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REPRESENTATIONS OF THE HEISENBERG GROUP
OF DIMENSION 2n+1 ON EIGENSPACES

ARNE HOLE

Introduction.

Let G be a Lie group, H a closed subgroup and D(G/H) the algebra
of G-invariant differential operators on the manifold G/H. In [3] the
following problem is posed:

For each joint eigenspace for the operators in D(G/H) study the natural
representation of G' on this eigenspace; in particular, when is it irreduc-
ible and what representations of G are so obtained ?

In the case when @ is the Heisenberg group, H a connected non-normal
subgroup we solve the problem completely: If H is not maximal these
eigenspace representations are never irreducible; if H is maximal the
eigenspace representations are always irreducible (except for the 0 eigen-
value) and among them occur all the unitary irreducible representations

of G.

1. The subalgebras of the Heisenberg algebra.

DeriNiTION 1. A real Lie algebra g of dimension 2n+1 is called a
Heisenberg algebra if there exists a basis X;,X,,...,X,,Y;,Y,,...,
Y ,..Z of g such that

(i) [X$ X;1=(Y,;, Y,;]=0 forall 154,j<n,

(i) [Z,X,]=[%4,Y;]=0 forall 1<¢<n and

() [X,, Y;]=0;Z for all 1<4,j<n.

Denote by 3 the centre of g. It easily follows that 3=RZ.

Lemma 1. a) 4 linear subspace Y+ (0) of g ¢s an ideal of g if and only if
Zey.

b) If Yy is a subalgebra of g and Y) is not an ideal, then Y) is abelian.

The proof is immediate by (i), (ii) and $ii).
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We are mostly interested in the abelian subalgebras of g which are
not ideals, and we shall prove the following theorem.

THEOREM 1. Let g be a Heisenberg algebra of dimension 2n+ 1. If Y+ (0)
is a subalgebra of g not containing the centre §, we can find a basis X,,. . .,
X, Y1, -, Y, Z of g satisfying (i), (ii) and (iii) of Definition 1 such that
1) is the Lie algebra generated by X,,...,X, where r is the dimension of ¥.
Let £ be the Lie algebra generated by Y,,...,Y, and denote by n the Lie
algebra generated by X, .1,. . ., X, Y i1+ s Y, Z. Then Yy and ¥ are abelian
and 1 is a Heisenberg algebra of dimension 2(n—r)+1. Moreover,

(1) g = H+t+n (direct sum) .

Proor.

1. (The first construction of X,,...,X,,Y,,...,Y,,Z.)

Let X,/,...,X, be an arbitrary basis of f). By (i), (ii) and (iii) of Defi-
nition 1 there exists Y, € g such that [X,’,Y,]=Z where Z is a fixed
central element of g, Z+0.

Put [X,, Y ]=04Z for 2=5k=<r and let X, =X,'—o, X," for 25k=7,
X,=X,'. Then X,,...,X, also constitute a basis of ¥) and it satisfies
[Xp Yi]1=04Z for all 1Sk=<r.

We proceed by induction.

Suppose X,,...,X,, Y;,...,Y, have been constructed such that
X,,X,,...,X, is a bagis of ) and [X;, Y,;]=0,;Z for all 1=i<r, 15j<p
where 1<p=r.

If p<rchooseY,,,’egsuch that[X,,,, ¥, 1=2.Put[X,, Y, ,,'1=0,Z
for all 1<i<p and let Y, ,=Y,,,'=37 8, Y;,. Then [X,Y, 1=
Oiyp+nZ for all 1gi<p+1.

If 8,49, ..,0, € R such that [X;, Y, ]=p4,Z for all p+2=<k<=r, define
X' =X, —BrXp41- Then

Xpeo s Xpitr Xpagse o Xy Ype oo, ¥, ¥y work for p+1.

2. Let X4,...,X,,Yy,...,Y,,Z be as tn 1. Y,,...,Y, can be chosen
such that [Y;, Y;]=0 for all 1<4,j<r.

For 12i<j<r put [Y,Y,]=«;4Z and let Y,’=Y,, Y/ =Y+
Sitto X (25jS7).

Y,,Y,/,..., Y, satisfy the properties of Y,,...,Y, in 1.

