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REGIONS OF CONVERGENCE FOR HYPERGEOMETRIC
SERIES IN THREE VARIABLES

PER W. KARLSSON

Horn proved in 1889 a theorem on the region of convergence for a
hypergeometric series [3]. For a number of hypergeometric series in three
variables studied in recent decades [1], [4]-[8], however, regions of con-
vergence have been incorrectly or incompletely given, even though
Horn’s results are referred to. In the present paper we shall give an ac-
count of Horn’s method and thence obtain correct regions of convergence
for the above-mentioned series.

2.
To investigate the convergence of a hypergeometric series in three

complex variables

zm, n,p Am, n, meynzp ’
Horn introduces

Am+1 n
,N, D m,n+1,p
f(m,n,p) = det —A—’—_r g(m’n’p) = det A ’
m,n, P m,n,p
A, n,p11
h(m’n’p) — def ;,n,p ’
m,n,p

which are rational functions, and, discarding possible discontinuities,
D(m,n,p) = g iM,,_, o f(mu,nu,pu), m>0,220,p20,
Y(m,n,p) = get lim,,_, o glmu,nu,pu), m20,n>0,p20,
Q(m,n,p) = ge lim,,_,  h(mu,nu,pu), mz0,n20,p>0,

which are rational functions, too. From these functions, the following
subsets of R,3 are constructed,

C =g, {(r,8,t) | 0<r<|D(1,0,0)]71A0<5<|¥(0,1,0)]72A
A0<t<|0(0,0,1)]71},
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X =gt {(r,80) | V(n,p) eR2: 0<s<|P(0,n,p)|" v
vO<t<|(0,n,p)|"},

Y =got {(r,8,8) | V(m,p) R 2:0<7r<|D(m,0,p)|" v
vO0<t<|R(m,0,p) 1},

Z =4 {(r,8,8) | V(m,n) eR2:0<r<|D(m,n,0) v
v0<s<|¥(m,n,0)|1},

E =g {(r,80) | V(m,m,p) eR3:0<r<|D(m,n,p)| 1V
vO<s<|P(m,n,p)|tvO0<i<|Q(m,n,p) 1},
D=EnXnYnZnC,

finally, let D<(R,U{0})® denote the union of D’ and its projections
upon the coordinate planes.
Horn’s theorem can then be stated as follows: The region D is the
representation in the absolute octant of the convergence region in C3.
We shall describe D’, and D, by that part S of 0D’ which is not con-
tained in coordinate planes.

3.

Horn’s theorem has been applied to the 21 hypergeometric series of
Gaussian type in three variables which the author had encountered in
the literature. (The number of distinct series however, is about one
hundred ; a complete discussion would thus not find a proper place here.)
The results are compiled in the Table, which gives, for each series con-
sidered, the reduced expression for D', the Cartesian equation(s) for S,
and, as an identification, a list of Pochhammer symbol subscripts oc-
curring in numerator and denominator of m!n!p! 4 This means

that, e.g., Fg is the series
m+n+p(b1)m(b2)n(b ) xMy"P

Zm i (cl)m(cz)nﬂam! n' p'

and similarly in all other cases; (h),=I'(h+r)/I'(h) is the Pochhammer
symbol.

For brevity, we do not deduce all results given in the Table; only a
few cases that are less simple than the others will be considered in the
following sections. For the series Fy, Fy— F,, G,—Gp, Hy, previous
results in the literature are corrected; the inclusion of the remaining
geries was not found out of place.

