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Abstract
For Cuntz-Pimsner algebras of bi-Hilbertian bimodules with finite Jones-Watatani index satisfying
some side conditions, we give an explicit isomorphism between the K-theory exact sequences of
the mapping cone of the inclusion of the coefficient algebra into a Cuntz-Pimsner algebra, and the
Cuntz-Pimsner exact sequence. In the process we extend some results by the second author and
collaborators from finite projective bimodules to certain finite index bimodules, and also clarify
some aspects of Pimsner’s ‘extension of scalars’ construction.

1. Introduction

Mapping cones play an important role in studying the properties of KK-
theory [10], [18], and have likewise been used to further the study of non-
commutative topology and dynamics [9], [20]. The aim of this note is to make
explicit, in a specific case, the abstract relationship between extensions of
C∗-algebras and mapping cone extensions.

The structure of Cuntz-Pimsner algebras lies very close to theirK-theoretic
properties. Using KK-theory to bring out these features requires numerous
calculations [2], [3] which lay bare the similarities of mapping cones and
defining extensions. An important feature of this comparison is that the K-
theory class produced in the proof of KK-equivalence (cf. §6.2) also appears
as a key ingredient when studying Poincaré duality for these algebras [23].

We investigate the relationship between the defining extension of the Cuntz-
Pimsner algebra OE of a bi-Hilbertian bimodule E over A

0 End0
A(FE) TE

π
OE 0, (3.1)

(here FE is the Fock module, TE the Toeplitz-Pimsner algebra and End0
A

denotes the algebra of compact endomorphisms) and the exact sequence of
the mapping coneM(A,OE) of the inclusion of the coefficient algebra A into
OE

0 SOE M(A,OE) A 0,
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where SOE is the suspension. We show that we can construct an explicit
isomorphism of the associated K-theory sequences at the level of unbounded
KK-cycles.

Abstractly, the existence of such an isomorphism follows from the fact that
the KK-category is a triangulated category whose exact triangles are mapping
cone triangles, with isomorphisms given by KK-equivalence (cf. [18]). Indeed,
for every semi-split extension with quotient map π , by [10], one has an iso-
morphism of triangles making the extension triangle equivalent to the mapping
cone triangle of π , i.e. one has a commutative diagram of triangles where all
“vertical” arrows are KK-equivalences.

More specifically, in the case of Cuntz-Pimsner algebras, when the coef-
ficient algebra A is nuclear, the defining extension is semi-split, and hence
one obtains an isomorphism of the extension triangle with the mapping cone
triangle for π

SOE M(TE,OE) TE
π

OE. (1.1)

Using the KK-equivalence between A and TE and the natural Morita equi-
valence between A and End0

A(FE), one can show that the mapping cone tri-
angle

SOE M(A,OE) A OE

for the inclusion of the coefficient algebra A into OE is in turn isomorphic
to (1.1). This follows from the axioms of a triangulated category which imply
that the mapping cone of A → OE is unique up to a (non-canonical) iso-
morphism in KK . Combining the two isomorphisms of triangles, one obtains
the isomorphism

SOE M(A,OE) A OE

= α =

SOE End0
A(FE) TE OE

which induces an isomorphism of the corresponding KK-exact sequences.
In this paper we provide the isomorphism between the associated six-term

exact sequences explicitly at the level of unbounded KK-cycles. This allows
one to exploit these mapping cones in concrete computations. We indicate how
this works in the case of C∗-algebras of non-singular graphs.

Many of the constructions we rely on from [12], [22] were proved for finitely
generated bimodules over unital algebras.

We relax the unitality requirement to extend these results to handle the more
general case of bimodules which are the restriction toA of a finitely generated
module over a unitisationAb. The main reason for this is to handle suspensions.
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Our main result is as follows.

Theorem 1.1. Let E be a bi-Hilbertian A-bimodule with E = Ẽ ⊗Ab A
where Ẽ is a finitely generated bimodule over a unitisation Ab of A.

Further assume thatE satisfies Assumptions 1 and 2 on pages 302 and 303
respectively. Let (OE,�A,D) be the unbounded representative of the defining
extension of OE , and (M(A,OE), �̂A, D̂) the lift to the mapping cone. Then

· ⊗M(A,OE) [(M(A,OE), �̂A, D̂)]:K∗(M(A,OE)) −→ K∗(A)

is an isomorphism that makes diagrams in K-theory commute. If furthermore
the algebra A belongs to the bootstrap class, the Kasparov product with the
class [(M(A,OE), �̂A, D̂)] ∈ KK(M(A,OE),A) is a KK-equivalence.

Together with the identity map, · ⊗M(A,OE) [(M(A,OE), �̂A, D̂)] induces
an isomorphism of KK-theory exact sequences.

Acknowledgements. We thank Magnus Goffeng, Jens Kaad, Bram Mes-
land, Ryszard Nest, and Aidan Sims for discussions regarding the change of
scalars argument (JK and BM) and other fruitful discussions. We also thank
Aidan Sims and Magnus Goffeng for comments on an earlier version of this
article. FA thanks Georges Skandalis for his hospitality in Paris and for useful
comments. We are thankful to the anonymous referee for their careful read-
ing of the work which resulted in an improvement of the exposition. FA was
partially supported by the GNSAGA of INdAM and by NWO under the VIDI-
grant 016.133.326. AR acknowledges the support of the Australian Research
Council.

2. Finite index bi-Hilbertian bimodules for non-unital algebras

We will now show how to extends the results of [22] and [12] to non-unital
algebras using more refined constructions from [13]. In [22] and [12], the basic
data was a unital separable nuclearC∗-algebraA, and a bi-Hilbertian bimodule
E over A in the sense of [13, Definition 2.3].

In this paper we will relax the assumption of unitality employed in [22], [12],
and consequently also the finitely generated and projective hypotheses on the
module E. So we will assume throughout the paper that E is a countably gen-
erated bi-Hilbertian bimodule over A, i.e., E carries A-valued inner products
A(·|·), (·|·)A for which the respective actions are injective and adjointable,
and for which E is complete for both norms. We write AE for E when we
wish to emphasise its left module structure and EA for E when emphasising
the right module structure.
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Note that a bi-Hilbertian bimodule is a special case of aC∗-correspondence
(E, φ) over A, which is a right Hilbert A-module EA endowed with a ∗-
homomorphism φ:A→ End∗A(E), where End∗A(E) is the algebra of adjoint-
able operators on E. For x and y in EA, we denote the associated rank-one
operator by�x,y := x(y|·)A. The algebra of compact operators End0

A(E) is the
closed linear span of the rank-one operators�x,y . The algebra End∗A(E) is the
multiplier algebra Mult(End0

A(E)) of the compact endomorphisms End0
A(E).

Throughout the paper we will assume that there is a unitisation Ab of A
and a bi-Hilbertian Ab-bimodule Ẽ which is finitely generated and projective
as both a right and left module, such that E = Ẽ ⊗Ab A. Sufficient conditions
guaranteeing the existence of such a bimodule Ẽ are discussed in [24]. Later,
we will need to be even more restrictive and ask for the unitisation to be the
minimal one, A∼.

Since E is countably generated (as a right module) there are vectors
{ej }j≥1 ⊂ E such that ∑

j≥1

�ej ,ej = IdE,

where the convergence is in the strict topology of End∗A(E). Such a collection
of vectors is called a frame, and [13, Theorem 2.22] proves that

eβ :=
∑
j≥1

A(ej |ej ) (2.1)

is a well-defined (central positive) element of the multiplier algebra of A if
and only if the left action of A on E is by compact endomorphisms. The
injectivity of the left action which we assume ensures that eβ is invertible
(justifying the notation). Equation (2.1) expresses the finiteness of the right
Jones-Watatani index of E, which is then independent of the choice of frame.
This finiteness condition seems to be the correct replacement for the finitely
generated hypothesis in the non unital case, since a module over a unital algebra
with finite right Jones-Watatani index is finitely generated (and so projective).
As further evidence for this, and for later use, we record the following result.

