and
hence

(f-PfA))z—-2)1ecd

which implies that G vanishes for |1| small. Hence, G is identically zero
and thus
(f@)—Pf(A))x—~2)1eA forallieD.

Let m be the projection from the maximal ideal space M of 4 into
82 given by (1.1). As in Section 1, z is continuous and for A€ D and
fe A we have

(7e(m) = 2) § 1 (f(x) — PF(A)(x — A)~Ldw(x) = fm)—Pf(4)

where » is a representing measure for m on I'. Hence, 7 is one-to-one
over D and if ¢ =x(m) € D, then m is evaluation of Pfatc. If me M\ D,
then the proof of Theorem 1 shows that 1/x is locally approximable by
4 in a neighborhood of m.

Fix a number B so large that I'c{|z| <R} and let Y =zn"1(|z|<R).
Let B be the uniform algebra on Y generated by 4 and n. Then the
maximal ideal space of B is ¥ and the Silov boundary of B is I'u
n~1(|2| = R) since = is locally approximable by 4.

Math, Scand. 84 — 7
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It is now apparent that D is a n-regular component of multiplicity one
for the uniform algebra B and hence by a theorem of J.-E. Bjork [1;
Theorem 1.7], #=3(1)\I" has at most one point for each 1 eI and, if
a~}(A)\I" is not empty then M has analytic structure at that point.

Let ¢, be any point of I'. Let L be in the cluster set of Pf at ¢y; then
there is a sequence w,, € D with w,—~c, and Pf(w,)~>L. Let

= fged: Pgw,)->0};

« is a proper ideal in 4 and hence lies in a maximal ideal m. Let u repre-
sent m; thenif he 4,

(P(x) — Ph(0))—(z — c,)
lies in « and hence in m so that

0 = {(A(x) — Ph(0))x~Y(z — c,) du(x)
or
h(m)— Ph(0) = ¢, §(h(x)— Ph(0))z1du(z) .

This implies that m(m)=c,. Therefore, if lim Pf(w,)= L, then 0=m(f— L)
and hence the cluster set of Pf at ¢, lies in the range of f on the fiber over
¢o- Hence, since the range of f on n~1(4,) can have at most 2 points and
since the cluster set of Pf at 1, is connected, Pf is continuous from
within D at each point of I'; that is, Pf e A(D).
Let
K = {ceI': f(c)=Pf(c) forall fe 4};

K is a closed subset of I'. If K=1TI", then A< A(D), in contradiction to
our initial assumption. Note that z is 2 to 1 over the points of I'\ K. Let

V = Qn{e<R}.

Then by [3; Theorem 4] V is a n-regular component of B of multiplicity
no more than 2 and if « is an open arc in I', then -} (DuaxuV)\TI'
is a one-dimensional analytic variety on which the functions in B (and
hence the functions in A) are analytic. If V has multiplicity 1, then
Pf extends analytically across I'\N K to V. The cluster set argument
given earlier shows that Pf is actually continuous on Vul. Letting
R—>oo we find that f|K € A(S2\ K) if K is non-empty or Pf is bounded
and holomorphic on 82 if K is empty. The latter is impossible since
f=Pf must separate the points of D and the former has been ruled out
by assumption. This allows only the possibility that V is zn-regular of
multiplicity 2.

Let S consist of all points w € 2 such that n~(w) is a single point in
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M. Then 8 is closed and the only limit points of S which lie in I" are
in K. According to the basic theorem on analytic structure in the maxi-
mal ideal space [3], = is a 2-sheeted analytic cover of n—1(V) and each
function in B, and hence each function in 4, is analytic on &-(V).
Further, SnV is discrete and for each point p € V\S8,n~1(p) consists
of two points p, and p, and there are disjoint neighborhoods W, and
W, of p; and p,, respectively, such that n is a homeomorphism of W,
onto a disc in the plane. Let ¢ € I'\ K and let m be the (unique) element
of n~1(c) such that m ¢ I'. Then m has a neighborhood W which is mapped
homeomorphically by = onto a disc centered at ¢ and each f in A4 is
analytic on W. This implies that Pf can be continued analytically across
each point of I'\N K. Note that X must have harmonic measure zero
with respect to oo since the two sheets over V come together at K and
the analytic functions f; on these two sheets agree with f at all points
of K. Let R—oco. This completes the proof.

AcCEROWLEDGEMENT. The author wishes to thank J.-E. Bjork and T.
W. Gamelin for very helpful suggestions on Theorem 2 which resulted
in substantial simplifications of the original proof and in removing a su-
perfluous hypothesis.

A minor variation of the proof of Theorem 2 yields the following.

THEOREM 3. Let « be an arc, 0 & «x, and let u be a finite regular Borel
measure on «. Suppose A is a closed subalgebra of C(x) such that 1€ A
and whenever fe A and \,fdu=0, then f(x)x=1 € A. Then either 4 =C(x)
or Ac A(8?\ «).

One application of Theorem 3 is the following.
PropoSITION 4. Let X, be an arc and X, a simple closed curve such
that X, lies in the bounded component of 82\ X, Let X = X,UX, and let
A = {feC(X): fIX,eP(X,)}.
Then A is a maximal subalgebra of C(X).
Proor. Let fe A, f¢ P(X); by subtracting an element of P(X,) from

f we obtain a function in 4 which vanishes on X, and is not identically
zero. Let p € X, and let

A, = {fe A: fis constant on X, and f(p)=f(X,)} .
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Let 6 be the point mass at p. A, is a closed subalgebra of C(X;) and if
{fd6=0, then 2f(2) and z-'f(z) both are in A4,. Hence, 4,=0(X,;) by
Theorem 3.

Let B be a closed subalgrbea of C(X) which properly contains A.
Let ge B, g ¢ A. By the above we may subtract from g a function in
A, which agrees with g on X; and hence B contains a function # which
is zero on X; and whose restriction to X, is not in P(X,). By Wermer’s
theorem, this function A together with P(X,) generates C(X,). Hence,
B contains every continuous function on X which vanishes on X, so
that B=C(X).
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