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THE BEHAVIOR OF THE TOTAL TWIST AND
SELF-LINKING NUMBER OF A CLOSED SPACE CURVE
UNDER INVERSIONS
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To Werner Fenchel on his 70th birthday.

Let z:C — E3 be a smooth imbedding of a closed space curve in
Euclidean three-space. The fotal fwist of a unit normal vector field e
along C' measure the turning of e in the normal plane as e moves along
the curve. (For a definition cf. section 1.) Although the total twist de-
pends on the vector field e, its reduction mod Z, denoted T'w(x)", does not.
In particular, if  has nowhere vanishing curvature and e is chosen along
the principal normal vector field, then Tw(x)” is simply the normalized
total torsion reduced modZ. The first part of this paper is devoted to
proving Theorem 1: If x is an imbedded space curve and Iz is its image
under an inversion through a sphere, then Tw(z)” + Tw(lz)” =0.

As a corollary we obtain that if both x and = have nowhere vanishing
curvatures then the normalized total torsion of xmodZ is equal to the
negative of the normalized total torsion of JxmodZ. We remark that
similar results hold for arbitrary conformal transformations of Euclidean
3 space. Cf. remark at the end of section 1.

The remainder and main part of the paper is devoted to the self-
linking number of z, the integer SL(x) which measures the linking num-
ber of x with x moved a small distance along its principal normal vector
field [2]. The self-linking number of a space curve may be expressed as
the sum of the normalized total torsion and the Gauss integral, G(z),
of the curve (Cf. [2] and [3]). In section 2, we present a deformation
argument to show that under an inversion, G(z)+ G(Ix)=0, so SL(x)+
SL(Iz) is the sum of the normalized total torsions of z and Iz.

In the third section, we present a proof of the main theorem:

THEOREM 4. If I is an inversion such that x and Ix have nowhere
vanishing curvature, then SL(zx)+ SL(Ix) is equal to the winding number of
the locus of osculating circles to x about the center of the sphere of inversion.
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Although it is possible to carry out a proof of this theorem by a de-
formation argument, we present a direct proof using an alternate defi-
nition of the self-linking number based on the author’s papers [1] and
[4]. (This section may be read independently of sections 1 and 2.)

In the final section, we examine the behavior of plane curves under
inversion and indicate a construction of a curve C and an inversion
such that SL(C)=0 and SL(IC)=a for an arbitrary integer a.

Generalizations of these results to the case of n-manifolds imbedded
in 2n+ 1 space will be presented by the authors in a later paper.

1. Total twist and normalized total torsion.

Let x: C - E3 be an imbedded curve in Euclidean three-space. Let e,
denote the unit tangent vector field, let e, be a unit normal vector field
along C, and let e;=e, x e, be the complementary normal vector field.
Finally, set wys=de,-e;. Then the quantity 1/2x {,w,, is called the total
twist of e, along the curve C. Of course, this twist depends on the choice
of vector field e,. However, its reduction modZ does not [5]. For if a, is
another normal vector field, and a;=e, xa, and n,y=da,-a; are corre-
spondingly defined, then

a, = cos0 e,+sinf ey
a; = —sinf e;+cosl eg

so that 7,3 = wyy+d. Hence,
1/27 §omgg— 127 §owys = 127 §cdB ,

and clearly the right hand side is an integer which measures the total
turning of a, about e, as one proceeds along the curve.

We now study the behavior of the total twist modZ under inversions.
.For any point P as center and any positive mumber r as radius we may
define the inversion Ip ,: E3U{c0} — E*U{cc} of extended three-space as
follows. For Q=P or {co} set

r
T (@-P)(@-P)

and set Ip (P)=co, Ip ,(occ)=P. Thus, if z: C - E? is a space curve,
the inverted curve Ip ,x is given by

Ip, (@) @-P)+P

r(x—P)
vt = e pr@-p
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Whenever the center and radius are clear or are not necessary for the
argument we will denote Ip ,x by simply Iz or Z. (Remark : Two inverted
images of the same curve with the same center P of inversion but with
different radii differ only by a homothety, and, hence, the total twist of
Iz will not depend on the radius, but only on P. Cf. remark at the end
of this section.)