Proposition 2.1 (cf. [24]). Let E be a bi-Hilbertian A-bimodule with fi-
nite right Jones-Watatani index eβ . Define the suspended bi-Hilbertian SA-
bimodule SE over the suspension SA := C0(R) ⊗ A as follows. Define
SE := C0(R)⊗ E, with the operations (fj , gj ∈ C0(R), aj ∈ A, ej ∈ E)

(g1 ⊗ a1) · (f ⊗ e) · (g2 ⊗ a2) = g1fg2 ⊗ a1ea2

(f1 ⊗ e1|f2 ⊗ e2)SA := f ∗1 f2 ⊗ (e1|e2)A

SA(f1 ⊗ e1|f2 ⊗ e2) = f1f
∗
2 ⊗ A(e1|e2).
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Then SE has finite right Jones-Watatani index given by 1 ⊗ eβ where 1 ∈
Cb(R) is the constant function with value 1 and eβ ∈ Mult(A) is the right
Jones-Watatani index of E. If EA is full so too is SESA and if the left action
of A on E is injective, so too is the left action of SA on SE.

Proof. The proof that SE is bi-Hilbertian is a routine check of the con-
ditions, and so too the statements about fullness and injectivity. The right
Jones-Watatani index must be finite by [13, Theorem 2.22], since SA acts by
compacts on SE, and so it only remains to determine the value of the index.

We let {ej }j≥1 be a (countable) frame for E and pick a partition of unity
(φk)k∈Z subordinate to the intervals (k−ε, 1+k+ε) for some fixed 0 < ε < 1.
Then by a direct computation we find that (

√
φk ⊗ ej )j,k is a frame for SESA

and similarly that∑
j,k

SA

(√
φk ⊗ ej |

√
φk ⊗ ej

) = 1⊗ eβ ∈ Mult(SA) 
 Cb(R)⊗Mult(A).

An important class of examples are the self-Morita equivalence bimodules
(SMEBs) over A. A self-Morita equivalence bimodule is a full bi-Hilbertian
A-bimodule for which

A(e|f )g = e(f |g)A.
We do not require this compatibility condition in the definition of bi-Hilbertian
bimodule: our notion of Hilbert bimodule is different from the one of [7,
Definition 1.8], which was used in [1] in the construction of generalised crossed
products. We will see in Proposition 3.2 that, upon changing the algebra of
scalars, we can always construct a self-Morita equivalence bimodule over
a related algebra out of a bi-Hilbertian bimodule. This implies in particular
that the Cuntz-Pimsner algebra of a bi-Hilbertian bimodule can always be
interpreted as a generalised crossed product in the sense of [1] for a self-Morita
equivalence bimodule over a different algebra.

3. Cuntz-Pimsner algebras and their defining extension

We start from a bi-Hilbertian A-bimodule E with finite right Jones-Watatani
index. We assume that the left action of A (which is necessarily by compacts)
is also injective, and that the right module EA is full. Regarding E as a right
module with a left A-action by adjointable operators (a correspondence) we
can construct the Cuntz-Pimsner algebra OE . This we do concretely in the
Fock representation. The algebraic Fock module is the algebraic direct sum

F
alg
E =

alg⊕
k≥0

E⊗Ak =
alg⊕
k=0

E⊗k = A⊕ E ⊕ E⊗2 ⊕ · · ·
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where the copy of A is the trivial A-correspondence. The Fock module FE is
the HilbertC∗-module completion ofF alg

E . For ν ∈ F alg
E , we define the creation

operator Tν by the formula

Tν(e1 ⊗ · · · ⊗ ek) = ν ⊗ e1 ⊗ · · · ⊗ ek, ej ∈ E.
The expression Tν extends to an adjointable operator on FE , whose adjoint T ∗ν
acts (when ν is homogenous with ν ∈ E⊗|ν|) by

T ∗ν (e1 ⊗ · · · ⊗ ek) =
{
(ν|e1 ⊗ · · · ⊗ e|ν|)A · e|ν|+1 ⊗ · · · ⊗ ek, k ≥ |ν|,
0 otherwise,

and so is called an annihilation operator. The C∗-algebra generated by the set
of creation operators {Te : e ∈ E} is the Toeplitz-Pimsner algebra TE . It is
straightforward to show that TE contains the algebra End0

A(FE) of compact
endomorphisms on the Fock module as an ideal. The defining extension for
the Cuntz-Pimsner algebra OE is the short exact sequence

0 End0
A(FE) TE

π
OE 0. (3.1)

It should be noted that Pimsner [19] in his general construction uses an ideal
that in general is smaller than End0

A(FE). In our case, A acts from the left on
EA by compact endomorphisms, ensuring that Pimsner’s ideal coincides with
End0

A(FE). For ν ∈ F alg
E , we let Sν denote the class of Tν in OE . If ν ∈ E⊗k

we write |ν| := k.
Since we assume A to be separable and nuclear, by [17, Theorem 2.7]

(see also [16, Theorem 7.3]) the algebra OE is separable and nuclear. By [6,
Corollary IV.3.2.5]C∗-algebra extensions with separable and nuclear quotients
are semi-split, hence the defining extension (3.1) is semi-split, i.e. it admits a
completely positive cross section s:OE → TE . As a consequence, the above
extension will induce six terms exact sequences in KK-theory.

Using the natural Morita equivalence between End0
A(FE) and A, the KK-

equivalence between A and TE proved in [19, Theorem 4.4] and [19, Lem-
ma 4.7], the six term exact sequences can be simplified to a great extent.
Specialising to the case of K-theory we obtain

K0(A)
1−[E]−−−−−→ K0(A)

ι∗−−−−−→ K0(OE)

∂ ∂

K1(OE)←−−−−−ι∗ K1(A)←−−−−−1−[E]
K1(A)

where ι∗ := ιA,OE∗ is the map induced by the inclusion ιA,OE :A ↪→ OE of the
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coefficient algebra into the Pimsner algebra, and 1− [E] denotes the Kasparov
product · ⊗A ([IdKK(A,A)]− [E]).

Similarly, the corresponding six term exact sequence forK-homology reads

K0(A)
1−[E]←−−−−− K0(A) ι∗←−−−−− K0(OE)

∂ ∂

K1(OE) −−−−−→
ι∗

K1(A) −−−−−→
1−[E]

K1(A)

3.1. Pimsner’s extension of scalars

Before tackling the extension (3.1), its KK-class and the relation to mapping
cones, we examine the relationship of the Cuntz-Pimsner construction to the
generalised crossed product set up of [1]. Pimsner [19] showed that by chan-
ging the scalars the completely positive cross section mentioned above can
be obtained explicitly, though this is at the expense of changing the exact
sequence (3.1) and the coefficient algebra.

We will recall these constructions, and a little background, with a view to
proving that Pimsner’s extension of scalars realises OE as the Cuntz-Pimsner
algebra of a SMEB. While at least some of the content of this statement is folk-
lore, we could find nothing more explicit than Pimsner’s original construction
in the literature. We provide both a precise statement and proof below.

The formula
z · Sν := z|ν|Sν, ∀ ν ∈ E⊗k,

can be seen to extend to a U(1)-action onOE by an ε/3-argument. We denote
the fixed point algebra for this action by Oγ

E . Averaging over the circle action
defines a conditional expectation

ρ:OE → O
γ

E, ρ(x) :=
∫
U(1)

z · x dz,

where dz denotes the normalized Haar measure on U(1). The infinitesimal
generator of the circle action defines a closed operator N on the completion
XOγ

E
of OE as a Oγ

E-Hilbert module in the inner product defined from ρ.
Under the spectral subspace assumption (see [8, Definition 2.2]), N is a self-
adjoint, regular operator with locally compact resolvent whose commutators
with {Sν : ν ∈ F alg

E } are bounded. In particular,

(OE,XOγ

E
, N) (3.2)

defines an unbounded (OE,O
γ

E)-Kasparov module, where OE is the polyno-
mial algebra in the creation and annihilation operators Se and S∗e , for e ∈ EA.
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With these reminders in place, we turn to the extension of scalars. First,
the self-Morita equivalence bimodule case is precisely when we do not need
to extend the scalars, for those C∗-correspondences (E, φ) over A for which
O
γ

E = A can be characterised as follows.

