REMARK ON THE DUAL OF AN INTERPOLATION SPACE

JAAK PEETRE

0. Introduction.

Let $\overrightarrow{A} = \{A_0, A_1\}$ be a Banach couple (that is A_0 and A_1 are two Banach spaces both continuously embedded in some Hausdorff topological vector space \mathscr{A}). The interpolation space ("K-space") $\overrightarrow{A}_{\theta q} = (A_0, A_1)_{\theta q}$, where $0 < \theta < 1$, $0 < q < \infty$, is defined as the subspace of $\Sigma = \Sigma(\overrightarrow{A}) = A_0 + A_1$ given by the condition

(0.1)
$$||a||_{A_{\theta q}}^{\rightarrow} = \left(\int_0^{\infty} \left(K(t,a)/t^{\theta} \right)^q dt/t \right)^{1/q} < \infty ,$$
 with

(0.2)
$$K(t,a) = \inf_{a=a_0+a_1} (||a_0||_{A_0} + t||a_1||_{A_1})$$

(cf. Butzer & Berens [1, chapter III, in particular p. 167]). If $1 \le q \le \infty$ $\overrightarrow{A}_{\theta q}$ is a Banach space (with the norm given by (0.1)) but if 0 < q < 1 in general only a quasi-Banach space (see Section 1). If

(*)
$$\Delta = \Delta(\overrightarrow{A}) = A_0 \cap A_1$$
 is dense in both A_0 and A_1

one can consider the dual couple $\overrightarrow{A'} = \{A_0', A_1'\}$, and it is possible to make the identification:

$$(0.3) \qquad (\overrightarrow{A}_{\theta\theta})' \approx (A')_{\theta\theta'} \quad \text{if } 1 \leq q < \infty, \text{ with } 1/q + 1/q' = 1$$

(cf. [1, p. 214]; the first version of this result is due to Lions [6]). If $q = \infty$ we have the following substitute for (0.3)

$$(0.4) \qquad (\overrightarrow{A}_{\theta \infty}^{\Delta})' \approx (\overrightarrow{A}')_{\theta 1}$$

where, generally speaking, E^{Δ} denotes the closure of Δ in E (cf. Scherer [7, p. 17]). In this note we shall be dealing with the case 0 < q < 1. Indeed we shall show that (Section 2):

$$(0.5) (\overrightarrow{A}_{\theta q})' \approx (\overrightarrow{A}')_{\theta \infty} \text{if } 0 < q < 1.$$

We shall also give (Section 3) two simple illustrations of the relation (0.5).

Received July 20, 1973.

1. Preliminaries on quasi-Banach spaces.

By a quasi-Banach space we mean a complete topological vector space E (over the reals, say) with the topology given by a quasi-norm ||x||, that is we have

$$\begin{aligned} \|x+y\| & \leq \varkappa(\|x\|+\|y\|) \quad \text{for some } \varkappa \geq 1 \\ & \text{(quasi-triangle inequality),} \\ & \|\lambda x\| = |\lambda| \|x\| \;, \\ & \|x\| \geq 0, \ \|x\| = 0 \Leftrightarrow x = 0 \;. \end{aligned}$$

With any quasi-Banach space E we associate a Banach space E^{\sharp} as follows. In E we define a semi-norm $||x||^{\sharp}$ by the formula

$$||x||^{*} = \inf \{ \sum_{\nu=1}^{n} ||x_{\nu}|| \mid x = \sum_{\nu=1}^{n} x_{\nu} \}.$$

Let N be the subspace of E defined by $||x||^{\sharp} = 0$. Then E^{\sharp} is the completion of the quotient space E/N with the quotient norm induced by $||x||^{\sharp}$. Clearly E has the following universal property: If $T: E \to F$ is a continuous linear mapping, F being a Banach space, then there exists a continuous linear mapping $S: E^{\sharp} \to F$ such that we have the factorisation

 $I: E^{\sharp} \to E$ being the canonical quotient mapping. In particular taking F to be the scalar field we see that

$$(1.1) (E^{\sharp})' \approx E'.$$

It is this relation that will be exploited in what follows.

Example 1.1 (cf. Haaker [4]). If $E=L_p$, $0 , we have <math>E^{\sharp}=0$ and consequently (by (1.1)) E'=0 (Day [2]). If $E=l_p$, $0 , we have <math>E^{\sharp}=l_1$ and consequently $E'=l_{\infty}$.

2. A variant of the Lions duality theorem.

We return to our Banach couple \overrightarrow{A} (see Section 0), maintaining notably the density assumption (*). We can now prove

Theorem 2.1. If
$$0 < q < 1$$
 we have $(\overrightarrow{A}_{\theta q})^{\sharp} \approx \overrightarrow{A}_{\theta 1}$.

In particular (using (1.1) and (0.4) with q=1) we see that (0.5) holds true.