We first recall some well-known facts about inversions of space curves,
which will prove useful later in the paper. Firstly, all inversions, being
conformal transformations of E3u{c}, preserve angles between curves
and send circles to circles (where a straight line is considered to be a
circle passing through o). The order of contact between curves is pre-
served, so that tangents are sent to tangents, and osculating circles and
spheres are sent to osculating circles and spheres.

Finally, if P lies inside the osculating sphere at x(s), then the torsion
of the image curve at Z(s) has the same sign as the torsion at x(s), and
if P lies outside, the torsions have opposite sign.

To investigate what happens to the total twist we need the following
fact. Let e be a unit vector field along the curve C. Then at each point
of C this vector field generates an oriented straight line which is mapped
by the inversion into an oriented circle passing through the correspond-
ing point of the image of C. The unit tangent to this circle at the image
curve will be denoted €. By a straightforward calculation,

2(x— P)-
e = e_i....).f_._ (x_._P).
(x—P)(z—P)
In particular,
2(x—P)-e;
g, = em D) p) 123,

‘" (@=P)-(x-P)

Furthermore, since conformal transformations preserve angles, €, and &;
are unit normal vector fields along IC=C, the image of C under the
inversion. Now, the total twist of &, along C is defined by 1/2x
{cde, (¢, x €,). Direct computations show that & x&=—¢; and that
déy-€;=de, e, 50 that we may conclude that the total twist of €, along
C is the negative of the total twist of e, along C. Since the total twist
modZ does not depend on the choice of vector field we have proven:

THEOREM 1. Let x: C — E3 be a space curve and let Ix be its image under
an inversion I. Then the total twist modZ of x 18 the negative of the total
twist of IxmodZ.
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If z is a space curve, we will denote by Tw(x)” the total twist of =
reduced modZ, so that our theorem may be written

To@)” = —To(lz)” .

As a corollary to Theorem 1 we consider the case where both x and
Iz=Z have everywhere non-zero curvatures k and k respectively. In
this case, both curves have well-defined Frenet frames and torsions t
and 7. By choosing e, along the principal normal vector field, one sees
immediately that

To(x)” = (1/2r {grds)”.

E2]

where ds is the arc-element of the curve z2: C — E3 and “~’’ means
reduction mod Z. Similarly,

To(lz)” = (1/2r \GTd35)”

where d3 is the arc-element of the curve Iz:C — E3, the image of C
under the inversion.

COROLLARY 2. Let x be a space curve such that x and Ix=Z have no-
where vanishing curvatures. Then

(1/2r (grds)” = —(1/2r (57d5)" .

REMARK. The results of this section may be generalized to arbitrary
conformal transformations of Euclidean space as follows. There are two
cases to consider, orientation reversing transformations such as inver-
sions and orientation preserving transformations such as homotheties or
the composition of two inversions. In the first case, Theorem 1 goes over
directly. In the second case Theorem 1 will read; if « is an imbedded
space curve and Fx is its image under an orientation preserving con-
formal transformation, then Tw(x)” =Tw(Fx)”

2. The Gauss integral.

We now turn to the examination of the behavior of the self-linking
number under inversions. The self-linking number, SL, of an imbedded
curve is the linking number of the curve with the curve moved a small
distance along its unit principal normal vector field. In particular, SL
is defined only for curves with nowhere vanishing curvature. For a
complete discussion of SL, cf. [2] and [3]. It is shown there that SL
may be written as the sum of two integrals,

SL = 14 §oxcdS2+1/2r (o vds .
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The first integral is the Gauss integral, the second the normalized total
torsion. If z: ¢ — E? is the imbedding, we will write G(z)=1/4x {oxcdS?
and T'(z)=1/2x {;vds. Their reductions mod Z will be written G(x)” and
T(x)” respectively. Thus we may write

SL = Gz)+ T(x)
and hence
(1) 0= Q) +T(x) .

