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SOME REMARKS ON KLEINIAN GROUPS

TROELS JORGENSEN

One of the purposes of this note is to answer a question which has
been proposed by professor J. Lehner in his book Discontinuous Groups

and Automorphic Functions [3, p. 136]. The problem may be stated as
follows:

Let @ be a function group, leaving invariant a simply connected com-
ponent D of its ordinary set. Assume oo is an ordinary point and not a

fixed point of an elliptic element of G. Then, is the Ford polygon for G
relative to D always connected ?

If D were required to be connected only, it would be easy to show
that the answer is “no”, for instance by means of Schottky groups of
genus greater than one. But it is not difficult either, under the addi-
tional condition of simple connectivity, to demonstrate that the answer
generally is in the negative. To this end quasi-Fuchsian groups will do.

Instead of solving the problem by a concrete example, which is pos-
sible but rather tedious, the opportunity is taken to bring up some ob-
servations related to the modern theory of Kleinian groups.

Thanks to the book mentioned above, it is not necessary here to discuss
the notions and definitions belonging to this subject. The theory of quasi-
Fuchsian groups and the boundaries of their deformation spaces is
treated in the fundamental papers of L. Bers and B. Maskit, [1] and [5].

2.

All the groups considered in sections 2, 3 and 4 are generated by two
Mobius transformations 4 and B with parabolic commutator P=
ABA-1B-1, In terms of two-by-two matrices, the following representa-

tion is used: L
z—1 —i2

4=1{". .

i z+1

[ x 2z-yz
B—(yz—l z )
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where z and y are two complex parameters and z= — 2zy(1 — 2% —y?)-L

In this representation, the isometric circles of 4-1 and P are externally
tangent; the common point is the fixed point of P.

Every group generated by two transformations with parabolic com-
mutator is conjugate to one of the groups above, unless all the elements
of the group have a common fixed point.

The Fuchsian groups correspond to the relation

v = VTP

between the parameters, where y can be any complex number with non
vanishing real part.

Denote by T' the space of quasi-Fuchsian groups in which both 4 and
B have traces with positive real parts. Later it will be shown that T
contains groups having Ford polygons with more than two connected
components. Since their ordinary sets consist of two quasi-discs, each
invariant, this will answer the question of Lehner.
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Notice that the automorphism defined by

A > BA-1B-1
B - B

is induced by the involutory Mébius transformation z - —z. Visually,

this appears as a pointwise symmetry of the isometric circles with respect
to the origin.

3

The figure shows the Ford polygon of the Kleinian group, denoted
by G, which arises by taking =1 and y= Ve.

It is not hard to verify this assertion. Firstly, it is checked that the
isometric circles of 4, B, BA, BA-!, BAB-1, P and A-1PA together
with the isometric circles of the inverse transformations make up a con-
figuration as sketched. It is convenient to have the matrices explicitly:

10
5= (1 1)
BA = (Vé—i —-21.)
2 2—1
Veti 2
san= (5 )
V2 V2+i
V_2_+i -2
BAB- =( )
i V2—i
P (-1-2iV§ 4 )
N 2 —1+2iV2
41pA — (—1—2u/§ —4 )
-2  —142V2/°

Secondly, if, in the upper half space, one imagines the corresponding
isometric hemi-spheres, it is easily seen that their common exterior
points form a polyhedron with identifications, for which the angle rela-
tions — which can be read off from the polygon — are satisfied. Hence a
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theorem of Poincaré — proved by Maskit [6] — applies, showing that it
is a fundamental polyhedron for the group generated by the side-pairing
transformations. But this group is precisely &,. Therefore, all other trans-
formations of the group must have isometric hemi-spheres lying exterior
to the polyhedron; in particular, the Ford polygon looks #s claimed.
One minor difficulty has been passed over so far. Maskit makes in [6]
an assumption, which is not satisfied in the present case, namely, that
any two tangential faces of the polyhedron must be paired by a parabolic
transformation. Here, as in other cases, this restriction can be evaded by
a suitable modification of the polyhedron. Then the given polyhedron
can be approximated by its deformations, for instance, by Dirichlet
polyhedrons with respect to a sequence of points approaching oo.

4.

From the polygons one can see that the quotient surfaces associated
with G, are a torus with one puncture and a sphere with three punctures.
The torus is represented by the infinite component, the sphere by the
two finite components together. The puncture of the torus is paired to
one of the punctures on the sphere; they both arise from the parabolic
element P. The other pair of punctures arises from the parabolic trans-
formation B.