In addition, for 1<k<p=r

(Y, Y] = [Yi+ 28] waXy Yo+ 2057 oy X

= [Yk’ Yp]+[Yk,¢xkpXk] = cxkpZ-—(xkpZ =0.
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ReMARK. All that was needed for 1. and 2. were:

(2) The centre 3 of g is of dimension 1, and
(3) for every X eg, X ¢34 there exists Y eg such that [X,Y]=2Z.
(Z#*0 fixed in 3.)

3. (Construction of a subalgebra satisfying (2) and (3).)

Let X,,...,X,,Y,,...,Y,,Z be as in 2. Denote by ¥ the Lie algebra
generated by Y,,...,Y,. Put m=n—r and choose W,...,W,, € g such
that X,,...,X,,Y,,...., Y., W,,...,W,,,Z constitute a basis of g. Con-
sider the Lie products [X;, W,]=«,Z, [Y,, W,]=8;Z (1<1=r) and let

(4) Wy = Wi+, (BXi—oYy) .
Then

(5) (X W] =Xy, Wyl—0;Z = 0
(6) [Yi’ Wll] = [Yi’ Wl]‘"‘BiZ =0

forall 1<2=<r.

We make a similar change of W,, W,,...,W,, as in (4). Let n be the
Lie algebra generated by W,',..., W,, ', Z. Because of (5) and (6) 1 is an
ideal. Consequently 1 satisfies (2) and (3).

4. (n is a Heisenberg algebra.)

Let a be a maximal abelian subalgebra of n not containing the centre.
By 3. we can find an abelian subalgebra b and an ideal n, such that
dima=dimb and n=a+Db +n, (direct sum). The properties of n, are the
same as those of 11, hence 1, =RZ. By inspection we can find a basis of n
satisfying the conditions of Definition 1.

2. The G-invariant differential operators on G/H.

Let G be a Lie group and H a closed subgroup. Denote by g and Y
the Lie algebras of G and H, respectively.

@ acts on the homogeneous space G/[H of left cosets gH by multi-
plication to the left.

g-(xH) = (gx)H fOI‘ all g,x € G .

DrrFintTION 2. A differential operator D on G/H is said to be G-inva-
riant if

(7) D(g-f) = g-(Df)

for all fe C°(G/H), g€ G where (g-h)(p)=h(g~-p) for all ge G, peG/H
and h € C*(G[H).
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Denote by D(G/H) the algebra of invariant differential operators on
G/H.

Let m be a complementary linear space of Y) in g. Choose a basis
X, X,,...,X, of g such that X,,...,X, is a basis of m. Then the map

(8) D:exp(x, X, + ...+, X, )H - (x,...,2,)

of G[H — R™ defines a chart around the element {eH} of G/H where e is
the neutral element of G.

If (®,U) is a local chart on G/H and fe C*(G/H) put f* for the com-
posite function fo®-! defined on ®(U). Let z,x,,. . .,x, be the coordi-
nate functions of @ and let &= (ay,x,...,x,) be a m-tuple of non-nega-
tive integers. We put 9;,=0/ox; (1<i<m) and D*=0,"1...9,".

Every differential operator D on G/H has a local expression in the
chart (p,U) given by

(9) (Df)(x) = 3, a,(@)[D°f*)(P(x))

for x € U and fe C°(G/H) where a, € C*°(U) and only finitely many of
the a,’s are 0.
In particular, if we use the chart (8) in (9), we find by putting

(10) P(Xl’Xzy' .. 7Xm) = Za a’a(eH)Xlal e Xmo‘m
and (7):

(11) (Df)(gH) = [P(al:aw' .. ’am)f(g eXP(x1X1+ R +mem)H)]<O)

for every D e D(G/H), g € G, fe C*(G|H).

Note that (11) expresses D uniquely by the polynomial P.

If V is a linear space over a field K denote by S(V) the symmetric alge-
bra of V. Let X,,...,X,, be a basis of V. Then S(V) consists of the poly-
nomials in the base elements over K. By (11) there is a mapping of
D(G/H) - 8(m). In general, it is not true that every P € S(m) gives rise
to an invariant differential operator.

