REPRESENTATIONS OF THE HEISENBERG GROUP OF DIMENSION 2n+1 ON EIGENSPACES

ARNE HOLE

Introduction.

Let G be a Lie group, H a closed subgroup and D(G/H) the algebra of G-invariant differential operators on the manifold G/H. In [3] the following problem is posed:

For each joint eigenspace for the operators in D(G/H) study the natural representation of G on this eigenspace; in particular, when is it irreducible and what representations of G are so obtained?

In the case when G is the Heisenberg group, H a connected non-normal subgroup we solve the problem completely: If H is not maximal these eigenspace representations are never irreducible; if H is maximal the eigenspace representations are always irreducible (except for the 0 eigenvalue) and among them occur all the unitary irreducible representations of G.

1. The subalgebras of the Heisenberg algebra.

DEFINITION 1. A real Lie algebra \mathfrak{g} of dimension 2n+1 is called a Heisenberg algebra if there exists a basis $X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n, Z$ of \mathfrak{g} such that

- (i) $[X_i, X_j] = [Y_i, Y_j] = 0$ for all $1 \le i, j \le n$,
- (ii) $[Z, X_i] = [Z, Y_i] = 0$ for all $1 \le i \le n$ and
- (iii) $[X_i, Y_i] = \delta_{ij}Z$ for all $1 \le i, j \le n$.

Denote by \mathfrak{z} the centre of \mathfrak{g} . It easily follows that $\mathfrak{z} = RZ$.

LEMMA 1. a) A linear subspace $\mathfrak{h} \neq (0)$ of \mathfrak{g} is an ideal of \mathfrak{g} if and only if $Z \in \mathfrak{h}$.

b) If $\mathfrak h$ is a subalgebra of $\mathfrak g$ and $\mathfrak h$ is not an ideal, then $\mathfrak h$ is abelian.

The proof is immediate by (i), (ii) and (iii).

Received September 2, 1974.

We are mostly interested in the abelian subalgebras of g which are not ideals, and we shall prove the following theorem.

Theorem 1. Let $\mathfrak g$ be a Heisenberg algebra of dimension 2n+1. If $\mathfrak h \neq (0)$ is a subalgebra of $\mathfrak g$ not containing the centre $\mathfrak z$, we can find a basis $X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z$ of $\mathfrak g$ satisfying (i), (ii) and (iii) of Definition 1 such that $\mathfrak h$ is the Lie algebra generated by X_1, \ldots, X_r where r is the dimension of $\mathfrak h$. Let $\mathfrak k$ be the Lie algebra generated by Y_1, \ldots, Y_r and denote by $\mathfrak m$ the Lie algebra generated by $X_{r+1}, \ldots, X_n, Y_{r+1}, \ldots, Y_n, Z$. Then $\mathfrak h$ and $\mathfrak k$ are abelian and $\mathfrak m$ is a Heisenberg algebra of dimension 2(n-r)+1. Moreover,

(1)
$$g = h + f + n \ (direct \ sum) \ .$$

PROOF.

1. (The first construction of $X_1, \ldots, X_r, Y_1, \ldots, Y_r, Z$.)

Let X_1', \ldots, X_r' be an arbitrary basis of \mathfrak{h} . By (i), (ii) and (iii) of Definition 1 there exists $Y_1 \in \mathfrak{g}$ such that $[X_1', Y_1] = Z$ where Z is a fixed central element of \mathfrak{g} , $Z \neq 0$.

Put $[X_k', Y_1] = \alpha_k Z$ for $2 \le k \le r$ and let $X_k = X_k' - \alpha_k X_1'$ for $2 \le k \le r$, $X_1 = X_1'$. Then X_1, \ldots, X_r also constitute a basis of \mathfrak{h} and it satisfies $[X_k, Y_1] = \delta_{k1} Z$ for all $1 \le k \le r$.

We proceed by induction.

Suppose X_1, \ldots, X_r , Y_1, \ldots, Y_p have been constructed such that X_1, X_2, \ldots, X_r is a basis of \mathfrak{h} and $[X_i, Y_j] = \delta_{ij} Z$ for all $1 \leq i \leq r$, $1 \leq j \leq p$ where $1 \leq p \leq r$.

If p < r choose $Y_{p+1}' \in \mathfrak{g}$ such that $[X_{p+1}, Y_{p+1}'] = Z$. Put $[X_i, Y_{p+1}'] = \beta_i Z$ for all $1 \le i \le p$ and let $Y_{p+1} = Y_{p+1}' - \sum_{i=1}^p \beta_i Y_i$. Then $[X_i, Y_{p+1}] = \delta_{i(p+1)} Z$ for all $1 \le i \le p+1$.