Clearly, G, does not belong to 7', the space of quasi-Fuchsian groups.
But G, belongs to the boundary of 7'; the cusp determined by B can be
opened.

To see this, recall that G, is given by z=1 and y= Ve. Starting from
these values and then changing = and y a little such that the absolute
value of x becomes greater than 1, the isometric circles of B and B-!
will move apart, the configuration of circles through the fixed points of
P and A-1PA4 will remain unchanged (the two points may move a little)
while the isometric circles either of BA and A-1B-! or of B4-1 and AB-!
may come out to carry sides of a new Ford polygon. That no other iso-
metric circles can ‘‘break out” is an easy consequence of the general
incidence relations between isometric circles; in this case, it is enough
to know that if the isometric circle of a transformation I is tangent from
the inside to the isometric circle of another transformation J, then the
isometric circles of J-! and IJ-! are externally tangent.

Denote the new Kleinian group by G. As an example, both compo-
nents of its Ford polygon may be bounded by sides lying on the isometric
circles of

A-1, B, BA, A, BAB-!, B!, A-'B-!, BA-1B-!.
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Each of the two quotient surfaces of G is a once-punctured torus.
Clearly, G must have two invariant components; hence, by a theorem
of Marden and of Maskit [5, p. 610], it follows that G is quasi-Fuchsian;
therefore, G' belongs to 7'. It is then obvious that @, belongs to the
boundary of 7', since G can be arbitrarily close to G,.

But, the quasi-Fuchsian groups @, defined above, do not approximate
any of the degenerate groups lying close to G, on the boundary of 7.
Their polyhedrons are too nice, the horocycles at the fixed point of P
are too large. So already that shows that the cusp at B can be opened
without separating the isometric circles of B and B-1. For instance, one
may change the parameters a little so that  becomes different from 1
but still of absolute value 1. Then the isometric circles of B and B-!
remain externally tangent; besides that, essentially, the polygon can only
be deformed as before. The new group will be quasi-Fuchsian, the de-
formation being small enough, and its Ford polygon will have three
components. This answers the question of Lehner.

5.

The boundary group G, is regular in the sense of having a finite sided
fundamental polyhedron. Such groups are rather well understood. In his
paper The geometry of finitely generated Kleinian groups [4], Marden has
proved that they are quasiconformally stable in the sense of Bers [1].
More generally, the geometrical content of this matter admits of “re-
opening of cusps’ as well. All that is needed to know is, what can happen
to the critical cyclic subgroup — in the case of &, what can happen to
the cyclic group generated by B. From [2], where the isometric polyhe-
drons of cyclic groups have been described, it follows that Gy can be
approximated from almost all directions by groups belonging to 7. If
G, is approximated by groups on the boundary of 7' and with parameter
values <1, then # must approach 1 tangentially to the real axis.
Finally, one may distinguish between controllable and non-controllable
directions of deformations, controllable meaning that only finitely many
sides of the isometric polyhedron change. For G, the non-controllable
directions are precisely those in which the real part of x becomes less
than 1. The situation is more complicated for groups whose polyhedrons
are bounded by infinitely many sides.

6

The Ford polygon of a finitely generated Kleinian group is bounded
by a finite number of sides. This beautiful formulation of Ahlfors’ finite-
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ness theorem was first suggested by J. R. McMillan. A detailed treatment
will appear elsewhere. The proof depends heavily on the results of Ahl-
fors. Using that the Ford polygon is locally finite, A. F. Beardon has
deduced that the limit points on its boundary must be parabolic fixed
points. But the number of such points is finite, and at each of them there
is a horocycle making the polygon finite sided in a neighbourhood.

One consequence is that the number of connected components of the
Ford polygon is finite. It is an open problem whether the number of
limit points lying exterior to all isometric circles may be infinite. The
number of connected components of the complement of the Ford poly-
gon is finite; actually, an upper estimate can be given.

THEOREM. Let G be a Kleinian group which is generated by n transforma-
ttons. Assume that G has a Ford polygon. Then the number of connected
components of the complement of the Ford polygon of @ is at most equal to 2n.
If the number is 2n, then G is a Schottky group.

