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DEFORMATIONS AND MODULI OF
RIEMANN SURFACES WITH NODES AND SIGNATURES*

LIPMAN BERS

To Werner Fenchel on his 70th birthday.

In two recent notes [2, 3] I outlined a function theoretical approach
to deformation spaces and moduli spaces of compact Riemann surfaces
with nodes. The method makes essential use of the Fenchel-Nielsen para-
metrization of Fuchsian groups. Here I describe a simple device which
permits one to extend the results (and also certain results obtained by
Mumford and others by methods of algebraic geometry) to the case of
Riemann surfaces of finite type with nodes, punctures, and signatures.

A Riemann surface with nodes, S, is a connected complex space such
that every P €S has either a fundamental system of neighborhoods
isomorphic to the unit dise |2| < 1, or a fundamental system of neighbor-
hoods isomorphic to the set z,2,=0 in the unit bicylinder |z,| < 1, |25| < 1.
In the latter case P is called a node. Every component 3 of the comple-
ment of the set of nodes is called a part of S, and § is called stable if every
part has the upper half-plane as its universal covering surface, and there-
fore carries a canonical Poincaré metric.

By a Riemann surface S of finite type we mean a stable Riemann
surface with or without nodes, such that either =0 and § is compact,
or >0 and 8 is compact except for » punctures. (A puncture can never
be at a node.) Such an § has finitely many parts 3;,...,3,, each part 3;
is compact of some genus p;, except for m; punctures, 3p;—3—n;20
(this is the stability condition), and

25-1m; = 2k+mn
where £ is the number of nodes. Also, the total Poincaré area of S equals
A =2737_(2p;—2+n) .
The (arithmetic) genus p of S is defined by the relation

A = 27(2p—2+n).

* Work partially supported by the National Science Foundation.
Received August 6, 1974.
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If one “thickens” each node so as to obtain a smooth surface §, § is
homeomorphic to a compact surface of genus p with n» punctures. The
pair

(p,m)
is called the type of S.

By a Riemann surface with signature we mean a Riemann surface 8
of finite type (p,n) together with an assignment of a ‘‘ramification
number’ » to each puncture; this » is either an integer >1 or the symbol
oo. The signature of S is the sequence

g = (P,N; V,Va. .o, ¥p)

where the »; are the ramification numbers, and », v, < ... <v,.

(The terms ‘ramification number’ and ‘signature’ come from the theory
of Fuchsian groups. For the theory of deformations the actual values of
the ramification numbers do not matter; only the equivalence classes
Ly,...,L, of punctures with the same ramification numbers are of signi-
ficance. It would be better to talk not about the signature but about the
signature type (cf. Engber [4]) of 8, that is, about the sequence
[p,n;1,...,l] where I, is the cardinality of L;, and [, =<... 21,
L+...+l,=n. We retain, however, the traditional terminology, and
note explicitely that the Poincaré metric we use has no relation to the
signature.)

Let 8 and 8’ be two Riemann surfaces of the same signature. A con-
tinuous surjection f: 8" — § is called a deformation if the inverse image
of every node of § is either a node of §’ or a Jordan curve on a part of
8', if, for every part 3 of S, the restriction f-1|3 is an orientation pre-
serving homeomorphism onto f-(¥), and if every puncture of S’ corre-
sponds, under f, to a puncture of S with the same ramification number.
The tndex of f is the difference k—%’ where k and %' are the numbers of
nodes of § and §’, respectively. A holomorphic deformation is called an
isomorphism. Its index is, of course, 0.

The moduli space M, of a signature ¢ is the set of all isomorphism
classes [S] of Riemann surfaces of signature o.

The equivalence class [f] of a deformation f: 8’ — S consists of all
deformations 8’ — § of the form yofop—! where ¢: 8’ -~ 8’ is a deforma-
tion isotopic to an isomorphism and y: 8 - § is a deformation isotopic
to the identity. The deformation space D(S) consists of all equivalence
classes [f] of deformations onto S. To every node P € S there belongs
a distinguished subset {(P)<D(8) consisting of all [f] e D(S) such that
J~Y(P) is a node of f-1(8).

Every deformation g: § - S, induces an allowable mapping g, : D(S) -
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D(8,) which sends [f] € D(S) into [gof] € D(8S,). Also, there is a canonical
mapping D(S) -+ M,, o=signature of §; it takes [f]eD(S) into
[f-X(8)] € M,.

Following the method of [3] one can define in the deformation spaces
and moduli spaces canonical structures of ringed spaces. Then all allow-
able mappings between deformation spaces and all canonical mappings
into moduli spaces become morphisms of ringed spaces.

THEOREM A. The deformation space D(S) of a Riemann surface S of
signature o= (p,n;vy,...,v,) 8 a complex manifold homeomorphic to
C3p-3+n_ ynder a homeomorphism which takes every distinguished subset
{(P) into a coordinate hyperplane. The deformation space is isomorphic to
a bounded domain in C3P-3+n. Hach distinguished subset {(P) is a non-
singular hypersurface in D(S).

TueOREM B. An allowable mapping gy : D(S) — D(8,) is a (holomorphic)
universal covering of the complement of 1 distinguished subsets, where I is
the index of the deformation g: 8 - 8,. If 1=0, g, ts an isomorphism.

THEOREM C. The moduli space M, is a compact normal complex space
(and a V-manifold).

