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DIVISIBLE AND CODIVISIBLE MODULES

PAUL E. BLAND

In this paper divisible and codivisible modules are studied relative
to a torsion theory on Mod R. It is shown, for example, that if the tor-
sion theory is hereditary, then the following are equivalent; Every mo-
dule is codivisible. Every torsionfree module is injective. R/T(R) is
semi-simple Artinian. In addition, codivisible covers are investigated
and it is shown that if every module has a codivisible cover, then R/T(R)
is perfect. A partial converse to this is obtained by showing that if
R/T(R) is perfect, then every torsionfree module has a codivisible cover.
This leaves open the question of whether or not codivisible covers uni-
versally exist when R/T(R) is perfect.

1. Preliminaries.

Throughout this paper R will denote an associative ring with identity
and our attention will be confined to the category Mod R of unital
right R-modules.

In [4], Dickson defined a torsion theory on Mod R to be a pair (4,B)
of non-empty classes of modules such that:

() AnB=0

(b) If A - A* — 0 is exact with 4 € A, then A* € A.

(¢) If 0 > B* - B is exact with B € B, then B* € B.

(d) For each module M in ModR, there is an exact sequence
0>A->M->B->0with AecAand BeB.

Modules in 4 are called torsion and those in B torsionfree. If (4,B) is
a torsion theory, then 4 is closed under isomorphic images, factor mo-
dules, extensions and direct sums, while B is closed under isomorphic
images, submodules, extensions and direct products [4, p. 226, Theorem
2.3]. By saying that a class C of modules is closed under extensions,
we mean that M € C whenever N is a submodule of M such that N and
M|N are in C. If (4,B) is a torsion theory such that B is closed under
injective hulls [5], then (4,B) is called hereditary. It is known that
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(4,B) is hereditary if and only if A is closed under submodules [4, p.
227, Theorem 2.9]. Uniquely associated with each hereditary torsion
theory there is a topologizing idempotent right ideal filter

F = {ISR| I is a right ideal of R and R/I is torsion}

(see Gabriel [6]).

An object functor 7': Mod R — Mod R is said to be a radical if T(M)< M,
f:M — N implies that f(T(M))<T(N) and T(M/T(M))=0. A radical
T such that T(T(M))=T(M) for all modules M is called idempotent.
It is well-known that (4,B) is a torsion theory if and only if there exists
an idempotent radical 7' on Mod R such that

A={AeModR| T(A)=4}
and
B = {BeModR | T(B)=0}

[8, p. 2, Proposition 0.1]. Furthermore, this correspondence is one-to-
one [10, p. 6, Proposition 2.3]. Hence a module M is torsion if and only
if T(M)=M and torsionfree if and only if T'(M)=0. T(M) is usually
referred to as the torsion submodule of M and it can be described as
that (necessarily unique) torsion submodule of M which contains every
torsion submodule of M. If (4, B) is a torsion theory with associated idem-
potent radical 7', then (4, B) is hereditary if and only if T is a left exact
functor [10, p. 8, Proposition 2.6]. (In this context if f: M — N, then
T(f) is the restriction of f to 7'(M)). When T is left exact, it is not diffi-
cult to show that T(N)=NnT(M) for every submodule N of M. If
(4,B) is a torsion theory such that R is torsionfree, then (4,B) is said
to be faithful.

A projective module P(M) together with an epimorphism =:P(M) -~ M
with small kernel is said to be a projective cover of M. A submodule K
of M is said to be small in M if N =M whenever N is a submodule of M
such that K+ N =M. We will call any epimorphism with small kernel
minimal. A ring R is (semi-) perfect if every (cyclic) module has a pro-
jective cover. (See [2] for several characterizations of perfect and semi-
perfect rings). Torsion theories for which every torsion module has a
projective cover have been studied in [3].

In the discussion which follows, (4,B) will denote a torsion theory
on Mod R with idempotent radical 7. When (A4, B) is hereditary, F will
denote the associated idempotent right ideal filter.



DIVISIBLE AND CODIVISIBLE MODULES 155

2. Divisible and codivisible modules.
Following Lambek [8, p. 8] we call a module M divisible provided
that every diagram of the form

0—LI N

l

M

where coker f is torsion can be completed to a commutative diagram.
Dually, M is said to be codivisible if every diagram

M

l

NI.L—o0

where kerf is torsionfree can be completed to a commutative diagram
The usual argument now shows that a (direct sum) direct product of
modules is (codivisible) divisible if and only if each factor is (codivisible)
divisible. The following result is well-known. We include a proof for
completeness.