To examine the behavior of SL under inversions we will study sepa-
rately how G(z) and T'(z) change. First, we deal with G(z). In [3], it is
shown that the Gauss integral plus the total twist of a unit normal vector
field e, along the curve is equal to an integer, which is the linking number
of the curve with the curve moved a small distance along e,. Hence, it
follows that G(z)”+Tw(x)”=0. Thus, by Theorem 1, G(z)”+G(Iz) =
—(Tw(x)"+ Tw(lx)")=0. (In the case, where z and Iz have nowhere
vanishing curvature, we may use equation (1) and Corollary 2 to show
that G(z)” + G(Iz)"=0.) Hence, Q(z)+ G(Iz) is an integer. We will show
that this integer is always zero.

THEOREM 3. If I is an inversion of E3U{co}, then G(x)+ G(Iz)=0.

Proor. The proof depends on the fact that the Gauss integral varies
.continuously under isotopy. Cf. [2]. Let P and r be the center and radius
,of the sphere of the inversion I and let £ be a unit vector such that the
ray P(t)=P +t&, t=0 does not meet the curve x. Let I, be the inversion
of E3u{cc} with center P(t) and radius r+1, so that the spheres of inver-
sion form a one-parameter family all tangent to the same plane. Under
the family of orientation reversing homeomorphisms, the inversions I,,
the Gauss integral varies continuously. Hence, since G(z)+ G(Ix) is an
integer, this integer is the same for all ¢. Since the lim, , I, is the reflec-
tion R about the common tangent plane to the spheres, and since G(x)+
G(Rz) is clearly zero, we have that for all I, G(x)+ G(Ix) =0 as required.

We conclude that if there is to be a non-trivial change of SL under
an inversion, such an inversion must involve a change of the total
torsion by an integer. The rest of the paper is devoted to a full discus-
gion of this problem.

3. The self-linking number and the curvature tube.

In order to construct a proof of Theorem 4, we invoke a character-
ization of the self-linking number of a space curve which is especially
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well suited for studying the behavior of this number under inversions.
For a generic space curve C and almost any point P, there will be a finite
number of apparent crossings of C when viewed from P (pairs z(s) and
z(s’) with z(s’) on the ray from P through z(s)) and a finite number of
apparent inflections (points z(s) such that P lies in the osculating plane
to C at z(s).) The index G'p(s,s’) of an apparent crossing is the algebraic
sign of the determinant 2'(s) x 2’(s")- (#(s") — z(s)), assumed non-zero, and
the index Fp(s) of an apparent inflection is the algebraic sign of the
torsion 7(s), again assumed to be non-zero.

We then have SL(v)=Gp(x)+ }Fp(x) where Gp(r)=3, ,Gp(s,s’) is
the algebraic number of crossings and Fp(x)=3,Fp(s) is the algebraic
number of inflection edges. (The polygonal version of this characteriza-
tion is established in [1]. A proof in the smooth case follows from Corol-
lary 7 of [4], where it is shown that SL(x)=Qp(z)+ Fpt(x)=Cp(x)+
F p~(x) where Fpt(x)=Fp(x) if P=x(s)+Ax'(s)+ ux"'(s) for u>0 or u<0
respectively and Fp*(x)=0 otherwise.)

Under inversion with respect to a sphere centered at P, apparent
crossings of JC when viewed from P are in one-to-one correspondence
with those of C, but with opposite algebraic signs so Gp(z)= — Gp(Ilz).
It follows that SL(z)+ SL(Ix)=}(F p(X)+ Fp(lx)). Since apparent in-
flections of C and IC from P are also in one-to-one correspondence, we

have SL(x)+SL(Iz) = 3, w(s,P)

where w(s, P)=Fp(s) if the sign of the torsion at z(s) and Ix(s) is the
same, and w(s, P)=0 otherwise.

