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REMARK ON THE DUAL OF AN
INTERPOLATION SPACE

JAAK PEETRE
0. Introduction.

Let A= {4,,4,} be a Banach couple (that is 4, and 4, are two Banach
spaces both continuously embedded in some Hausdorff topological vec-

tor space 7). The interpolation space (“K-space’) A—:q= (Ao, 4,)sq, Where

0<0<1, 0<g<o,is defined as the subspace of Z=2(A4)=4,+ 4, given
by the condition

(0.1) laliz,, = (& (K(2,)[t*)2dtft) e < oo,
with
(0.2) K(t,a) = inf,. g 4q, (1B0ll49+ Fllasll4,)

(cf. Butzer & Berens [1, chapter III, in particular p.167]). If 1<¢=<oo

Z,,a is a Banach space (with the norm given by (0.1)) but if 0<g¢<1 m
general only a quasi-Banach space (see Section 1). If

(*) A=A(A)=A,nA4, is dense in both 4, and 4,

one can consider the dual couple 4 ={4,',4,'}, and it is possible to
make the identification:

(0.3) (A = (A')ey 1if 1Sg<oo, with 1/g+1/g'=1

(cf. [1, p. 214]; the first version of this result is due to Lions [6]). If ¢= oo
we have the following substitute for (0.3)

(0.4) (42,) ~ (A

where, generally speaking, £4 denotes the closure of 4 in E (cf. Scherer
[7, p. 17]). In this note we shall be dealing with the case 0 <q < 1. Indeed
we shall show that (Section 2):

(0.5) (Aog) ~ (A if 0<g<1.

We shall also give (Section 3) two simple illustrations of the relation (0.5).
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1. Preliminaries on quasi-Banach spaces.

By a quasi-Banach space we mean a complete topological vector space
E (over the reals, say) with the topology given by a quasi-norm |lz||,
that is we have

lx+yll = =(|l=ll+lyll) for some %=1
(quasi-triangle inequality),
Izl = 14| |l=ll ,
flzll = O, [lz]| = 0 <=2 =0.

With any quasi-Banach space K we associate a Banach space E* as
follows. In E we define a semi-norm |jz||¥ by the formula

llell* = inf (37, llx| ‘ r=37_,%,}.

Let N be the subspace of £ defined by |z|*=0. Then E* is the comple-
tion of the quotient space E/N with the quotient norm induced by
||lz|[¥. Clearly E has the following universal property: If 7: E — F is a
continuous linear mapping, F being a Banach space, then there exists a
continuous linear mapping S: E¥ — F such that we have the factorisa-
tion

| A

v/
E*
I: E* - E being the canonical quotient mapping. In particular taking F
to be the scalar field we see that
(1.1) (B ~ E'.
It is this relation that will be exploited in what follows.
ExamrLE 1.1 (cf. Haaker [4]). If E=L,, 0<p<1, we have E¥=0 and

consequently (by (1.1)) E'=0 (Day [2]). If E=[,, 0<p<1, we have
E*=1, and consequently E’'=1_.

2. A variant of the Lions duality theorem.

We return to our Banach couple 4 (see Section 0), maintaining not-
ably the density assumption (*). We can now prove

THEOREM 2.1. If 0<q< 1 we have (Z,q)" wz,,l.
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In particular (using (1.1) and (0.4) with ¢=1) we see that (0.5) holds
true.

Proor. Since Z,,chﬂ if 0<g<1 we have
(ZOq)# < (Z)cn)‘t = 4 .
There remains thus only the opposite inequality
(2.1) Ay < (dgp)t .

To prove (2.1) we first note the convexity inequality (cf. [1, p. 176] for
g=1; the proof is the same if 0<g<1)

lalids, = Cliallg,'~llally’ -

Now the same inequality holds also with llaliz,, replaced by [lallzy,s-
And this clearly implies (2.1), by the following well-known lemma (cf.
[1, pp. 176-177]).

LemuMA 2.1. Let E be any Banach space (contained in X) satisfying for
some 0, 0<0<1,

N lallez = Cllall 4, llall°
Then Ay < E.

3. Two examples.

We give two simple illustrations of (0.5). These special cases can also
easily be treated directly (see Haaker [4] and Flett [3]') respectively.

ExampLE 3.1. (Lorentz space). If L,,, where 0 <p=<oo, 0 <g= oo, are
the Lorentz spaces (say, on [0, 1]) we have as is well-known
Ly, = (Ly,Ly)s, if 6=1—-1/p,1<p<oo,0<g=oco.
By the Lions theorem (see (0.3)) we have
(3.1) Ly,~Ly,, if 1<p<oo, 15¢<oo
and thus in particular
L;,l ~ Ly, if 1<p<oo.
Using (0.5) we now can complement (3.1) by
(3.2) Ly~ Ly, if 1<p<eo, 0<g<1.

1 T owe this reference to professor H. Triebel.
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Examrre 3.2. (Besov space). If B,®, where —oo<s<oo, ISp= oo,
0 <g=o0) are the Besov (= Lipschitz) spaces (say, on R*) we have, using
any of the many equivalent definitions,

By = (L, W,™), if O=s/m, 0<s<m integer, l <p<oo,
0<g=o0,
where W,™ denote the Sobolev spaces. This thus for s> 0. A correspond-

ing formula holds for s<0. Also the case s=0 can be incorporated. It
follows from (0.3) that

(3.3) (B,*9) ~ By*? if 1<p<oo, 12¢<oo,

which is well-known. Using (0.5) we get the following complement of
(3.3):

(3.4) (Bp*)' ~ B,* if 1<p<oo, 0<g<l.

ReMARK 3.1. The spaces B,® in the case 0 <g <1 appear also already
in classical analysis. Let &% be the Fourier transform on R™ Then a
theorem by Zygmund (see [8, vol. 1, p. 242]) may be restated as follows:

(3.5) F: WyrnBY L, .
More generally one may prove that
(3.6) F: Bpn B ~ L,
with
(1-0)/go+6/g, = 1,
8o(1—0)+8,0 = /2, (1-0)[po+0[p =},

where clearly must hold either g,<1 or ¢, <1 (cf. Izumi & Izumi [5]
for results in this sense).

Summary.

It is shown that (do,4,)s,~ (4o, 4, )s, if 0<g<1. This result is ap-
plied to the dual of the spaces L,, and B,* in the case 0<g<1.

REFERENCES

1. P. L. Butzer and H. Berens, Semi-groups of operators and approzimation. (Grundlehren
Math. Wissensch. 145), Springer-Verlag, Berlin - Heidelberg - New York, 1967.

2. M. M. Day, The spaces L? with 0 <p < 1, Bull. Amer. Math. Soc. 46 (1940), 816-823.

3. F. M. Flett, Lipschitz space of functions on the circle and the disc. J. Math. Anal. Appl.
39 (1972), 125-158.

4. A. Haaker, On the conjugate space of a Lorentz space, Technical report, Lund, 1970.



128 JAAK PEETRE

5. M. Izumi and 8. Izumi, On absolute convergence of Fourter series, Ark. Mat. 7 (1967),
117-184.

6. J. L. Lions, Sur les espaces d’interpolation; dualité, Math. Scand. 9 (1961), 147-177.

7. K. Scherer, Dualitit bet Interpolations- und Approximationsriumen, Dissertation,
Aachen, 1969.

8. A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, 1959.

LUND INSTITUTE OF TECHNOLOGY, SWEDEN