Proor. Let Ph denote the isometric fundamental polyhedron of G.
An element of @ is called a pairing transformation if there is an edge or
a side of Ph lying on its isometric hemi-sphere. Let S denote the set of
pairing transformations. If g belongs to 8, so does g—.

The number of components of the complement [Pk of Ph relative to
the closed upper half space is finite. Two such components K, and K_
are called related if there is a pairing transformation g such that the
isometric circle of g belongs to K, and the isometric circle of g-* belongs
to K_. Two components K and K are called equivalent if they are the
two extremities of a simple chain of neighbour-related components.
Thereby an equivalence relation is defined on the set of components of
[Ph. The equivalence classes are called blocks. One may observe that
each block consists of the components of the complement of the isometric
fundamental polyhedron of a subgroup of @. According to the classical
combination theorem of F. Klein, @ is the free product of these block-
subgroups.

Assume that there are ! blocks: B,, i=1,...,l. Label the elements of
B;as K, ;, j=1,...,r,. Hence r; is the number of elements of B;, and
the total number of components of [ Ph is

k=23tar.
Accordingly, S is the disjoint union of k sets S, ;; the pairing transforma-

tion g belongs to S, ; if and only if the isometric circle of g is contained
in K{. o
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The idea is to construct a certain space of deformations of @. It con-
sists of groups with isometric fundamental polyhedrons which look like
Ph locally. These groups will be called similarity deformations of G and
the space will be denoted by X(@). First a class of mappings of S onto
other sets of Mobius transformations has to be defined.

A Mobius transformation M which does not keep oo fixed may be

written as
_(Qc b
u=(Y %) e+o

where P 18 the centre of the isometric circle of M and @ is the centre of
the isometric circle of M-1. Both circles have radius equal to |¢[~1. The
argument of ¢ may be called the rotation parameter of M, and b is
determined by

1+bc+PQc? = 0.

A parameter set {A,q, ;,®;;} consists of I positive real numbers A,
together with & complex numbers ¢, ; and k purely imaginary numbers
@;,;- Associate to each such set a mapping of S onto another set S’ of
Mobius transformations: If M belongs to §;; and M-! belongs to S, ,
then the image M’ is defined as

, _ Qlcl b' )
M= ( ¢ —P¢
where
Q = ¢;n+4Qexpe

P' = q; 4+ AP expy, ;

¢’ = cA;t exp[— Moy n+91,5)] -

It is immediately verified that the configuration of isometric circles of
the elements of §; ; is the image of the configuration of isometric circles
of the elements of §;; under an euclidian similarity transformation
determined by 4;, ¢; ; and ¢; ;. Remark that (M')-1=(M"1)".

If 4 and B are two elements of 8; ; and A~! lies in §; , and B! lies
in 8, ,, then AB-! must belong to S, , and BA-! must belong to S, ,,
provided that 4B-! and BA-1 are elements of S at all. In that case a
computation shows that (4B-1)'=A'(B-!) and that (BA-!)'=B'(4-1)".

Each parameter set induces k similarity mappings, K, ; - K; ;. If the
images K;, are disjoint, then the group @' generated by 8’ is Kleinian
because the isometric circle of any element of ¢’ must belong to some
K; ;- The complement of the isometric fundamental polyhedron PR of G'
has {K; ;} as its components. Since G is generated by S and the relations
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in @ can be read off from the identifications of the pairing transforma-
tions, it follows that G’ and G are isomorphie. In particular, G is generated
by n Mobius transformations.

Let O be the open subset of R3¥+ consisting of those points
{A:4:,59;,;} which define disjoint components K; ;. To each connected
component of O corresponds a deformation space of groups {G'}; one of
these contains G and is denoted 2(G). Since @ is generated by n Mobius
transformations, it follows that the real dimension of 2(@#) is at most
equal to 6n. On the other hand, the real dimension of 2(@) is at least 3k:
there are I block scale parameters A,, another 2k real parameters come
from the translations g, ;, and in each block B;, the rotations defined by
the @, contribute with at least r,—1 real dimensions. Hence 3k<
realdim X(@) < 6n; thus k< 2n. The case k=2n is equivalent to G being
a Schottky group for which each §; ; consists of a single transformation.

The final remark is that the above theorem can be proved without
use of McMillan’s version of the finiteness theorem. It is not necessary
a priori to know that the number of components K ; is finite. One may
always replace G by another group G for which the components K; ; lie
sufficiently apart from one another to make the dimension argument
possible.
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