If $\beta_{p+2},\ldots,\beta_r\in\mathbb{R}$ such that $[X_k,Y_{p+1}]=\beta_k Z$ for all $p+2\leq k\leq r$, define $X_k'=X_k-\beta_k X_{p+1}$. Then

$$X_1, \ldots, X_{p+1}, X_{p+2}, \ldots, X_r, Y_1, \ldots, Y_p, Y_{p+1}$$
 work for $p+1$.

2. Let $X_1, \ldots, X_r, Y_1, \ldots, Y_r, Z$ be as in 1. Y_1, \ldots, Y_r can be chosen such that $[Y_i, Y_i] = 0$ for all $1 \le i, j \le r$.

For $1 \le i < j \le r$ put $[Y_i, Y_j] = \alpha_{ij}Z$ and let $Y_1' = Y_1$, $Y_j' = Y_j + \sum_{i=1}^{j-1} \alpha_{ij}X_i$ $(2 \le j \le r)$.

 Y_1', Y_2', \ldots, Y_r' satisfy the properties of Y_1, \ldots, Y_r in 1.

In addition, for $1 \le k$

$$\begin{split} [\,Y_{k}',\,Y_{p}'\,] &= [\,Y_{k} + \textstyle\sum_{i=1}^{k-1} \alpha_{ik} X_{i},\,Y_{p} + \textstyle\sum_{j=1}^{p-1} \alpha_{jp} X_{j}\,] \\ &= [\,Y_{k},\,Y_{p}] + [\,Y_{k},\alpha_{kp} X_{k}] = \alpha_{kp} Z - \alpha_{kp} Z = 0 \;. \end{split}$$

REMARK. All that was needed for 1. and 2. were:

- (2) The centre z of g is of dimension 1, and
- (3) for every $X \in \mathfrak{g}$, $X \notin \mathfrak{z}$ there exists $Y \in \mathfrak{g}$ such that [X, Y] = Z. $(Z \neq 0 \text{ fixed in } \mathfrak{z}.)$
 - 3. (Construction of a subalgebra satisfying (2) and (3).)

Let $X_1, \ldots, X_r, Y_1, \ldots, Y_r, Z$ be as in 2. Denote by \mathfrak{k} the Lie algebra generated by Y_1, \ldots, Y_r . Put m = n - r and choose $W_1, \ldots, W_{2m} \in \mathfrak{g}$ such that $X_1, \ldots, X_r, Y_1, \ldots, Y_r, W_1, \ldots, W_{2m}, Z$ constitute a basis of \mathfrak{g} . Consider the Lie products $[X_i, W_1] = \alpha_i Z$, $[Y_i, W_1] = \beta_i Z$ $(1 \leq i \leq r)$ and let

(4)
$$W_1' = W_1 + \sum_{i=1}^r (\beta_i X_i - \alpha_i Y_i).$$

Then

(5)
$$[X_i, W_1'] = [X_i, W_1] - \alpha_i Z = 0$$

$$[Y_i, W_1'] = [Y_i, W_1] - \beta_i Z = 0$$

for all $1 \leq i \leq r$.

We make a similar change of W_2, W_3, \ldots, W_{2m} as in (4). Let \mathfrak{n} be the Lie algebra generated by $W_1', \ldots, W_{2m'}, Z$. Because of (5) and (6) \mathfrak{n} is an ideal. Consequently \mathfrak{n} satisfies (2) and (3).

4. (n is a Heisenberg algebra.)

Let \mathfrak{a} be a maximal abelian subalgebra of \mathfrak{n} not containing the centre. By 3. we can find an abelian subalgebra \mathfrak{b} and an ideal \mathfrak{n}_1 such that $\dim \mathfrak{a} = \dim \mathfrak{b}$ and $\mathfrak{n} = \mathfrak{a} + \mathfrak{b} + \mathfrak{n}_1$ (direct sum). The properties of \mathfrak{n}_1 are the same as those of \mathfrak{n} , hence $\mathfrak{n}_1 = RZ$. By inspection we can find a basis of \mathfrak{n} satisfying the conditions of Definition 1.

2. The G-invariant differential operators on G/H.

Let G be a Lie group and H a closed subgroup. Denote by \mathfrak{g} and \mathfrak{h} the Lie algebras of G and H, respectively.

G acts on the homogeneous space G/H of left cosets gH by multiplication to the left.

$$g \cdot (xH) = (gx)H$$
 for all $g, x \in G$.

DEFINITION 2. A differential operator D on G/H is said to be G-invariant if

$$(7) D(g \cdot f) = g \cdot (Df)$$

for all $f \in C^{\infty}(G/H)$, $g \in G$ where $(g \cdot h)(p) = h(g^{-1} \cdot p)$ for all $g \in G$, $p \in G/H$ and $h \in C^{\infty}(G/H)$.