If g/ is reductive it is possible to give a complete answer. Suppose
there exists a subspace m of g such that

g = )+ m (direct sum) and [h,m] < m,

Let D € D(G/H). P € S(m) is the polynomial corresponding to D. Noting
that (Df)(ghH) = (Df)(gH) for all h € H, we find by (11) ([2, p. 391]):

P(Ad()X,,...,Ad(R)X,) = P(X,,...,X,,) forall he H .
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DerintTION 3. P € 8(m) is invariant if
(12)  P(Ad(h)X,,...,Ad(W)X,,) = P(X,,...,X,)forallhe H .
Denote by I(m) the subalgebra of S(m) of invariant polynomials.

THEOREM 2. Let X,,X,,...,X,, be a basis of m where g=10+m (direct
sum) and [Y), m] < m. There is a one-to-one linear mapping P — D,, of I(m)
onto D(G[H) such that
(13)  (Dpf)(gH) = [P(®y,. . .,0,)f(g exp (@, Xy + . .. +=,X,,)H)])(0)
for all g€ G and f e C*(G[H).

For proof see [2, Theorem 2.7 p. 395].

Lremma 2. If g ts a Heisenberg algebra of dimension 2n+1 and § an
abelian subalgebra not containing the centre of g, let t and n be as in Theorem
1. Put m=%f+mn (direct sum). Then I(m)=_8(n).

Proor. For each T €1) denote by d(7') the derivation of S(m) extend-
ing the endomorphism ad(7') of m. Then

(14) P e I(m)if and only if d(T)P=0forallT €Y.

Because of [f),n]=(0) it follows that S(n) =I(m). On the other hand sup-
pose P e I(m), P ¢ S(n). Choose a basis X,,...,X,,Y,,...,Y,,Z of g as
in Theorem 1. Then

(15) PXpipre X Ve Y0 Z) = 3, QY. . Y

where @, € 8(n) for all x. (The sum is finite.)
Let n; (L<j<r) be the highest degree of ¥, in (15). Suppose n;= 1.
Then
AX;)P = 3. w21 %@ Y™ .. Yol Y "Z £ 0

which is a contradiction to (14). Hence n;=0 (1<j<r) and P € S(n).

Let G be a connected and simply connected Lie group with Lie alge-
bra g, H and N, denote the analytic subgroups corresponding to the
subalgebras Y) and n, respectively.

TaEOREM 3. The mapping E — Dy of D(N) - D(G[H) given by

(16) (Dpf)(gH) = E(t - f(gtH))...

for all ge G, fe C*(G/H) and te N, is an algebra isomorphism of D(N)
onto D(G[H).
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Proor. First suppose E € D(N). Let P cS(n) be the unique poly-
nomial such that

(Eh)(t)=[P(a’. ) 2 a>

2y 0w, Gy, Oy, 02)
h(texp (@, 1 X+ .o+ Yy Yo+ ... +zZ))] (0)
for all te N, h € C°(N). In particular

P EY

0 0 0 8)

(17)  (Dgf)gH) = [P( P 2y ’---,a—y—', %
n r+1 n

0 r+1

D@t AU Yot . +2D)H)|(0),

By Lemma 2 and Theorem 2 Dy is invariant. On the other hand consider
D € D(G/H). (13) determines .D by a polynomial @ € S(n). Every element
@ of S(n) gives rise to an element of D(N), call it B, . Following the lines
which led to (17), we find Dygy=D. The mapping B —~ Dy, is obviously
linear and multiplicative.

3. Eigenspaces of invariant differential operators as models for
irreducible representations.

Let G be a Lie group, H a closed subgroup and suppose G/H admits
an invariant measure u.

C,°(G[/H) denotes the set of C*-functions on G/H with compact sup-
port. The distribution space is written 2'(G/H) and it is given the strong
topology. \

If 2 is a character of D(G/H) put

(18) 92, ={T'e2'(G/H): DT = AD)T for all D e D(G[H)} .
The action of G on G/H gives rise to a representation # of G' on 2'(G/H):
(19) [=(TASf) = T(gf)
for all T € 2'(G[H), fe C,°(G/H) and g € G.
Lemma 3. 9, is a closed invariant subspace of D'(G[H). If D,' is given

the relative topology, then the restricted representaton =, of G on D, 1is
jointly continuous.