Proposition 3.1 (cf. [16, Proposition 5.18]). Let (E, φ) be a C∗-corres-
pondence over A with left action given by compact operators, and let OE
be the corresponding Pimsner algebra. Then E is a self-Morita equivalence
bimodule if and only if the fixed point algebraOγ

E coincides with the coefficient
algebra A.

In general,Oγ

E is substantially larger than A and the generator of the circle
action is insufficient for constructing an unbounded (OE,A)-Kasparov module
representing our original extension (3.1).

The unbounded Kasparov module in (3.2) gives a class in KK1(OE,O
γ

E),
and when E is a self-Morita equivalence bimodule, this class represents the
extension (3.1), see [22]. In the more general case when Oγ

E �= A, Pimsner
considered the right Oγ

E-module E′ := E ⊗A Oγ

E , [19, pp. 195–196]. Under
some additional assumptions this enlargement of the scalars puts us back into
the self-Morita equivalence bimodule case, where Cuntz-Pimsner algebras are
known to correspond to the generalised crossed-products of [1, Definition 2.4]
by [15, Theorem 3.7].

Proposition 3.2. Given a correspondence (E, φ), suppose that the module
EA is full and the left action φ is essential, i.e., the linear span of φ(A)EA is
dense inEA. Then the moduleE′ := E⊗AOγ

E is a bi-Hilbertian bimodule over
O
γ

E which is left and right full and which satisfies the compatibility condition

A(ξ |η)ζ = ξ(η|ζ )A,
hence is a self-Morita equivalence bimodule over Oγ

E . The Cuntz-Pimsner
algebra OE

∼= OE′ agrees with the generalised crossed product Oγ

E �E′ Z.

We again thank Jens Kaad and Bram Mesland for fruitful discussions that
lead to the formulation and proof of this result.

Proof. By its very definition, E′ is a right Hilbert Oγ

E-module, with right
action and inner product given by the interior tensor product construction. In
particular, the right inner Oγ

E-valued product is given by

(e1 ⊗ f1|e2 ⊗ f2)Oγ

E
:= (f1|(e1|e2)Af2)Oγ

E
= f ∗1 (e1|e2)Af2,

for e1, e2 ∈ E, f1, f2 ∈ Oγ

E . If the left action of A on E is essential and the
right inner product is full, then E′ is a right-full Hilbert Oγ

E-module by the
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following argument. Using the right fullness of EA, [21, Lemma 5.53] shows
that there exists a sequence yj ∈ E such that for all b ∈ A

lim
k→∞

k∑
j=0

(yj |yj )Ab = b,

and thus because the leftA action is essential limk→∞
∑k
j=0(yj |yj )Ay = y for

all y ∈ E. Now let Sμ1···μnS∗ν1···νn ∈ Oγ

E . We want to show that this element
of the fixed point algebra Oγ

E can be approximated by inner products. By
rewriting the inner product

(Syj Sν1···νnS
∗
μ1···μn |Syj )Oγ

E

= Sμ1···μnS
∗
yj ν1···νnSyj = Sμ1···μn(S

∗
yj
Syj Sν1···νn)

∗

= Sμ1···μn((yj |yj )ASν1···νn)
∗ = Sμ1···μn(S(yj |yj )Aν1···νn)

∗,

we see that

lim
k→∞

k∑
j=0

(Syj Sν1···νnS
∗
μ1···μn |Syj )Oγ

E
= lim

k→∞

k∑
j=0

Sμ1···μn(S(yj |yj )Aν1···νn)
∗

= Sμ1···μnS
∗
ν1···νn ,

and so E ⊗A Oγ

E is right full.
The non-trivial part is the left module structure. We define a left action

φ̃:Oγ

E → End∗
O
γ

E

(E′) by using the natural inclusion E′ ↪→ OE given on

simple tensors by e ⊗ f �→ Se · f , e ∈ E and f ∈ Oγ

E . The fixed point
algebra Oγ

E , called the core, is generated by elements of the form SμS
∗
ν , with

|μ| = |ν| = n. Such elements act on simple tensors by

φ̃(SμSν
∗)(e ⊗ f ) = μ1 ⊗ (Sμ2···μnS

∗
ν2···νn(ν1|e)Af ), e ∈ E, f ∈ Oγ

E,

since Sμ2···μnS∗ν2···νn is again an element of the fixed point algebra Oγ

E .
In order to define a left inner product, we again use the above identification

and define
O
γ

E
(e1 ⊗ f1|e2 ⊗ f2) := Se1f1f

∗
2 S
∗
e2
.

We now show this inner product is left-full. This can be done by choosing a
frame (xi)Ni=1 for EA (N can be infinity).

Then
N∑
i=1

Sxi S
∗
xi
Sμ1···μnS

∗
ν1···νn = Sμ1···μnS

∗
ν1···νn ,
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and at the same time writing ν = ν1ν and μ = μ1μ we have

Sxi S
∗
xi
Sμ1···μnS

∗
ν1···νn = Sxi (xi |μ1)ASμS

∗
ν S
∗
ν1

= O
γ

E

(
xi ⊗ (xi |μ1)A|ν1 ⊗ SνS∗μ

)
,

which shows that the left inner product is full. We conclude by checking the
compatibility condition by computing that

φ̃
(
O
γ

E
(e1 ⊗ f1|e2 ⊗ f2)

)
e3 ⊗ f3

= φ̃(Se1f1f
∗
2 S
∗
e2
)e3 ⊗ f3 = e1 ⊗ (f1f

∗
2 S
∗
e2
Se3f3)

= e1 ⊗ f1 (f
∗
2 S
∗
e2
Se3f3) = e1 ⊗ f1 (e2 ⊗ f2|e3 ⊗ f3)Oγ

E
.

3.2. The extension class

First we recall that odd Kasparov modules give rise to extensions, and indeed
all semi-split extensions [14] give rise to odd Kasparov modules. The Kasparov
modules we will deal with will come from unbounded Kasparov modules via
the bounded transform [4].

Definition 3.3. An odd unbounded Kasparov module for the C∗-algebras
A, B is a triple (A , EB,D) where EB is a countably generated right C∗-
B-module, A ⊂ A is a dense ∗-subalgebra which is represented as ad-
jointable operators on EB , and D is a self-adjoint regular operator such that
aDom(D) ⊂ Dom(D) for all a ∈ A , [D , a] extends to an adjointable oper-
ator and a(1+D2)−1/2 is a compact endomorphism.

A Kasparov module representing the class of the extension (3.1) was con-
structed in [22], under the assumption that A is unital and E is finitely gen-
erated, and a further assumption discussed below. Here we recall the salient
points, and extend the discussion to handle the non-unital situation.

LetE be a bi-HilbertianA-bimodule with finite right Jones-Watatani index,
full as a right module and with injective left action of A. We choose a frame
(ei)i≥1 for EA. The frame (ei)i≥1 induces a frame for E⊗Ak , namely (eρ)|ρ|=k
where ρ is a multi-index and eρ = eρ1 ⊗ · · · ⊗ eρk . We define

�k: End00
A (E

⊗Ak)→ A, �k(T ) =
∑
|ρ|=k

A(T eρ |eρ).

Here End00
A (E

⊗Ak) denotes the finite rank operators on E⊗Ak . It follows from
[13, Lem. 2.16] that�k does not depend on the choice of frame and extends to
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a norm continuous map on End0
A(E

⊗k), [13, Corollary 2.24]. By [13, Proposi-
tion 2.27], the functionals �k extend to strictly continuous maps
�k: End∗A(E⊗k)→ Mult(A).

In particular, we denote by eβk the element�k(IdE⊗Ak ) =
∑
|ρ|=k A(eρ |eρ) ∈

Mult(A). Since �k is independent of the choice of frame, so is eβk . Note that
eβk is a positive, central, invertible element of Mult(A), [13, Corollary 2.24,
2.28]. Therefore βk is a well-defined self-adjoint central element in Mult(A).