For the case ¢=(p,0), p> 1, that is, for compact S, function-theoret-
ical proofs of Theorems A, B, C are sketched in [2,3]; a detailed presen-
tation will appear elsewhere. Theorem C was proved originally, for
o=(p,0), by Mayer and Mumford (cf. [7]).

THEOREM D. The moduli space M, is a projective variety.

For o=(p,0), p>1, the only known (algebraic-geometric) proof of this
will appear in the forthcoming paper by F. Knudson and Mumford [7].

In order to extend Theorems A through D to the case n >0, we shall
associate to every Riemann surface S of signature o=(p,n;v,,...,%,)
a Riemann surface «(S) of signature (z,0), that is, a compact Riemann
surface of genus v=1(c¢). This is accomplished by attaching to each of
the punctures on § a ‘‘tagging” Riemann surface determined by the
ramification number.

A Riemann surface is called terminal if every part is of type (0,3).
Every deformation of such a surface is equivalent to an isomorphism.
The topology, and hence also the complex structure, of a terminal Rie-
mann surface can be described by a one-dimensional connected graph



DEFORMATIONS AND MODULI OF RIEMANN SURFACES ... 15

with the following properties. An edge of the graph has either two dis-
tinct endpoints (and is called open) or its two endpoints are identified
(and it is called closed). Every vertex of the graph is either incident
with exactly one open edge (such a vertex is called exceptional) or with
exactly one closed edge, or with exactly three distinct open edges. The
non-exceptional vertices are in a one-to-one correspondence with the
parts of S. An open edge is either incident with an exceptional vertex »
and with a non-exceptional vertex »’, and corresponds to a puncture on
the part corresponding to v’, or is incident with two non-exceptional
vertices, v; and v,, and corresponds to a node joining the parts corre-
sponding to v, and v,. A closed edge, finally, incident with a vertex v,
corresponds to a node joining the part corresponding to v to itself.

Let t= 3 be an integer. We denote by V, the terminal surface of type
(2t+2,1), with 6t+4 nodes, defined by a graph with 4¢{+4 vertices
which we denote by ay,a,,...,a;,,9; by,bs,...,0;; 1,65, . .,€14q, d1,ds,. . .,
d,_, and e, and with the following edges: 4¢{+ 6 open edges joining a,; to
a;_, and to a;,y (159iZ8+1), a,, to ay, a, to e, a; to b; (1ZE151), ay,
to ¢, a9 t0 €14y, ¢; to ¢4 and to ¢;; (259Z1), ¢4y to ¢, ¢; to d;
(1=¢=t—1), and 2{—1 closed edges incident with b; (1 <¢=<t) and with
d;, (1£i5t-1).

If § is a Riemann surface with signature o, let @,,...,@, be its punc-
tures, ordered so that ¢; has ramification number »;. Let V1,...,V™ be
disjoint Riemann surfaces, V7 isomorphic to V.4 if ¥;=00, t0 Vyy,94,,
if »;<oco. We denote by «(S) the Riemann surface obtained by joining
each puncture ¢; with the unique puncture of ¥/ into a node. Then
«(S) is a compact Riemann surface with nodes, of genus v=p+ p, where
Po is the sum of the genera of V1,...,V= If S has % nodes, x(S) has
k+mn+ky nodes where k, is the number of nodes on V1,...,V" If n=0,
then «(S)=2_8.

If 8’ is another Riemann surface with signature ¢, and f: 8’ -~ S is a
deformation, we denote by «(f) the unique deformation of «x(S’) onto
«(8) such that

«(f}|8 = f, «(f)| V7 is an isomorphism, 1=Zj=<n.

If § and 8’ are compact, x(f)=f. In all cases, f and x(f) have the same
index.

We observe that « is a functor from the category of Riemann surfaces
(with signature) and deformations to the subcategory of compact sur-
faces; this means that «(id)=id, «(f;ofy) =a(f)ox(f,)-

Also, the following statements are true for a fized signature ¢. Two
Riemann surfaces, «(S) and «(S’) are isomorphic if and only if S and 8’
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are, and two deformations, «(f) and «(f’) are equivalent if and only if
f and f’ are. (Here isomorphism means holomorphic deformation, not
isomorphism in the category mentioned above.) Every deformation
a(8') — «(8) is equivalent to one of the form «(f).

It follows that the deformation space D(S) of a Riemann surface S of
gignature o (with »>0) may be identified with the intersection of k
distinguished subsets of D(x(S)), and that every allowable mapping
gx: D(S) - D(S,) is the restriction of the allowable mapping «(g),:
D(«(8)) - D(x(S,))-

It is now not difficult to extend the validity of Theorems A, B, C
to the case of signatures o with » > 0. (For Theorem C, it is necessary to
go back to the proof of the theorem for n=0). To obtain Theorem D
one shows (by going back to the proof of Theorem C for n=0) that M,
is an analytic subvariety of M, ), and appeals to Theorem D for n=0
(which asserts that M|,  is projective) and to Chow’s theorem.

A similar argument gives the following

CororLLARY. The set R, of conjugacy classes of Fuchsian groups of
signature o has the structure of a quasi-projective algebraic variety.

The proof hinges on the observation that R, can be identified with
the subset of M, corresponding to Riemann surfaces without nodes.

For o=(p,0), the Corollary is the well-known theorem of Baily [1].
For ¢=(p,n;00,...,) the Corollary has been proved, by a different
method, by J. Gilman [5].

We note in conclusion that the functor « gives, at once, an extension
to the case of arbitrary signatures of the results in [3] concerning holo-
morphic families of g-canonical embeddings.
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