Lemma 2.1. If (A,B) is hereditary, then for any module M,
T(M) = {we M| (0:z)€F}.
((0:x) denotes the right annihilator of x in R). In particular, T(R) is an
tdeal of R.
Proor.
zeT(M) < xR < T(M) < xR is torsion

<> R/(0:z) is torsion <> (0:x)eF.
Thus

T(M) = {xeM| (0:x)eF}.
If x € T(R) and r € R, then (0:z2)<(0:7z) implies that (0:rx) € F. Hence
rx € T(R) and so T'(R) is an ideal of R.
THEOREM 2.2. If (A,B) is hereditary, then the following are equivalent:

(a) Every module 18 codivisible.
(b) Every torsionfree module s injective.
(¢) R/T(R) is a semi-simple Artinian ring.
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Proor. (¢) = (b). Let M be a torsionfree R-module. If m € M and
z € T(R), then (0:x)<(0:mx) and so (0:mzx) e F since (0:z) € F. Thus
it follows that MT(R)cT(M)=0 and so M is an injective R/T(R)-mo-
dule. Next let I be a right ideal of R and suppose that f:1 — M is R-
linear. If

zeTl)=InTR),

then f(x) =0 since f(7'(I)) < T(M)=0. Hence
g:(I+7T(R))/T(R) > M defined by z+T(R) - f(x)

is a well-defined R-linear mapping which is easily seen to be R/T(R)-
linear. Consequently, by Baer’s criterion [1], there is an m € M such
that

g(z+T(R)) = m(z+T(R))

for all z+T(R) in (I +T(R))/T(R). But this yields f(x) =max for all x € I
and so M is R-injective.
(b) = (a). Consider the diagram

M

lg

L-LsN—0

where K =kerf is torsionfree. Since K is injective, L=K®N’' and
h=f|N':N' — N is an isomorphism. Hence if ¢ =h-1og, then ¢ completes
the diagram commutatively.

(a) = (c). Let I/T(R) be a right ideal of R/T(R). Since I/T(R) is tor-
sionfree, the R-exact sequence

0 - I/T(R) - R/T(R) - B/I -0

splits. Hence I/T(R) is an R-direct summand and consequently an
R/T(R)-direct summand of R/T(R). Thus R/T(R) is semi-simple Arti-

nian.

Notice that from the proof of (a) => (¢) we see that (a) can be replaced
by: Every cyclic module is codivisible.

CoroLLARY 2.3 If (A,B) is a faithful, hereditary torsion theory and every
module s codivisible, then R is semi-simple Artinian.
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The next theorem has a proof which is similar to that of theorem 2.2.
The implications (a) = (b) = (c) are straightforward while (¢) = (a) can
be proven by using the generalized Baer’s criterion for divisible modules
[7, p. 20, Proposition 3.2].

THEOREM 2.4. If (A,B) is hereditary, then the following are equivalent:

(a) Every module 1s divisible.
(b) Every torsion is projective.
(c) Every I € F is a direct summand of R.

If f:M — N is R-linear, then we will call f free if kerf is torsionfree.
The following lemma will prove useful.

Lrmma 2.5. If f: M — N is a minimal, free epimorphism, then f is an
tsomorphism whenever N is codivisible.

Proor. Since K =kerf is torsionfree, the exact sequence
0—K—M-LN—0

splits whenever N is codivisible. Hence M = K@®N' where N’ is a sub-
module of M isomorphic with N. But K is small in M and so K=0.

The following lemma can be found in [9, p. 189, Hilfssatz 3.1].

Lemwma 2.6, If f: M -~ N is R-linear and A is small in M, then f(A) is
small in N.

THEOREM 2.7. Let K =Kkerf where f:C -~ M 1is an epimorphism and C
8 codivisible. Then M 1is codivisible if K is torsion. Conversely, if M is
codivisible and K is small in C, then K 1is torsion.

Proor. Consider the diagram
M

|o
L5 N—0
where kerh is torsionfree. Since C is codivisible gof factors through L.

Suppose ¢:C — L is such that hop=gof. Now ¢:K — kerk and so if
K is torsion, then

¢(K) = ¢(T(K)  T(kerh)) = 0.
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Hence we have an induced mapping ¢*: M — L which completes the
diagram commutatively.
Conversely, suppose that M is codivisible and K is small in C. Then
f*:C[T(K) - M defined by
f*z+T(K)) = f(z)

is a minimal, free epimorphism (kerf*=K/T(K) is small in C/T(K) by
lemma 2.6.). Hence f* must be an isomorphism by lemma 2.5 and so it
follows that K =T(K).

The following theorem shows that a necessary and sufficient condi-
tion for every module to be codivisible can be found which is intrinsic
to R is semi-perfect.

THEOREM 2.8. If (A,B) ts hereditary and R is semi-perfect, then every
module 18 codivisible if and only if J(R)<T(R). (J(R)=the Jacobson ra-
dical of R.)

ProoF. Due to our observation following the proof of (a) = (¢) in
theorem 2.2, we can confine our attention to cyclic modules. Note also
that a right ideal I of R is contained in J(R) if and only if I is small in
R [2, p. 472, Lemma 2.4]. Hence if I cJ(R) is a right ideal of R and
every cyclic module is codivisible, then

0->I->R->R[I->0

is exact with R/I codivisible. Thus it follows from theorem 2.7 that I
is torsion.

Conversely, suppose that J(R)<T(R). If I is any right ideal of R,
then R/I has a projective cover

0>K—>P->R[I->0.