2'(G/H) is a Montel space so that weak and strong convergence agree
on bounded subsets. By this fact the proof is easily worked out.
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Let g be the Heisenberg algebra of dimension 2n+ 1. Choose a basis
Xyeo s XYy, .0, Y, Z of g as in Definition 1 and let Y) be the sub-
algebra generated by X;,...,X,. We introduce f and n as in Theorem 1.

If G is a simply connected and connected Lie group with Lie algebra g,
then

(20) G = M-H (semi-direct product)

and M is invariant in G.
The subgroups M and H correspond to the subalgebras m=f+n
and Y, respectively. Since m and n are abelian, we have

M~ (R +) and H ~ (R*,+).

As manifolds we may identify G//H and R™*+l. The correspondence is
given by
(21) exp (o Y1+ ... 4o, Y, +aZ)H = (%q,. . «y0,,&) .

Using (21) we can find the action of ¢ on R+,

LeMMmA 4.
(1) exp(@yYi+ ... +2, Y, +BZ) (06750 . ., 05 %)
= (.’171-{-0(1,. . .,.’lln+(xn,06+ﬂ).

(i) exp(z, X1+ ... +2,X,) (01,0« oy %y &)
= (gye e s Oy Xy + o oo F T+ ) .

for all xy,...,%,,000,. . .,0,0, B ER.

Proor. (i) is simply multiplication in M. For (ii) we note that

exp(x, X+ ... +2,X,)exp(y Y+ ... +y,Y,)

= exp(i_; 2 X+ 201 Y Yo+ 320 2 Xy, 3y 2 8))
eXP(Z:‘Ll e, X+ 270 v Y+ 330 xiyi)z)
= exp(Xi_ ¥ Yo+ (Qion xy)Z) exp (Xi_, ©.X,).

Applied to (21):

Il

exp (Z?=1 xiXi)' (015 5Oy &) = (0150 ey, +2l=1 Zyokg) «
Lemma 5. D(G[H) considered as differential operators on R™+1 is the
polynomials in 0,,;.

Moreover, the characters of D(G[H) are parametrized by C.

Proor. The lemma is immediate by Theorem 3.
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For each 4 € Clet x, be the character of D(G/H) given by y,(9/0x,.,) =2

and put ,'=9,'. Then

(22) 9, = {T'e @'(R*): (8fox, )T =T} .

The solutions of (9/6z,,,)T =AT are exactly 2'(R*)Qe*r+ where

(23) (TR ) (f) = T(Cw (@1, . - X0y Ty g d,, )

for all fe C °(R*+!). In particular, &," is isomorphic to &'(R*) for each
AeC.

Lemma 6. If f is a function in D'(R™) then =, acts in the following way:
(i) [ma(exp2in oY) 1@y, . ., %0) =f(@1—00gs o, %0 — ),
(ii) m(expaZ)f=e*f and

(111) [n).(exngglfxiXi)f](xl: s 7xn) =e _lzi=1 aizif(xl) e sxn)'

Proor. Let ¢ € C,°(R"*+1), then by (23)

([nz(eXP iy g Yi)f]®emn+l)(q’)
= [f@e* ) (exp(— iy % Y) ¢)
= (P o P @@+ g, o s T+ Oy By ) (@, - 2,2 ) €4
du,...dx,,,

= S°_°°° . .S?mf(x]—ocl,. c Xy —0)t
(Y0 @(@1s -« s Ty Xy yg) iy, )y . . di,
= ([exp (2i_;1:Y;) f1@e)(9) ,
which proves (i).
(ii) is proved in the same way.

For (iii) we find by Lemma 4 (ii)
([ﬂz(eXP Z?=1 X)) f ]®6M"+1)(‘P)

= @@y T By + Dy ) (2, 2, )€
day...dw,

= (e 0 f(@ sy )e ™ Zim1 %
(P (s, - s pyy) A, 1) dy . . . d,

This is just an equivalent form of

[m(exp 271 x X)f W@y - -1 %,) = e—lzz;l HE f (g5 y) -
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THEOREM 4. 7, ts topologically irreducible if and only if A=+ 0.