Denote by D(G/H) the algebra of invariant differential operators on G/H.

Let m be a complementary linear space of \mathfrak{h} in \mathfrak{g} . Choose a basis X_1, X_2, \ldots, X_n of \mathfrak{g} such that X_1, \ldots, X_m is a basis of m. Then the map

(8)
$$\Phi: \exp(x_1X_1 + \ldots + x_mX_m)H \to (x_1, \ldots, x_m)$$

of $G/H \to \mathbb{R}^m$ defines a chart around the element $\{eH\}$ of G/H where e is the neutral element of G.

If (Φ, U) is a local chart on G/H and $f \in C^{\infty}(G/H)$ put f^* for the composite function $f \circ \Phi^{-1}$ defined on $\Phi(U)$. Let x_1, x_2, \ldots, x_m be the coordinate functions of Φ and let $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_m)$ be a m-tuple of non-negative integers. We put $\partial_i = \partial/\partial x_i$ $(1 \le i \le m)$ and $D^{\alpha} = \partial_1^{\alpha_1} \ldots \partial_m^{\alpha_m}$.

Every differential operator D on G/H has a local expression in the chart (φ, U) given by

(9)
$$(Df)(x) = \sum_{\alpha} a_{\alpha}(x) [D^{\alpha} f^*] (\Phi(x))$$

for $x \in U$ and $f \in C^{\infty}(G/H)$ where $a_x \in C^{\infty}(U)$ and only finitely many of the a_x 's are $\neq 0$.

In particular, if we use the chart (8) in (9), we find by putting

(10)
$$P(X_1, X_2, \ldots, X_m) = \sum_{\alpha} a_{\alpha}(eH) X_1^{\alpha_1} \ldots X_m^{\alpha_m}$$
 and (7):

$$(11) \quad (Df)(gH) = [P(\partial_1, \partial_2, \dots, \partial_m) f(g \exp(x_1 X_1 + \dots + x_m X_m) H)](0)$$

for every $D \in \mathbf{D}(G/H)$, $g \in G$, $f \in C^{\infty}(G/H)$.

Note that (11) expresses D uniquely by the polynomial P.

If V is a linear space over a field K denote by S(V) the symmetric algebra of V. Let X_1, \ldots, X_m be a basis of V. Then S(V) consists of the polynomials in the base elements over K. By (11) there is a mapping of $\mathbf{D}(G/H) \to S(\mathfrak{m})$. In general, it is not true that every $P \in S(\mathfrak{m})$ gives rise to an invariant differential operator.

If g/h is *reductive* it is possible to give a complete answer. Suppose there exists a subspace m of g such that

$$g = h + m$$
 (direct sum) and $[h, m] \subseteq m$,

Let $D \in \mathbf{D}(G/H)$. $P \in S(\mathfrak{m})$ is the polynomial corresponding to D. Noting that (Df)(ghH) = (Df)(gH) for all $h \in H$, we find by (11) ([2, p. 391]):

$$P(\operatorname{Ad}(h)X_1,\ldots,\operatorname{Ad}(h)X_m) = P(X_1,\ldots,X_m)$$
 for all $h \in H$.

Definition 3. $P \in S(\mathfrak{m})$ is invariant if

(12)
$$P(\operatorname{Ad}(h)X_1,\ldots,\operatorname{Ad}(h)X_m) = P(X_1,\ldots,X_m) \text{ for all } h \in H.$$

Denote by $I(\mathfrak{m})$ the subalgebra of $S(\mathfrak{m})$ of invariant polynomials.

Theorem 2. Let X_1, X_2, \ldots, X_m be a basis of \mathfrak{m} where $\mathfrak{g} = \mathfrak{h} + \mathfrak{m}$ (direct sum) and $[\mathfrak{h}, \mathfrak{m}] \subseteq \mathfrak{m}$. There is a one-to-one linear mapping $P \to D_p$ of $I(\mathfrak{m})$ onto $\mathbf{D}(G/H)$ such that

(13)
$$(D_p f)(gH) = [P(\partial_1, \dots, \partial_m) f(g \exp(x_1 X_1 + \dots + x_m X_m) H)](0)$$
 for all $g \in G$ and $f \in C^{\infty}(G/H)$.

For proof see [2, Theorem 2.7 p. 395].

LEMMA 2. If g is a Heisenberg algebra of dimension 2n+1 and \mathfrak{h} an abelian subalgebra not containing the centre of g, let \mathfrak{k} and n be as in Theorem 1. Put $\mathfrak{m} = \mathfrak{k} + \mathfrak{n}$ (direct sum). Then $I(\mathfrak{m}) = S(\mathfrak{n})$.