We further extend the functional �k to �k: End∗A(FE) → Mult(A) by
defining �k(T ) := �k(PkT Pk) for T ∈ End∗A(FE), where Pk:FE → E⊗k
is the projection. Naively, we would like to define

�∞(T ) “:=” ress=1

∞∑
k=0

�k(T )e
−βk (1+ k2)−s/2, (3.3)

for suitable T ∈ End∗A(FE).
Indeed,�k(T )e−βk is easily shown to be bounded, and so it is tempting to try

to define�∞ using some ‘generalised residue’in the sense of generalised limits
and Dixmier traces. In general, problems arise since�∞ (if well-defined) is not
a numerical functional, but A-valued. Worse still, in the non-unital setting we
only have the strict continuity of the�k in general. The lack of norm continuity
is handled as follows.

Lemma 3.4. Suppose that T ∈ TE ⊂ End∗A(FE). Then for k = 0, 1, 2, . . .,
the compression PkT Pk is a compact endomorphism on E⊗k , and hence
�k: TE → A is norm continuous.

Proof. We approximate T ∈ TE in norm by a finite sum of generators
TξT

∗
η for ξ, η ∈ FE homogenous. If |ξ | �= |η| then PkTξT ∗η Pk = 0, and so we

suppose that |ξ | = |η|.
In that case, for k < |ξ | we again have PkTξT ∗η Pk = 0, while for k ≥ |ξ |

the endomorphismPkTξT
∗
η Pk coincides with a compact endomorphism ofE⊗k

by [19, Corollary 3.7] and the injectivity of the left action of A. Since PkT Pk
is approximated in norm by finite sums of endomorphisms PkTξT ∗η Pk , PkT Pk
is a compact endomorphism of E⊗k .

Thus for Re(s) > 1, since ‖�k(T )e−βk‖ ≤ ‖T ‖, the map

TE � T �→
∞∑
k=0

�k(T )e
−βk (1+ k2)−s/2

is norm continuous. The only remaining problem with the tentative definition
in Equation (3.3) is the existence of the residue. Following [22], we work under
the following assumption guaranteeing that the residue exists for T ∈ TE .
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Assumption 1. We assume that for every k ∈ N, there is a δ > 0 such that
whenever ν ∈ E⊗k there exists a ν̃ ∈ E⊗k satisfying

‖e−βnνeβn−k − ν̃‖ = O(n−δ), as n→∞.

When Assumption 1 holds, Equation (3.3) defines an A-bilinear functional
�∞: TE → A, which is a continuous A-bilinear positive expectation, which
in addition vanishes on End0

A(E) ⊂ TE . Hence �∞ descends to a positive
A-bilinear expectation �∞:OE → A. The details of this construction can be
found in [22, Section 3.2], and the only change in the non-unital case is the
norm continuity, which follows from Lemma 3.4. This functional furnishes
us with an A-valued inner product (S1|S2)A := �∞(S∗1S2) on OE , and the
completed module is denoted �A.

We assume that Assumption 1 holds for the remainder of the paper.

Theorem 3.5. If the bi-Hilbertian bimodule E satisfies Assumption 1, then
the tuple (OE,�A, 2Q−1) is an odd Kasparov module representing the class
of the extension (3.1). The projectionQ has range isometrically isomorphic to
the Fock module FE .

Example 3.6. WhenE is a self-Morita equivalence bimodule,�∞:OE →
A coincides with the expectation ρ:OE → O

γ

E discussed prior to Equa-
tion (3.2). Therefore

�A =
⊕
n∈Z

E⊗n

with the convention that E⊗(−|n|) = E⊗|n|, where E is the conjugate module,
which agrees with the C∗-algebraic dual of E. In this case we can define the
number operator N on the module �A by Nρ = nρ for ρ ∈ E⊗n. Then
(OE,�A,N) is an unbounded Kasparov module representing the class of the
extension (3.1) in KK1(OE,A), by [22, Theorem 3.1].

Theorem 3.5 was extended in [12], where an unbounded representative of
the class defined by (OE,�A, 2Q − 1) was presented. In order to construct
the unbounded representative D we need an additional assumption on the
bimodule. Under Assumption 1, we can define the operator �k:E⊗k → E⊗k
by

�kν := ν̃ = lim
n→∞ e−βnνeβn−k .

By [12, Lemma 2.2], each �k is adjointable for both module structures, a
bimodule map and positive. Then in order to construct D we need to assume
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Assumption 2. For any k, we can write �k = ckRk = Rkck where Rk ∈
End∗A(E⊗k) is a projection and ck is given by left-multiplication by an element
in Mult(A).

Both Assumptions 1 and 2 hold for a wide variety of examples, as shown
in [22] and [12].

When A is unital and Assumption 2 holds, [12, Theorem 2.10] proves that
the module�A decomposes as a direct sum of bi-HilbertianA-bimodules�n,r
of finite right Jones-Watatani index.

The direct sum decomposition holds just as in the unital case. To check that
the summands have finite right Jones-Watatani index in the non-unital case,
we need to compute the index directly in terms of the frame for �A presented
in [12, Lem. 2.8, 2.9]. The construction of the frame begins with a frame {ej }j≥1

forEA and a frame {fk}k≥1 for AE, and produces a frame {W
eρ,c

−1/2
|σ | fσ
}ρ,σ ⊂ �A

for multi-indices ρ, σ , and where c|σ | is as in Assumption 2. For fixed values
of |ρ|, |σ | we have∑

|ρ|=r,|σ |=s
A

(
W
eρ,c

−1/2
s fσ

∣∣W
eρ,c

−1/2
s fσ

)
=

∑
|ρ|=r,|σ |=s

�∞(Seρ S
∗
c
−1/2
s fσ

S
c
−1/2
s fσ

S∗eρ )

=
∑

|ρ|=r,|σ |=s
�∞(Seρ (c

−1/2
s fσ |c−1/2

s fσ )AS
∗
eρ
)

≤ ‖c−1
s ‖

∑
|ρ|=r,|σ |=s

�∞(Seρ (fσ |fσ )AS∗eρ )

≤ ‖c−1
s ‖

∑
|ρ|=r

�∞(Seρ �sS
∗
eρ
) ≤ ‖cs‖−1�s

∑
|ρ|=r

�∞(Seρ S
∗
eρ
)

= ‖cs‖−1 �s eβr ,

where �s is the left numerical Jones-Watatani index of E⊗s , which is finite
by [13, Theorem 4.8]. This computation shows (in particular) that the sum-
mands �n,r in the decomposition

�A =
⊕

n∈Z,r≥max{0,n}
�n,r (3.4)

are bi-Hilbertian A-bimodules of finite right Jones-Watatani index, and we
denote the projections onto these sub-modules by Pn,r .

Then one defines D =∑n,r ψ(n, r)Pn,r whereψ is a suitable function, [12,
Definition 2.12]. By [12, Lem. 2.14] the projectionQ appearing in Theorem 3.5
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has the form

Q =
∞∑
n=0

Pn,n,

with respect to the above decomposition (3.4).

Remark 3.7. Note that in the self-Morita equivalence bimodule case, a
suitable choice of the operator D along with the decomposition of the module
�A gives the number operator and the decomposition described in Example 3.6.

We assume that Assumption 2 holds for the remainder of the paper.

Theorem 3.8. If the bi-Hilbertian A-bimodule E satisfies Assumptions 1
and 2, then the triple (OE,�A,D) is an odd unbounded Kasparov module
representing the class of the extension (3.1). The spectrum of D can be chosen
to consist of integers with bi-HilbertianA-bimodule eigenspaces of finite right
Jones-Watatani index, and non-negative spectral projection Q.

The only difference arising from Theorem 2.16 of [12] in the non-unital
case is that the resolvent of D is not compact, but only locally compact. This
follows since, just as in Lemma 3.4, the compression Pm,sSPn,r of S ∈ OE

is a compact endomorphism. Since the eigenvalues of D are chosen to have
±infinity as their only limit points, we find that S(1 + D2)−1/2 is a norm
convergent sum of compacts.

Our last task before turning to the mapping cone exact sequence is to show
that the class of modules we consider is stable under suspension. Proposi-
tion 2.1 gives us most of what we want, and we just need to check that if E
satisfies Assumptions 1 and 2 then so too does SE.