m,n,p*
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Table
Function and Pochhammer
symbol subscripts D’ Cartesian equation(s) of S
Fau men A+ P,mn,p E r+s+t=1
m,n,p
m,m’n’n,p’p — — —
Fg mtn+p c r=1,8=1,t=1
m+n+p,m+n+p _
Fe o p E Vr+Vs+)t=1
Fp m+n+p,m,n,p C r=1,8=1,t=1
m+n+p
m+n +p;m7n+p 2 -
Fg o p E r+(Ys+ )12 =1
O<r<(l—g)2: Jt+)r=1
Fp MARERMADN pay root
m,n+p (1—-8)2=sr<l—s:—+-=1
l1-s8 ¢
F¢ mtn +p,m,n,p Ynz r+t=1,r+s=1
m,n+p
m,n+p,m+p,n 1T
Fx oy E t=(1—7)(1—s)
Fy T APMADT YNC  r+t=1s=1
m,n +p
Fy =~ Tmepmipn YNC  r4t=1,8=1
m,n +p
Fp m+p,n,m-+n,p YNz rat=1,r+s=1
m,n +p
m+p,n,m+p,n — =
Fp 1+ Yno Yr+)t=1,8=1
Fg L e C r=1,8=1,t=1
m+n-+p
Py e tPmAPR c r=1,8=1,t=1
m+n+p
Gqq "Tpomnmtp YNC  r+t=1,8=1
n+p-—m
G "tP-mmn.p c r=ls=11=1
n+p—m
+ O<s<}:ir=1-t
GC m+p,n,N,p—Mm EnN Y . ' 1-—s 1-s8
n+p—m %§a<1:r=mm{l—-t,»— 1- t }
8 8
G m,n,p, N, p —m znce 8(1 +1‘)=l, t=1
n+p-—m
H, p+m,m+n,n+p E r=(1-8)(1—¢)
m,n+p
Hgy p+m,m+n,n+p E r+3+t+2l/('r8t)=l
m,n,p
H, Ptmmtnn+p EnC Jr+s+t=2+2)/((1-r)(1-s)(1-1)),
m+n+p \r=18=1t=1
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4.
Throughout this section and the next it will be understood that
(m,n,p), (r,8,t)€ R3, and that point sets, in simplified notation, are
subsets of R,3 consisting of (r,s,t)-triples.

From the definition of the H series we obtain
m(m+n+ p)

and analogous formulae for ¥ and Q. It readily follows that C is the open
unit cube while

X ={s<lvi<l} > C,;
similarly, Y>C and Z>C; hence, D'=EnC. We now show that the
algebraic surface in C given by

{P(r,8,t)=0Ar,8,te(0; 1)},
where
P(r,8,t) =gqes 2—r—8—t+2[(1—r)(1=8)(1—0)]},

is CNoE and thus CnS. (The remaining parts of S are parts of the faces
of C.) To prove this we first observe that (r,s,t) belongs to E if and only
if for each triple (m,n,p),

(1) O<r < w_@. <8 < M
(p+m)(m+n) (m+n)(n+p)

vilD<t< M

(n+p)(p+m)

Now, if (r,s,t) € C\ B, a triple (m,n,p) exists such that the negation of
(1) is true. This means that

np pm mn

< < —
~ (m+n)(n+p) ~ (n+p)(p+m)

l-r < ———°~
(p+m)(m+n)

and these inequalities yield P(r,s,t)<0. Moreover, the points in C for
which P(r,s,t)=0 do belong to C \ E because with P(r,s,t)=0 and
(m,n,p) = ([r[(1=)I}, [s/(1—8)I}, [t/(1—0)]F)

the negation of (1) can be proved to hold. It follows that CnoE is the
algebraic surface considered.

Finally, consider a point (r,s,t) for which s+¢< 1. For a prescribed
triple (m,n,p), the inequality (1), may hold; if, not, we must have

n(m+n+ p) p(m+n+p)

t<1l—s é 1-—- ’
(m+n)n+p) (n+p)p+m)
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which is (1);. The point thus belongs to E, but for r>1 not to C. We
have already seen that O\ £+ @; thus D’ cannot be expressed simpler
than EnC.

5.
For the G series, the definitions lead to the expressions
D(m,n,p) = (m—n—p)m+p) , P(m,n,p) = __n____,
(m—p)m n+p—m
(n+p—m)p

It follows that C is the open unit cube and that
X = {s14t1>1}, Y ={r+t<l}, Z = {s<(l+r)1}.