Proor. Suppose 440 and let (0) +F = 2’(R*) be a closed and invariant
subspace. If T' € E, and f,p € C,°(R") we find by restricting the represen-
tation &, to the subgroup K of G (K corresponds to the subalgebra f
of g):

(f+T)g) = Sanf ()T (p(2 +y))da.

By Lemma 4 (i)
(24) (F*T)(g) = Sef(@)mlexp 37, 2, Y )T(@)dw .

This is nothing but the integrated form of =, restricted to K. If g,
denotes the restriction, then (24) can be written

(25) (f+T)@) = [xm()T](e) -
Summing up
f*T = g (f)T €k .

It Te2', T+0 and {f,}5_, is an approximative identity consisting of
C,®-functions on R”, then (as n — o) f, *T' > T in 2'(R"). In particular
there exist C*°-functions #0 in XK.

Suppose E+2'(R®). By the Hahn-Banach theorem there exists
p € C,°(R"), ¢#0 such that

(26) Tp) =0 forall Tek.
Choose fe EnC®(R"), f+0 and put for 2;,2,,...,2,€C

(27) F(21,29,. - +125) = (P v oo (P Homn(my, L, ,) f (@, - 2 %y)

day...dx, .

F is complex analytic in each of the variables. For every choice of
t,...,t, € R, the function

g(@y,. . .,x,) = &t AT fig )

is in £ (Lemma 6 (iii)).
Because of (26) F(At,Aly,. . .,At,)=0forallt,,...,t, eR Fixt,,... t,eR.
Then
z— F(z,7,...,2t,)

is zero on a line through 0. This implies that F(z,1¢,,...,t,)=0 for all
z € C. Since t,,. . .,t, were arbitrary, we have

F(2,,...,48,) = 0 for all £,,...,{,eR and 2z, €C.
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We repeat the argument in the second variable 2, etc. From this it fol-
lows that F(z,,...,2,)=0 for all z,,...,2z, € C. In particular

(28) F(iyy,...,%y,) = 0 forall ,,...,y, €R.

(28) means that the Fourier transform of ¢-f disappears,

@NH Wy - ry,) =0 forally,...,y,eR.

This implies
(29) of =0.
(29) is true for every f € EnC*(R?). By Lemma 6 (i) we may translate f.
In particular, there exists a f-translate g such that g+ 0. This is a contra-
diction to the assumption F +2’(R"). Thus =, is irreducible if 2+ 0.

If =0 the subspace of 2'(R") consisting of the constant functions is
closed and invariant, hence 7, is not irreducible.

THEOREM 5. Let o, be the restriction of =, to &(R") (=C>®(R") given its
natural topology). o, is topologically irreducible if and only if A= 0.

Proor. Suppose for 140 that E < &(R?) is a proper closed subspace.
Let 7+0, T € &'(R*) such that T(p)=0 for all pe E. For fe C, °(R")
we find by Lemma 6 (i) that fx7 is orthogonal to E. If f+0 then
h=fxTeC,R") and h=+0 [6, p. 173]. Let o be the linear functional
on 2'(R?) given by o(S)=_8(%) for all § € 2'(R"). p=0 on the closure of
E in @'(R"). Since 7, is irreducible it follows that »=0. This is a contra-
diction, hence g, is irreducible.

The case 1=0 follows as in the proof of Theorem 4.

If 2=1s where s € R, we see by Lemma 6 that L?(R") is invariant under
7y, Also, m,, restricted to L%(R") is a unitary representation u, of G.

THEOREM 6. If s € R, 0 then u, is irreducible.

Proor. Suppose se R, s+0 and let (0)+Z be a closed and invariant
subspace of L2(R™).

Lemma 6 (i) tells us that E is translation invariant. It is well-known
[5, p. 190] that E can be described by a Borel set 4 in R™ in the following
way
(30) E = {fe L*R"): f=0 ae.on 4}.

If fe B, then by Lemma 6 (iii) g € £ where

. n X
g(@g,. . .,2,) = e is iy i f(@y,. . . 2,)

for all «y,...,x, €R.



REPRESENTATIONS OF THE HEISENBERG GROUP ... 139

Calculating the Fourier transform of ¢ we find

(31) 0@y s %) = Floy 4800, ., @y + 800, )
(31) proves that £ is invariant under translations.