Proposition 3.9. LetE be a bi-HilbertianA-bimodule withE = Eb⊗Ab A
where Eb is a finitely generated bimodule over the unitisation Ab of A. If E
satisfies Assumptions 1 and 2, then the suspended module SE := (C(S1) ⊗
Eb)⊗C(S1,Ab) SA is a bi-Hilbertian SA-bimodule and satisfies Assumptions 1
and 2.

Proof. This follows from Proposition 2.1 and the fact that the right Jones-
Watatani index of (SE)⊗k is 1 ⊗ eβk where eβk is the right Jones-Watatani
index of E⊗k .

4. Comparing the mapping cone and Cuntz-Pimsner exact sequences

In addition to the defining exact sequence forOE , we can look at the mapping
cone extension for the inclusion ιA,OE :A ↪→ OE of the scalars into the Cuntz-
Pimsner algebra. Recall that the mapping cone M(A,OE) of the inclusion
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ιA,OE is the C∗-algebra

M(A,OE) := {f ∈ C([0,∞),OE) : f (0) ∈ A, f (∞) = 0, f continuous
}

We will frequently abbreviateM(A,OE) toM . The algebraM fits into a short
exact sequence involving the suspension, for which we use the convention
SOE 
 C0((0,∞),OE).

The mapping cone extension

0 SOE
j∗

M(A,OE)
ev

A 0,

with ev(f ) = f (0) and j (g ⊗ a)(t) = g(t)a, is semi-split and induces six
term exact sequences in KK-theory.

Specialising to K-theory yields the exact sequence

K0(A)
∂ ′

K0(OE)
j∗

K1(M)

ev∗ ev∗

K0(M)
j∗

K1(OE)
∂ ′

K1(A)

By [9, Lemma 3.1] the boundary map ∂ ′:Kj(A) → Kj(OE) is given, up to
the Bott map Bott:Kj(OE) → Kj+1(SOE), by minus the inclusion of A in
OE , i.e. ∂ ′ = −Bott ◦ιA,OE∗. Similar considerations hold for theK-homology
exact sequence.

We now compare the defining short exact sequence forOE and the mapping
cone sequence for the inclusion ιA,OE :A ↪→ OE . To do so, we use the identific-
ation Bott:Kj(OE)→ Kj+1(SOE) to define a map jB∗ :Ki(OE)→ Ki+1(M)

given by j∗ ◦Bott. Then we have the partial comparison with two out of three
maps given by the identity:

· · · −→ K∗(OE)
jB∗

K∗+1(M)
ev∗

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
= ? = =

· · · −→ K∗(OE)
∂

K∗+1(A)
1−[E]

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
Thus the question we seek to address is whether there is a map that can

be put in place of ? which makes the diagram commute (and so provides an
isomorphism of six-term sequences).

Remark 4.1. As pointed out in the introduction, the existence of an iso-
morphism between the two exact sequences follows from the fact that the
KK-category is triangulated, with exact triangles the mapping cone triangles.
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The missing map can be easily constructed as a Kasparov product with the
class

[̃α]⊗M(TE,OE) [u]⊗End0
A(FE)

[FE] ∈ KK(M,A), (4.1)

where α̃:M(A,OE)→ M(TE,OE) is the inclusion of mapping cones induced
by the natural inclusion α:A→ TE , [FE] ∈ KK(End0

A(FE),A) is the class
of the Morita equivalence, and [u] ∈ KK(M(TE,OE),End0

A(FE)) is the KK-
equivalence given by [10, Corollary 2.4].

In the following we will provide an unbounded representative for a class that
makes diagrams inK-theory commute, by lifting the unbounded representative
of the extension class to the mapping cone, as we describe below. The axioms
of triangulated categories do not guarantee the uniqueness of such a class,
hence we leave it as an open problem to verify that our unbounded Kasparov
module is a representative for the class in (4.1).

The map ∂ is implemented by the Kasparov product with the class of the
defining extension. Now we are working under Assumptions 1 and 2, and so
we have an explicit unbounded representative (OE,�A,D) for the defining
extension. As noted earlier, D has discrete spectrum and commutes with the
left action of A, hence we have ι∗A,OE [(OE,�A,D)] = 0. In particular there is

a class [D̂ ] ∈ KK(M(A,OE),A) such that jB∗[D̂ ] = [(OE,�A,D)]. As the
notation suggests, there is an explicit unbounded representative for the class
[D̂ ], provided by the main result of [9].

Subject to some further hypotheses, the class [D̂ ] can be used to help com-
pute index pairings, [9, Theorem 5.1], because of the explicit unbounded rep-
resentative. The even unbounded Kasparov module representing the class [D̂ ]
is denoted (

M(A,OE), �̂A = X ⊕X∼, D̂
)
. (4.2)

The module X is a completion of L2([0,∞)) ⊗ �A while X∼ also contains
functions with a limit at infinity. The operator is given by

D̂ =
(

0 −∂t +D

∂t +D 0

)
,

together with suitable APS-type boundary conditions, [9, Section 4.1]. The de-
tails will not influence the following discussion, but we stress that the operator
is concrete, and so index pairings are explicitly computable.

Trying ·⊗̂MD̂ in place of ? we find that the squares to the left of each
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instance of D̂ in the diagram

· · · −→ K∗(OE)
jB∗

K∗+1(M)
ev∗

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
= ·⊗[D̂ ] = =

· · · −→ K∗(OE)
∂

K∗+1(A)
1−[E]

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
(4.3)

commute. Now what about the squares to the right? We tackle this question in
the next Section.

5. The K-theory of the mapping cone of a Cuntz-Pimsner algebra

We use the characterisation of theK-theory groupK0(M) due to [20]. Classes
in K0(M) can be realised as (stable homotopy classes of) partial isometries
v ∈ Mk(O

∼
E ) with range and source projections vv∗, v∗v ∈ Mk(A

∼). Here we
adjoin a unit, when A and OE are non-unital.

In the usual projection picture, the class of the partial isometryv corresponds
to the class [9, Section 5]

[ev]−
[(

1k 0

0 0

)]
, ev(t) =

(
1k − 1

1+t2 vv
∗ −it

1+t2 v
it

1+t2 v
∗ 1

1+t2 v
∗v

)
.

Returning to the exact sequence, we again let v be a partial isometry over
OE , say v ∈ Mk(O

∼
E ), with v∗v and vv∗ projections over ιA,OE (A

∼). Then
by [20, Lemma 2.3] we have ev∗([v]) = [v∗v]− [vv∗]. In the other direction,
we need to evaluate the product [v]⊗OE [D̂ ]⊗A ([IdKK(A,A)]− [E]).

Our strategy is to use [9, Theorem 5.1], to find that the latter product equals

− Index(QkvQk: v
∗vF kE → vv∗FkE)⊗A ([IdKK(A,A)]− [E]), (5.1)

where Qk = Q ⊗ 1k , and Q�A = FE , the Fock module. Here [E] is short
hand for the class in KK(A,A) of (A,EA, 0), and similarly [IdKK(A,A)] can be
represented by (A,AA, 0).

In order to be able to use this formula, we need to check the hypotheses
of [9, Theorem 5.1], and then actually compute the product in Equation (5.1).
The precise statement of [9, Theorem 5.1] in our case is

Theorem 5.1. Let (OE,�A,D) be the unbounded Kasparov module for
the C∗-algebras OE and A representing the extension class. Let (M, �̂A, D̂)

be the unbounded KasparovM(A,OE)-A module of Equation (4.2). Then for
any unitary u ∈ Mk(O

∼
E ) such that Qk and the projection (ker D)⊗ Idk both
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commute with u(D ⊗ Idk)u∗ =: uDku
∗ and u∗Dku we have the following

equality of index pairings with values in K0(A):

〈[u], [(OE,�A,D)]〉 := Index(Qku
∗Qk)

= Index(eu(D̂ k+1,+)eu)− Index(D̂ k+1,+)

=:

〈
[eu]−

[(
1k 0

0 0

)]
, [(M, �̂A, D̂)]

〉
∈ K0(A).

Moreover, if v is a partial isometry, v ∈ Mk(O
∼
E ), with vv∗, v∗v ∈ Mk(A

∼)
and such thatQk and (ker Dk) both commute with vDkv

∗ and v∗Dkv we have〈
[ev]−

[(
1k 0

0 0

)]
, [(M, �̂A, D̂)]

〉
= −Index

(
QkvQk: v

∗vF kE → vv∗FkE
)
.