(Z is related to the region of convergence for the H, series; cf. e.g.,
[2, § 5.7.2].) The inclusions ZnY<C<X are obvious; hence, D'=
EnYnZ. By definition, a point (r,s,f) belongs to E if and only if for
each triple (m,n,p),

m -1
(2) 0<r<————vO<s<|1-,u-1|v0<t<p|'u l,

(m+p)lu—1]| m+p

where for brevity

B =get n[(m—1p) .
For a point in £ we must have s<1: when s2 1 the inequalities (2) all

fail if we take a suitable triple (m,n,p) with n>m > p. We now prove
that

(3) E = {a<l A [(r < 12—88) v (17:98+(1;s)t< 1)]}

First, suppose that r < $(1—s)/s, s <1, and that a triple (m,n,p) is given.
Then, (2), may hold; if not, we must have |1 —u~!| <s<1; this implies
that u>}, and thus in particular m > p. Consequently,

o _Ln_L_ __”_7’___
r < s 1y<m+pcu—u 1)§<m+mm—1V

which is (2),. These points thus belong to E.
Next, consider a point (r,s,t) for which s<1 and

(4) r < 8~} 1—s)(1—(1—38)s) .
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If for a prescribed triple (m,n,p) neither (2), nor (2); holds, then
(5) 1>82[1-p Atz pu—1m+p)?t.
By (4) and (5), we then obtain

m plu—1| f1—s 1 1—s m
< ) o
(m+p)|u—1| m+p \ 8§ |ju—1]/\ s plu—1|

since (5), implies that (1—s)/s<|u—1|~! and m>p. We are thus led to
(2);, and so the point must belong to E.
We finally consider the points for which either

(¢t 2 s/(1—8)—1rs?/(1—s)2) A (3(1=8)fs <r < (1—8)[s) A (s < 1)
or

(rz(@=9)s) A (s<1).
They do not belong to £ since for these points the triple

(m,m,p) = (1,2/(1—8)—1/(rs),(1 —s)/(rs)—1)

satisfies the negation of (2). This completes the proof of (3).
Comparison of the expressions for F, Y, Z now easily leads to the
equations for S given in the Table, and to the fact that D’ cannot be
written simpler than £nY.
The treatment of Fj is quite parallel to that of G,. We merely notice
that in this case the expressions

X ={s<lvi<l}, Y ={yr+yt<l}, Z ={r+s<l},
E = {s<1a[(rs(1—s?)v(r<(—s)(1—t/s))]}

are obtained.

6.

For the series hitherto considered, the region D’ reduces to an inter-
gection of two sets at most. It is possible to find a hypergeometric series
in three variables, although not of Gaussian type, for which D’ cannot
be expressed simpler than EnXnYnZ. The series is

z (a'l)m+n+p(a’z)m+n+p(b1)m(bz)n(b3)pxmynzp .
it (cl)p+m(62)m+n(63)n+pm! ’)’b' p' ’

that § is given by the Cartesian equations
r+8=1 s+t =1, t+r =1, rs+st+ir = 2)/(rst),

can be proved by methods similar to those applied above.
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7.

It does not seem out of place mentioning the possibility of obtaining
regions of convergence without application of Horn’s theorem. Two
examples will be given.

Consider the F series explicitly defined in section 3. It follows from
Stirling’s theorem that the region of convergence of F coincides with
that of the series

(m+n+p)!m!n!p!
SG = det zm,n,p

m! (n+p)!m!n!p!

2™ y|"=|P

(m+n+p)!
ml(n+p)!

= zm n,p ]xlm|y|n|z]p .
Convergence being absolute, conditions are obtainable from considera-
tion of a particular order of summation:

(m+n+p)!|zm ly|"|=I?

SG Zn,p k’/l ]2[ zm m! (n+p)' n, D (l_lxi)n+p+1'

Consequently, the region of convergence is determined by the conditions
ly| <1—]z|, |2| <1—|z] (and |z| < 1). The boundary S thus has the Carte-
sian equations r+s=1, r+1=¢, as stated in the Table.

Next, we consider Fp, which, again by Stirling’s theorem, has the
same region of convergence as the series

(m+p)! (m+n)!
(m)2%(n+p)!
(m+p)! (m+n)! (m+n+p)!

= zm,n.p ”

m! (m+n+p)! m!(n+p)!

SP = det zm,n,p lxlm|y]n|zlp

|z|™y|"[2|P = Sg ,

since (m+p)! (m+n)!<m! (m+n+p)!. The region of convergence of Sp
thus contains that of S;. On the other hand,

S0 2 Smn I ppmiyn

This series, and so also Sp, is divergent when |z|+ |y| > 1; similarly, Sp
is divergent when |z|+ |z| > 1. It follows that the region of convergence
of Fp equals that of F.

By similar methods, regions of convergence can be determined for
most functions mentioned in the Table, the possible exceptions being
Fy, Go, Gp, Hg.
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