Choose f e E, f+0, then f+0. If g € C°(R") we find as in the proof of
Theorem 4 that g f € B. Moreover, g xf € C*°(R*)n L2(R"). We may choose
g such that g«f=+0.

In particular gxf is continuous and V={xeRr: (g* f)(x):l:O} is an
open non-empty set. By (31) we may move the set V freely in R*. De-
note by u the Lebesgue-measure of R If u(4)>0 (real or oo) there
exists a translate V, of V such that u(V,nA4)>0.

Because of (30) u(V,nA4)=0, hence u(4)=0. This implies that
E =L2R") and the proof is complete.

REeMARK. If C={exptZ: t € R} and y, is the unitary character of HC
given by
Xs(exp (2«:‘;1 ‘xiXi) eXpocZ) = &,

then the induced unitary representation y,1 G equals u_;. By Kirillov-
theory [4] it is easily found that the p,’s are the only irreducible unitary
representations of ¢ which are not characters.

We will now consider the case 1=dimf)<n and see if some of the
spaces studied above are irreducible.

Y is the Lie algebra spanned by X,,...,X, where r<n. f and n are as
in Theorem 1. Denote by H, K and N the analytic subgroups of ¢
corresponding to ¥), ¥ and n respectively. By Theorem 3 D(G/H)~D(N).
If 1 is a character of D(N) then

(32)  M2) = MX, ¥ 1~ Vi X os)
= MX DAY ) = AT )UK 1) = O

A is uniquely determined by its values on the basis vectors X, ...,
X Y- -5 Yo, Z. (32) is the only condition for a [2(n—r) 4 1]-tuple to
define a character of D(N). This means that the characters are para-
metrized by C%»-n. The correspondence is the following: If

(c”}') = (cr+1’ LY 25 TR ’Vn) € Can-n

put A(X;)=¢, and A(Y,)=y, for r+1=k=n.
We may identify G/H and R2*+1-7 ag manifolds. The isomorphism is
given by
(33)  exp(®,y 1 Xpsrt .-+, X+ Yi+...+y,Y,+22) ~
- (xr+1’° c T Y15 e "yn:z) .
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Denote by 2’ ,, the eigendistributions of D(G/H) on G|H defined by (18)
for the character 1, ,,. Using (33) 2’ ,, can be considered as a subspace
of Z'(R2n+l-7):

oT oT oT
@' ={Te@' (Rn+1-ry: _ =¢T, — =9, T, — =0
(¢, y) ( ) oz, Ck W Yk P

for all r+1§k§n}
= g'(Rr)®ec~w+r~y
where
ec-.’t+1- ¥y ecr+1mr+x+ oot CnTn+Yr41Yr4+1t .. +VnYn

and

[T®ec~w+7'll](f) = T(So—ooo e So—ooof(xr+1’~ s ®ps Y. .. ,yn,Z)'
.ec~w+r'!ldxr+1 cedx,dy, .. dyndz) .

In particular &’ ) is isomorphic to Z'(R").
Denote by 7 ,, the representation of ¢ on Z’'(R7).

Lemma 7. If f is a function in 2'(R") then n ,, acts in the following way:

@) n(c,y)(exp( £=10‘iXi+3Z))f =f. .
(1) [,y (€xXP2_ 10 Y ) f 1, - os2y) = [y — g, - o, T —x,)
(iii) n(c,y)(eXPZLrﬂ (0 X3+ By, Yk))f=e_(c"+7'p)f-

The proof is straight foreward and follows the lines of the proof of
Lemma 6.

THEOREM 7. If 1<r<n then none of the natural representations of G
on 2'(R7), C2(R7), &R, &'(R") and L3(RT), respectively, are irreducible
for any character 2, ,, of D(G/H).

Proor. By Lemma 7 the action of @ is simply translation of functions
(distributions) on R”.

Let E be the subspace consisting of the constant functions; then ¥ is
closed in &(R7) and Z’'(R") and it is invariant under 7 ).

By duality we find that neither C,°(R”) nor &’(R’) is irreducible. It is
well-known that L2(R”) is not irreducible under translations. This com-
pletes the proof.

ReMARK. If r=0 then H = {e} and the construction gives nothing but
the characters of G.
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