It is important to observe that when we consider vDkv
∗, we are suppressing

the representation of v on �kA, but it makes a difference in what follows. For
this reason we temporarily introduce the notation ϕ:OE → End∗A(�A) for
the representation. This representation naturally extends to a representation
ϕk:Mk(O

∼
E )→ End∗A(⊕ki=1�A).

The next result, that we state here in the particular case of Cuntz-Pimsner
algebras of bimodules satisfying Assumptions 1 and 2, holds in general for
any representation of an algebra on a bimodule, for which there exists a de-
composition of the type in Equation (3.4).

Lemma 5.2. Given v ∈ Mk(O
∼
E ), define

vm,s :=
∑

n∈Z,r≥max{0,n}
Pn+m,r+sϕk(v)Pn,r .

Then ϕk(v) =∑m,s vm,s where the sum converges strictly. If v is a partial iso-
metry with range and source projections in A, the vn,r are partial isometries
with v∗n,rvm,s = δn,mδr,sv∗n,rvn,r and vn,rv∗m,s = δn,mδr,svn,rv∗n,r . Hence the pro-
jections v∗n,rvn,r are pairwise orthogonal, and likewise the projections vn,rv∗n,r
are pairwise orthogonal.

Proof. The first statement follows from the definition of vm,s , the ortho-
gonal decomposition �A = ⊕�n,r , together with the fact that

∑
n,r Pn.r con-

verges to Id�A strictly.
Now suppose that we have v ∈ O∼E a partial isometry with range and source

projections inA∼ (the following argument adapts to partial isometries in matrix
algebras). Then we have

ϕ(v) =
∑

vm,s .
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Since vv∗ and v∗v are in A∼, we see, in particular, that they commute with D .
Hence

vv∗ =
∑

vm,sv
∗
n,r ∈ A∼ ⇒ vm,sv

∗
n,r = δm,nδs,rvm,sv∗m,s .

Similarly v∗m,svn,r = δm,nδs,rv∗m,svn,r . Now we recall that vv∗ is a projection
and consider

vv∗ =
∑

vm,sv
∗
m,s = (vv∗)2 =

(∑
vm,sv

∗
m,s

)2

=
∑

vm,sv
∗
m,svn,rv

∗
n,r =

∑
(vm,sv

∗
m,s)

2

where the last equality follows from v∗m,svn,r = δm,nδs,rvm,sv∗m,s . Since we also
have vm,sv∗m,svn,rv∗n,r = 0 for (m, s) �= (n, r), we see that each vm,sv∗m,s is a
projection in A∼, and the various vm,sv∗m,s are mutually orthogonal. Similarly,
the v∗m,svm,s form a set of mutually orthogonal projections.

We deduce the commutation relation vm,sP�,t = P�+m,t+svm,s for all �,m ∈
Z, t ≥ max{0, �}, s ≥ max{0,m}. This seems surprising given the more
complicated commutation relation of [12, Lem. 2.15], but they are reconciled
by the following observation (proved in the Lemma below). If μ ∈ FE is
homogenous of degree |μ| then for n sufficiently large and positive

Pn+|μ|,n+|μ|SμPn,n �= 0.

Hence Sμ =∑|μ|j=0(Sμ)|μ|,j has Sμ,|μ| �= 0, so the decomposition in the Lemma
uses much more information than just the degree given by the gauge action.

Lemma 5.3. Suppose that S ∈ O∼E satisfies Sn,r �= 0 for some n ∈ Z and
r ≥ max{0, n}. Then Sn,n �= 0.

Proof. We approximate S by a finite sum of monomials SαS∗β . Then Sn,r
is approximated by monomials SαS∗β with |α| = r and |α| − |β| = n.

For such monomials, and m > |β|, we have the inclusion SαS∗βPm,m�A ⊂
Pm+|α|−|β|,m+|α|−|β|SαS∗β�A, and by considering [SβSγ ] ∈ �A we also see that
SαS

∗
βPm,m �= 0. Hence Pm+|α|−|β|,m+|α|−|β|SαS∗βPm,m �= 0 for m > |β|. Hence

(SαS
∗
β)|α|−|β|,|α|−|β| = (SαS∗β)n,n �= 0 and so also Sn,n �= 0.

Lemma 5.4. Let v ∈ O∼E be a partial isometry with range and source
projections inA∼. Then ϕ(v) is a finite sum of ‘homogenous’components vm,s .

Remark 5.5. We are effectively repeating the argument of [8, Lem. 4.4
and 4.5] for modular unitaries and partial isometries.

We know that eitDϕ(S)e−itD ∈ ϕ(OE) for partial isometries S with range
and source in A, and that is all we will need.



310 F. ARICI AND A. RENNIE

Proof. First suppose that v is unitary, and definewt=ϕ(v∗)eitDϕ(v)e−itD .
It follows from Lemma 5.2 thatwt commutes (strongly) with D for all t . Then

wt+s = ϕ(v∗)ei(t+s)Dϕ(v)e−i(t+s)D
= ϕ(v∗)eitDϕ(v)e−itD eitDϕ(v∗)e−itD ei(t+s)Dϕ(v)e−i(t+s)D

= wteitD
(
ϕ(v∗)eisDϕ(v)e−isD

)
e−itD

= wteitDwse−itD
= wtws.

Hence wt is a norm continuous path of unitaries in A∼, whence wt = eita for
some a = a∗ ∈ A∼. Thus eitDϕ(v)e−itD = ϕ(v)eita . Recall now that we can
choose D to have only integral eigenvalues, and so ϕ(v) = ϕ(v)ei2πa . Hence
a has spectrum a finite subset of Z, and we then easily see that only finitely
many components vm,s can be non-zero. In the general case we replace v by
the unitary (

1− v∗v v∗
v 1− vv∗

)
and argue as above.

Lemma 5.6. For any partial isometry v over O∼E with range and source
projections in A∼, the operators ϕ(v)Dϕ(v∗) and ϕ(v∗)Dϕ(v) commute with
both the kernel projection of D and the non-negative spectral projection of D ,
given by Q.

Proof. We assume for simplicity that v ∈ O∼E . Using Lemmas 5.2 and 5.4,
we see that the following computation is justified and yields the first claim:

vDv∗ =
∑
m,s

vPm,sψ(m, s)v
∗ =

∑
m,s,n,r

vn,rPm,sψ(m, s)v
∗

=
∑
m,s,n,r

Pm+n,s+rψ(m, s)vn,rv∗ =
∑
m,s,n,r

Pm+n,s+rψ(m, s)vn,rv∗n,r .

The claims about v∗Dv follow in the same way.

6. The isomorphism K∗(M(A, OE)) → K∗(A) and the KK-equivalence

To prove that · ⊗M D̂ :K∗(M(A,OE)) → K∗(A) gives an isomorphism we
need only show that ·⊗M D̂ makes the diagram commute, since it then follows
from the five lemma of homological algebra that taking the Kasparov product
with D̂ is an isomorphism.
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To prove that · ⊗M D̂ :K∗(M(A,OE))→ K∗(A) yields a KK-equivalence
requires much more in general, but follows relatively easily in the bootstrap
case. We go further, and provide an explicit inverse when it exists, and conjec-
ture that in fact it is an inverse in all generality.

6.1. The isomorphism in K-theory

We now know enough to prove the commutation of the diagram in Equa-
tion (4.3). We first consider · ⊗M [D̂ ]:K0(M(A,OE))→ K0(A), and in this
situation begin by considering v = vm,s ‘homogenous’.