Now we can assume (without loss of generality) that P is a direct sum-
mand of R and so since K is small in P, it follows that K is small in R.
Hence K<J(R) and so K is torsion. Consequently, by theorem 2.8,
R(I is codivisible.

3. Codivisible covers.

A codivisible module C(M) together with a minimal, free epimorphism
u:C(M) ~> M is said to be a codivisible cover of M. As in the case of
projective covers, it can be shown that if

{u.:C(M,) > M} (x€4)
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is a finite family of codivisible covers, then

®ua: @C(M,) ~ DM,

is a codivisible cover. If R/I is a factor ring of R, then an R/I-module
M will be considered to be R/I-codivisible if every diagram

M

|

LLsN—0

of R/I-modules and R/I-module homomorphisms can be completed to
a commutative diagram where kerf is torsionfree when viewed as an
R-module. Similar remarks hold for free R/I-homomorphisms and R/I-
codivisible covers.

The following two theorems also appear in [3] though with slightly
different proofs. We include them here for convenience of the reader
and for the sake of continuity.

THEOREM 3.1. A codivisible cover (when it exists) is unique up to an
isomorphism.

Proor. Let u:C(M) > M and p*:C(M)* -~ M be codivisible covers
of M. Then the diagram
c(M)
B
oM)* 5 M— 0

can be completed to a commutative diagram by a homomorphism ¢
since u* is free. Hence it follows that

C(M)* = Imp+keru*.
But u* is minimal and so ¢ is an epimorphism. Now kergp g kery and
consequently @ is minimal and free. Hence by lemma 2.5 ¢ must be an
isomorphism.
THEOREM 3.2. If n: P(M) - M 18 a projective cover of M, then
w:P(M)|T(kern) - M
18 a codivisible cover of M where p 18 the mapping induced by ¢.

Proor. Since keruz~kern/T(kers), then u is free. Notice again by
lemma 2.6 that kery is small in P(M)/T (kern). Hence u is & minimal,
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free epimorphism. That P(M)/T(kern) is codivisible follows directly
since factor modules of codivisible modules by torsion submodules are
codivisible, theorem 2.7.

We also see by theorem 2.7 that if n: P(M) -~ M is a projective cover
of M, then M is codivisible if and only if kers is torsion. Notice that
since the class of torsionfree modules is closed under extensions, then
C(M) (if it exists) is torsionfree whenever M is torsionfree.

The above theorem shows that every (cyclic) module has a codivisible
cover when R is a (semi-) perfect ring. For the sake of brevity, we will
call R a (t-ring) T-ring if every (cyclic) module has a codivisible cover.

THEOREM 3.3. If R 18 a (t-ring) T-ring, then every factor ring of R is
a (t-ring) T-ring.

Proor. Let R/I be a factor ring of R and suppose that M is an R/I-
module. If y:C(M) — M is an R-codivisible cover of M, then

C* = O(M)/C(M)I

is an R/I-module. Since u(C(M)I)=MI =0, we have an induced mapping
u*:C* > M which is a minimal epimorphism. Now C* is R/I-codivisible
and so it follows that C*/T(keru*) together with the obvious induced
mapping is an R/I-codivisible cover of M.

An identical proof holds for ¢-rings.

If R is torsionfree and M is codivisible then
0—K—F-IsM—o0

splits where K =kerf and f:F — M is a free module om M. It follows
then that M is (projective and) torsionfree. If every codivisible module
is torsionfree, then R is clearly torsionfree. Hence we have the following:

THEOREM 3.4. Every codivisible module is (projective and) torsionfree
if and only if (A,B) 18 faithful.

The above theorem shows that over faithful torsion theories the class
of (t-rings) T-rings and the class of (semi-) perfect rings coincide. From
the work completed the following theorem is now evident.

THEOREM 3.5. If R is a (t-ring) T-ring, then every torsionfree factor ring of
R is (semi-) perfect. In particular, if (A,B) is hereditary, then R/T(R) is
(sems-) perfect.
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In conclusion, we obtain a partial converse to theorem 3.5,

TrEOREM 3.6. If (A,B) 18 hereditary and R[T(R) is (semi-)perfect,
then every torsionfree (cyclic) module has a codivisible cover.

Proor. Suppose that R/T(R) is perfect and let M be a torsionfree
R-module. Then as shown in the proof of theorem 2.2, M is an R/T(R)-
module. Let z:P(M)—> M be an R/T(R)-projective cover of M. If A
is a set of R/T(R)-generators for P(M), then there is a cononical R/T'(R)-
epimorphism

n: @aed Ra/T(Ra) -> P(M)

which is R-linear (R,=R for each « € 4). Now P(M) is an R/T(R)-
direct summand and therefore an R-direct summand of ®,., R,/T(R,).
Thus P(M) is R-codivisible and torsionfree since it is the direct summand
of an R-codivisible, torsionfree R-module. It follows then, that m: P(M) -
M is an R-codivisible cover of M.

The semi-perfect case has a similar proof.
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