But the torsions at z(s) and Ixz(s) are the same if and only if P lies
inside the osculating sphere at x(s), and if 2(s) is an apparent inflection
from P, this means that P lies in D(s), the open disc bounded by the
osculating circle at x(s).

The collection of all such open discs may be considered as the mapping
into £2 of the solid curvature tube y(s,0,0), 0£8<L,0<0<2xr,0<¢<1,
defined by

y(s,0,0) = (8)+x(s)~L N(s)+px(s)~(—cos ON(s)+sin7'(s)) .
Then

Yo = (—%'x29sinf+p cos0)T +(—x'»21—p cos0)+psin)N
+ 1% (1—pcosh)B,
Yo = ox1cos0T +px1sinON ,

and
Y, = #718inOT —x"1cosON .
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Therefore (y,x yp):y,=(1—p cosb)x~379 so this solid tube is immersed
except at points y(s, 0,0) for which 7(s) =0 and at the locus of centers of
curvature, for which ¢=0.

The boundary of this solid tube, with ¢=1, is a surface with outer
normal

Y XYg = #2(1—cosb)(—tsinfT +7cosON +x"%x1B),

which is non-zero except when %'(s) and z(s) are simultaneously zero,
(a situation which will not occur for a generic space curve) and possibly
at points of the curve itself, for which 6§=0. We call this surface the
curvature tube of x. (Note that this tube may also be described as the
envelope of the one-parameter family of osculating spheres to the curve
C.)

The winding number of the curvature tube about P may be computed
as the intersection number of the solid tube y(s,0,0) with P, where the
sign of an intersection is exactly the sign of (y, % y,)-¥,, assumed non-
zero, each time a disc D(s,)=y(sy,0,0) contains the point P, and this
index is precisely w(s,, P).

It follows that SL(x)+ SL(Iz) is the winding number of the locus of
osculating circles to C about the point P, and this concludes the proof
of Theorem 4.

4. Plane curves and examples.

In this section we examine the special case of plane curves and for
any integer a, we construct an almost planar curve z and an inversion /
such that SL(x)+ SL(Iz)=a. If = is a convex plane curve with x>0
then the curvature tube is a torus mapped into the plane with folds
along the osculating circles of x at vertices, i.e. at points where »'=0
(and %" +0, generically). The complement in the curvature tube of this
set of circles is a collection of cylinders y(s,0), s;<8<8;,4, 020=2n
where x'(s)+0, and each of these cylinders is imbedded into the plane
by y since y, x y,= (1 —cos 0)x'x~2 B has constant direction, + B, depend-
ing on the algebraic sign of »’. (This observation leads to a proof of
the known result that the osculating circles to distinet points of a curve
with monotonic curvature do not intersect.) Each point P in the plane
not lying in a fold curve will lie in an even number of these regions, i.e.
an even number, say 2a, of osculating circles. Under an inversion with
respect to a circle with center at P, the convex curve will be mapped into
a plane curve with precisely 2a inflection points.
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We may use these observations to construct non-degenerate space
curves with self-linking number + a arbitrarily near a plane curve with
2a inflection points.

We begin with an ellipse and invert with respect to the center of cur-
vature P at an endpoint of the major axis to obtain a curve Iz with
exactly two inflection points, @ and @'. If we push the plane down
slightly at @ and up slightly at @', we obtain a curve C with non-zero
curvature everywhere and torsion the same at Q and Q'. As we view the
curve from a point above this plane, we still see two inflection points,
both with torsion of the same sign, so SL(C)= +1. Inverting again
with respect to P produces a curve IC arbitrarily close to the original
ellipse, so in particular it will have no apparent inflections or cros-
sings when viewed from above the plane and SL(IC)=0.

To obtain a curve C such that SL(C)=a and SL(IC)=0, for arbitrarily
large a, we begin with a strictly convex curve close to a regular polygon
with a sides. Inversion with respect to an inscribed circle produces a
curve C with exactly 2a inflection points and pushing the curve alter-
nately up and down near these points preduces a curve ¢ with self-
linking number +a, such that SL(IC)=0.
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