By [12, Lemma 2.14], the range of Q is the range of
∑

n≥0 Pn,n, hence
QvQ = 0 unless s = m. For s = m we have

Index(QvQ: v∗vFE → vv∗FE)⊗A (IdKK(A,A)−[E])

=
⎧⎨⎩
(
[⊕−m−1

j=0 v∗vE⊗j ]
)⊗A ([IdKK(A,A)]− [E]), m < 0,(−[⊕m−1

j=0 vv
∗E⊗j ]

)⊗A ([IdKK(A,A)]− [E]), m ≥ 0,

=
{

[v∗vA]− [v∗vE⊗−m], m < 0,

−[vv∗A]+ [vv∗E⊗m], m ≥ 0,

where the last equality follows from a telescopic argument. So to prove that

Index(QvQ: v∗vFE → vv∗FE)⊗A (IdKK(A,A)−[E]) = ev∗([v])

= [v∗v]− [vv∗]

we are reduced to proving the isomorphisms of A-modules

vv∗E⊗m 
 v∗vA for m > 0 and v∗vE⊗|m| 
 vv∗A for m < 0.

This is straightforward though, by the following argument.
Form < 0, the map v: v∗vE⊗|m| → vE⊗|m| ⊂ A is a one-to-oneA-module

map, which is onto its image, which is contained in vv∗A. Hence v∗vE⊗|m|
and vE⊗|m| are isomorphic.

For m > 0, the map v∗: vv∗E⊗|m| → v∗E⊗|m| ⊂ A is a one-to-one A-
module map, which is onto its image, which is contained in v∗vA. Hence
vv∗E⊗|m| and v∗E⊗|m| are isomorphic.

Thus the result is true for homogenous partial isometries, and likewise
for direct sums of homogenous partial isometries, and by Lemma 5.4 this is
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enough. This gives commutativity of the diagram

K0(M)
ev∗−−−−−−−−→ K0(A)

·⊗[D̂ ] =

K0(A) −−−−−−−−→·⊗(IdA −[E])
K0(A)

and hence an isomorphism · ⊗M [D̂ ]:K0(M(A,OE))→ K0(A). To complete
the argument, we need to consider suspensions.

If f ∈ SM(A,OE) we let f (t) = gt with gt ∈ M(A,OE) for all t ∈ R.
Then define

�: SM(A,OE)→ M(SA,SOE), (�(f )(s))(t) = gt (s),
where s ∈ [0,∞), t ∈ R, and check that � is an isomorphism. Hence, in
particular, K1(M(A,OE)) ∼= K0(M(SA,SOE)).

Next we observe thatOSE
∼= SOE . The isomorphism is defined on gener-

ators by ϕ(Sf⊗e) = f ⊗Se, and using the gauge invariant uniqueness theorem,
as in [16, Theorem 6.4], we see that the map is injective, and then since the
range contains the generators of SOE , it is an isomorphism.

The unitary isomorphism (SA,SESA, 0) = (C0(R), C0(R)C0(R), 0) ⊗C
(A,EA, 0) of Kasparov modules shows that the suspension of the map · ⊗A(
(A,AA, 0) − (A,EA, 0)

)
is the map · ⊗SA

(
(SA,SASA, 0) −

(SA,SESA, 0)
)
. A similar but easier statement holds for the suspension of the

evaluation map, and so combining these various facts we find that the diagram

K1(M(A,OE))
S ev∗−−−−−−−−→ K1(A)

·⊗[D̂ ] =

K1(A) −−−−−−−−−−−→
S⊗(IdA −[E])

K1(A)

is given by
K0(M(SA,SOE))

ev∗−−−−−−−−→ K0(SA)

·⊗[D̂ ] =

K0(SA) −−−−−−−−−−−→⊗(IdSA −[SE])
K0(SA)

where now ev∗ is the evaluation map corresponding to the inclusion of SA into
SOE . Finally, it is straightforward to verify that the analogue of the class [D̂ ]
for SE is given by IdKK(S ,S )⊗[D̂ ]. Now by Propositions 2.1 and 3.9, SE

satisfies all the assumptions that E does. Thus combining our proof that the
‘even part’ of the diagram commutes with the Künneth theorem (in the form
of [25, Remark 7.11]), shows that the ‘odd part’ of the diagram commutes.
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6.2. The KK-equivalence and the main theorem

We conclude by showing that the class of [D̂ ] not only implements an iso-
morphism in K-theory, but an actual KK-equivalence when A is in the boot-
strap class.

First observe that, by [5, Proposition 23.10.1], if A and B are two C∗-
algebras in the bootstrap class, then α ∈ KK(A,B) is a KK-equivalence if and
only if the induced map · ⊗A α:K∗(A)→ K∗(B) is invertible. This follows
from the Universal Coefficient Theorem of [25].

Next, whenever the coefficient algebraA of the correspondenceEA belongs
to the bootstrap class, so does the algebra OE (cf. [16, Proposition 8.8]), and
we obtain a KK-equivalence in this case.

Hence, provided that the coefficient algebra is contained in the bootstrap
class, the class [D̂ ] ∈ KK(OE,A) is a KK-equivalence. The problem with this
abstract approach is two-fold. First we need to know or verify that the coef-
ficient algebra is in the bootstrap class. While this is often possible, knowing
that D̂ is a KK-equivalence does not provide a representative of the other half
of the equivalence.

We ameliorate both these problems by providing an explicit representat-
ive for the other half of the KK-equivalence in a special case. To obtain this
representative, we need to make the additional assumption that the module
E = Eb⊗Ab A is the restriction of a finitely generated bi-Hilbertian bimodule
Eb over the unitisation Ab.

Let (xj )kj=1 be a frame for Eb: when A is unital we can simply take xj to be
a frame for E. Then we can define the matrix over OEb by

w =

⎛⎜⎜⎜⎝
S∗x1

0 · · · 0

S∗x2
0 · · · 0

... 0
. . .

...

S∗xk 0 · · · 0

⎞⎟⎟⎟⎠ .
Then w∗w = IdOEb ⊕ 0k−1 = ιAb,OEb (IdAb)⊕ 0k−1 and

ww∗ =

⎛⎜⎜⎜⎝
(x1|x1)Ab (x1|x2)Ab · · · (x1|xk)Ab
(x2|x1)Ab (x2|x2)Ab · · · (x2|xk)Ab

...
...

. . .
...

(xk|x1)Ab (xk|x2)Ab · · · (xk|xk)Ab

⎞⎟⎟⎟⎠
= (xi |xj )i,j≥1 =: q ∈ Mk(Ab).

The projection q realises Eb ∼= qAkb as a finite projective module over Ab,
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with isomorphism given by e �→ ((x1|e)Ab , . . . , (xk|e)Ab )T . We can explicitly
realise [w] as a difference of classes of projections over the minimal unitisation
M(Ab,OEb)

∼ of the mapping coneM(Ab,OEb). (As usual, the equality of the
classes of ew(∞) and 1k gives us classes in the KK groups for M(Ab,OEb).
See [14, Corollary 1, Section 7].) Using [20], we have an identification of
classes [w] = [ew]− [1k], where

ew(t) =
(

1k − 1
1+t2 q

−it
1+t2w

it
1+t2w

∗ 1
1+t2 IdOEb

)

=
( 1

1+t2 (1k − q)+ t2

1+t2 1k −it
1+t2w

it
1+t2w

∗ 1
1+t2 IdOEb

)
.

To proceed we need a lemma.

Lemma 6.1. LetE be anA-A correspondence with left action both essential
and by compacts. Let A ↪→ Ab be a unitisation, and let E = Eb ⊗Ab A where
Eb is finitely generated projective right Ab module. Then A ·Eb ⊂ E and OE
is a two-sided ideal in OEb .

Proof. Since a ∈ A acts compactly on E, for any ε > 0 there are finitely
many vectors ej , fj ∈ E ⊂ Eb such that

∥∥a −∑j �ej ,fj

∥∥ < ε. Then for
g ∈ Eb we find that∥∥∥∥ag −∑

j

�ej ,fj g

∥∥∥∥ = ∥∥∥∥ag −∑
j

ej (fj |g)Ab
∥∥∥∥ < ε,

and since E is closed, we see that ag ∈ E.
Using the fact that the left action is essential, together with Cohen factor-

isation, we can approximate any element in E by finite sums of elements aeb
with a, b ∈ A and e ∈ E. So for g ∈ Eb we have the following relations in
OE ·OEb

SaebSg = SaeSbg, SaebS
∗
g = SaeS∗gb∗ .

From this the final statement follows by approximation of elements of OEb .