PROOF. Since $\overrightarrow{A}_{\theta q} \subset \overrightarrow{A}_{\theta 1}$ if 0 < q < 1 we have $(\overrightarrow{A}_{\theta q})^{\sharp} \subset (\overrightarrow{A}_{\theta 1})^{\sharp} = A_{\theta 1}.$

There remains thus only the opposite inequality

$$(2.1) \overrightarrow{A}_{\theta 1} \subset (\overrightarrow{A}_{\theta q})^{\sharp}.$$

To prove (2.1) we first note the convexity inequality (cf. [1, p. 176] for $q \ge 1$; the proof is the same if 0 < q < 1)

$$||a||_{A_{\theta q}}^{\rightarrow} \leq C||a||_{A_0}^{1-\theta}||a||_{A_1}^{\theta}.$$

Now the same inequality holds also with $||a||_{A_{\theta q}}$ replaced by $||a||_{(A_{\theta q})}^{2}$. And this clearly implies (2.1), by the following well-known lemma (cf. [1, pp. 176–177]).

LEMMA 2.1. Let E be any Banach space (contained in Σ) satisfying for some θ , $0 < \theta < 1$,

$$||a||_{E} \leq C||a||_{A_0}^{1-\theta}||a||_{A_1}^{\theta}$$

Then $\overrightarrow{A}_{\theta 1} \subset E$.

3. Two examples.

We give two simple illustrations of (0.5). These special cases can also easily be treated directly (see Haaker [4] and Flett [3]¹) respectively.

Example 3.1. (Lorentz space). If L_{pq} , where $0 , <math>0 < q \le \infty$, are the Lorentz spaces (say, on [0, 1]) we have as is well-known

$$L_{pq} \, = \, (L_1, L_\infty)_{\theta q} \quad \text{if} \ \theta = 1 - 1/p, \, 1$$

By the Lions theorem (see (0.3)) we have

$$(3.1) L'_{pq} \approx L_{p'q'} \text{if } 1$$

and thus in particular

$$L_{p1}' \approx L_{p'\infty} \quad \text{if } 1$$

Using (0.5) we now can complement (3.1) by

(3.2)
$$L'_{pq} \approx L_{p'\infty} \quad \text{if } 1$$

¹ I owe this reference to professor H. Triebel.

EXAMPLE 3.2. (Besov space). If B_p^{sq} , where $-\infty < s < \infty$, $1 \le p \le \infty$, $0 < q \le \infty$) are the Besov (=Lipschitz) spaces (say, on \mathbb{R}^n) we have, using any of the many equivalent definitions,

$$B_p{}^{sq} = (L_p, W_p{}^m)_{\theta q} \quad \text{if} \ \theta = s/m, \ 0 < s < m \ \text{integer}, \ 1 < p < \infty \ , \\ 0 < q \le \infty \ ,$$

where W_p^m denote the Sobolev spaces. This thus for s > 0. A corresponding formula holds for s < 0. Also the case s = 0 can be incorporated. It follows from (0.3) that

(3.3)
$$(B_n^{sq})' \approx B_{n'}^{-sq'} \quad \text{if } 1$$

which is well-known. Using (0.5) we get the following complement of (3.3):

(3.4)
$$(B_p^{sq})' \approx B_{p'}^{-s\infty} \quad \text{if } 1$$

REMARK 3.1. The spaces B_p^{sq} in the case 0 < q < 1 appear also already in classical analysis. Let \mathscr{F} be the Fourier transform on \mathbb{R}^n . Then a theorem by Zygmund (see [8, vol. 1, p. 242]) may be restated as follows:

$$\mathscr{F}: W_1^n \cap B^{0,1/q}_{\infty} \to L_1.$$

More generally one may prove that

(3.6)
$$\mathscr{F} \colon B_{p_0}^{s_0 q_0} \cap B_{p_1}^{s_1 q_1} \to L_1$$
 with

$$(1-\theta)/q_0 + \theta/q_1 \, = \, 1 \ ,$$

$$s_0(1-\theta) + s_1\theta \, = \, n/2 , \quad (1-\theta)/p_0 + \theta/p_1 \, = \, \frac{1}{2} \ ,$$

where clearly must hold either $q_0 < 1$ or $q_1 < 1$ (cf. Izumi & Izumi [5] for results in this sense).

Summary.

It is shown that $(A_0, A_1)_{\theta_q} \approx (A_0', A_1')_{\theta_\infty}$ if 0 < q < 1. This result is applied to the dual of the spaces L_{pq} and B_p^{sq} in the case 0 < q < 1.

REFERENCES

- P. L. Butzer and H. Berens, Semi-groups of operators and approximation. (Grundlehren Math. Wissensch. 145), Springer-Verlag, Berlin · Heidelberg · New York, 1967.
- 2. M. M. Day, The spaces L^p with 0 , Bull. Amer. Math. Soc. 46 (1940), 816-823.
- F. M. Flett, Lipschitz space of functions on the circle and the disc. J. Math. Anal. Appl. 39 (1972), 125-158.
- 4. A. Haaker, On the conjugate space of a Lorentz space, Technical report, Lund, 1970.

128 JAAK PEETRE

- M. Izumi and S. Izumi, On absolute convergence of Fourier series, Ark. Mat. 7 (1967), 117-184.
- 6. J. L. Lions, Sur les espaces d'interpolation; dualité, Math. Scand. 9 (1961), 147-177.
- K. Scherer, Dualität bei Interpolations- und Approximationsräumen, Dissertation, Aachen, 1969.
- 8. A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, 1959.

LUND INSTITUTE OF TECHNOLOGY, SWEDEN