Direct calculation shows that ew is a projection. Following the same reas-
oning as in [20, Sect. 2], we obtain [ew] − [1k] ∈ K0(M(Ab,OEb)). Let
φ:Ab → EndAb(Eb) be the homomorphism defining the left action. Then

ϕ(a) := ((xi | φ(a)xj )Ab)i,j
defines a left action of Ab on q(Ab)k .
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Since w(φ(a) ⊕ 0k−1)w
∗ = ϕ(a) and w∗ϕ(a)w = φ(a) ⊕ 0k−1, it is

straightforward to check that for all t ∈ [0,∞)

ew(t)

(
((xi | φ(a)xj )Ab )i,j 0

0 φ(a)

)
=
(
((xi | φ(a)xj )Ab )i,j 0

0 φ(a)

)
ew(t)

as operators on Ok+1
Eb

(or (Ab)k+1 for t = 0). We define M(A,OE)b to be the
unitisation of the mapping cone M(A,OE) given by

M(A,OE)b

= {f ∈ Mult(C([0,∞),OE)) : f (0) ∈ A, lim
t→∞ f (t) ∈ Ab, f cts.

}
.

We let Ab act as ϕ ⊕ φ on ewM(A,OE)
k+1
b and as ϕ on M(A,OE)kb. As a

consequence the Kasparov module ‘at infinity’

(Ab,A
k
b ⊕ Akb, 0) = (Ab, ew(∞)Ak+1

b ⊕ Akb, 0)

is homotopic to a degenerate module, and so defines the zero class.

Corollary 6.2. Let E be an A-A correspondence with left action both
non-degenerate and by compacts. Let A ↪→ Ab be a unitisation, and let E =
Eb ⊗Ab A where Eb is finitely generated projective right Ab module. Then

W =
(
A,

(
ewM(A,OE)

k+1
b

M(A,OE)
k
b

)
, 0

)
is a Kasparov module with class in KK(A,M(A,OE)). Similarly

[Wb] =
[(
Ab,

(
ew(M(A,OE)b)

k+1

(M(A,OE)b)
k

)
, 0

)]
∈ KK(Ab,M(A,OE)),

and [W ] = ιA,Ab ⊗Ab [Wb] where ιA,Ab is the class of the inclusion, and
[w] = ιC,Ab ⊗Ab [Wb].

Proof. Since ew ∈ M(Ab,OEb)∼ ⊂ M(Ab,OEb)b, A is an ideal in Ab,
and OE is an ideal in OEb by Lemma 6.1, ewM(A,OE)

k+1
b ⊂ M(A,OE)

k+1
b .

Identifying a ∈ Ab with the constant function with value a ∈ Ab, we see
that Ab ⊂ M(A,OE)b, which is the compacts on M(A,OE)b as a right
M(A,OE)b-module.

Finally, the observed degeneracy of the module at ∞ and excision in K-
theory guarantees that [Wb] defines a class in KK(Ab,M(A,OE)).



316 F. ARICI AND A. RENNIE

Lemma 6.3. Let [D ] ∈ KK1(OE,A) = KK(SOE,A) be the class of the
defining extension for OE , (M(A,OE), �̂A, D̂) the lift to the mapping cone,
and [W ] ∈ KK(A,M(A,OE)) the class defined above. Then

[W ]⊗M(A,OE) [D̂ ] = − IdKK(A,A) .

Proof. Applying [9, Theorem 5.1] gives

[w]⊗M(A,OE) [D̂ ] = − Index
(
P ⊗ 1kwP ⊗ 1k:w

∗w(�)k → ww∗(�)k
)

where P is the non-negative spectral projection of D . Since the non-negative
spectral projection of D is the projection onto a copy of the Fock space, we
have

ker(P ⊗ 1kwP ⊗ 1k) = AA = E⊗0
A , ker(P ⊗ 1kw

∗P ⊗ 1k) = {0}.
We can interpret the index not just as a difference of right A-modules, but as a
difference of A-bimodules. This works because the left action of A commutes
with D and so P . Hence

[W ]⊗M [D̂ ] = −[(A,AA, 0)] = − IdKK(A,A)

as was to be shown.

From Lemma 6.3, we know that−[D̂ ]⊗A[W ]∈KK(M(A,OE),M(A,OE))

is an idempotent element. In particular, [D̂ ] ⊗A · is always injective and
[W ] ⊗M · is always surjective and injective on the image of [D̂ ] ⊗A ·. Thus
as soon as [D̂ ]⊗A · is surjective, [D̂ ] is a KK-equivalence.

One approach to showing that [W ] is in fact an inverse for [D̂ ] would be to
show that the diagram

· · · −→ K∗(OE)
jB∗

K∗+1(M)
ev∗

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
= ·⊗[W ] = =

· · · −→ K∗(OE)
∂

K∗+1(A)
1−[E]

K∗+1(A)
ι∗

K∗+1(OE) −→ · · ·
commutes. The composition [W ]⊗M(A,OE) [ev] is just the module⎡⎣⎛⎝A,

⎛⎝ (1k − q)AkA

Ak

⎞⎠ , 0

⎞⎠⎤⎦
with grading (1k − q) ⊕ 1 ⊕ −1k . So [W ] ⊗M(A,OE) [ev] = [A] − [qAk] =
[A]− [E]. Thus−[W ] makes one square commute, and we could try to show
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that the square to the left ofW commutes (up to sign) as well. This means show-
ing that−[D ]⊗A[W ] = [j ] ∈ KK(SOE,M(A,OE)), which is implied by the
stronger condition−[D̂ ]⊗A[W ] = IdKK(M,M) ∈ KK(M(A,OE),M(A,OE)).
We have not been able to prove this equality in general, and leave it as an open
problem.

If A is in the bootstrap class, then so too are OE and M(A,OE). In this
case · ⊗M [D̂ ] is an isomorphism, hence the map · ⊗A [W ], which is always
injective on the range of · ⊗M [D̂ ], is an isomorphism as well: the inverse of
· ⊗M [D̂ ].

We have now proved our main result, Theorem 1.1.
We conclude with an application from the theory of graph algebras. Let

G = (G0,G1, r, s) be a locally finite directed graph (G0 = vertices, G1 =
edges) with uniformly bounded in- and out-degrees and no sources nor sinks.
Applying Theorem 1.1 to the graphC∗-algebra ofG yields a well-known exact
sequence for computing theK-theory. LetA = C0(G

0) and E the completion
of Cc(G1) with respect to the norm coming from the inner product

(e|f )(v) =
∑
s(g)=v

e(g)f (g).

By [13, Example 6.5],E can be made into a bi-Hilbertian bimodule with finite
right index. The module E is the restriction of Cb(G1) with the same inner
product but over the algebra Cb(G0).

The module Cb(G1) is finite projective over Cb(G0). To see this, let N =
supv∈G0{in-degree(v)}. Choose a partition

G1 = A1 � A2 � · · · � AN
of the edges so that for all v ∈ G0 there is at most one edge g with r(g) = v in
each Aj . Set ej = χAj ∈ Cb(G1). Then a simple computation shows that the
set {e1, . . . , eN } is a frame for Cb(G1), and so we are done.

Then, as is well-known, we have OE = C∗(G), the graph C∗-algebra. We
have the mapping cone exact sequence.

0 −→ K1(C
∗(G)) −→ K0(M(A,C

∗(G)))
ev∗−→ K0(A) −→ K0(C

∗(G)) −→ 0.

Using K0(A) = ⊕|G0|Z and the isomorphism K0(M(A,C
∗(G))) ∼= K0(A)

given by D̂ , gives

0 −→ K1(C
∗(G)) −→

|G0|⊕
Z

1−V T
|G0|⊕

Z −→ K0(C
∗(G)) −→ 0.
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where V is the vertex matrix of the graph G, given by

V (i, j) := |{e ∈ G1: s(e) = vi, r(e) = vj }|.
Similarly, since A = C0(G

0) is in the bootstrap class, inK-homology we find

0 −→ K0(C∗(G)) −→
|G0|∏
Z

1−V
|G0|∏
Z −→ K1(C∗(G)) −→ 0,

and these results recapture the results of [11] for non-singular graphs.
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