PROOF. For each $T \in \mathfrak{h}$ denote by d(T) the derivation of $S(\mathfrak{m})$ extending the endomorphism ad(T) of \mathfrak{m} . Then

(14)
$$P \in I(\mathfrak{m})$$
 if and only if $d(T)P = 0$ for all $T \in \mathfrak{h}$.

Because of $[\mathfrak{h},\mathfrak{n}]=(0)$ it follows that $S(\mathfrak{n})\subset I(\mathfrak{m})$. On the other hand suppose $P\in I(\mathfrak{m}),\ P\notin S(\mathfrak{n})$. Choose a basis $X_1,\ldots,X_n,Y_1,\ldots,Y_n,Z$ of \mathfrak{g} as in Theorem 1. Then

(15)
$$P(X_{r+1},...,X_n,Y_1,...,Y_n,Z) = \sum_{\alpha} Q_{\alpha} Y_1^{\alpha_1}...Y_r^{\alpha_r}$$

where $Q_{\alpha} \in S(\mathfrak{n})$ for all α . (The sum is finite.)

Let n_j $(1 \le j \le r)$ be the highest degree of Y_j in (15). Suppose $n_j \ge 1$. Then

$$d(X_j)P = \sum_{\{\alpha : \alpha_j \ge 1\}} \alpha_j Q_{\alpha} Y_1^{\alpha_1} \dots Y_j^{\alpha_j - 1} \dots Y_r^{\alpha_r} Z \neq 0$$

which is a contradiction to (14). Hence $n_i = 0$ $(1 \le j \le r)$ and $P \in S(n)$.

Let G be a connected and simply connected Lie group with Lie algebra \mathfrak{g} , H and N, denote the analytic subgroups corresponding to the subalgebras \mathfrak{h} and \mathfrak{n} , respectively.

Theorem 3. The mapping $E \to D_E$ of $D(N) \to D(G/H)$ given by

$$(D_E f)(gH) = E(t \to f(gtH))_{t=e}$$

for all $g \in G$, $f \in C^{\infty}(G/H)$ and $t \in N$, is an algebra isomorphism of $\mathbf{D}(N)$ onto $\mathbf{D}(G/H)$.

134 ARNE HOLE

PROOF. First suppose $E \in \mathbf{D}(N)$. Let $P \in S(\mathfrak{n})$ be the unique polynomial such that

$$(Eh)(t) = \left[P\left(\frac{\partial}{\partial x_{r+1}}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_{r+1}}, \dots, \frac{\partial}{\partial y_n}, \frac{\partial}{\partial z} \right) \cdot h\left(t \exp\left(x_{r+1}X_{r+1} + \dots + y_{r+1}Y_{r+1} + \dots + zZ\right)\right) \right] (0)$$

for all $t \in N$, $h \in C^{\infty}(N)$. In particular

$$(17) \quad (D_E f)(gH) = \left[P\left(\frac{\partial}{\partial x_{r+1}}, \dots, \frac{\partial}{\partial x_n}, \frac{\partial}{\partial y_{r+1}}, \dots, \frac{\partial}{\partial y_n}, \frac{\partial}{\partial z}\right) \cdot f(g \exp(x_{r+1} X_{r+1} + \dots + y_{r+1} Y_{r+1} + \dots + zZ)H) \right] (0).$$

By Lemma 2 and Theorem 2 D_E is invariant. On the other hand consider $D \in \mathbf{D}(G/H)$. (13) determines D by a polynomial $Q \in S(\mathfrak{n})$. Every element Q of $S(\mathfrak{n})$ gives rise to an element of $\mathbf{D}(N)$, call it E_Q . Following the lines which led to (17), we find $D_{E_Q} = D$. The mapping $E \to D_E$ is obviously linear and multiplicative.

3. Eigenspaces of invariant differential operators as models for irreducible representations.

Let G be a Lie group, H a closed subgroup and suppose G/H admits an invariant measure μ .

 $C_c^{\infty}(G/H)$ denotes the set of C^{∞} -functions on G/H with compact support. The distribution space is written $\mathcal{D}'(G/H)$ and it is given the strong topology.

If λ is a character of D(G/H) put

(18)
$$\mathscr{D}_{\lambda}' = \{ T \in \mathscr{D}'(G/H) : DT = \lambda(D)T \text{ for all } D \in \mathcal{D}(G/H) \}.$$

The action of G on G/H gives rise to a representation π of G on $\mathscr{D}'(G/H)$:

$$[\pi(g)T](f) = T(g^{-1} \cdot f)$$

for all $T \in \mathcal{D}'(G/H)$, $f \in C_c^{\infty}(G/H)$ and $g \in G$.

LEMMA 3. \mathscr{D}_{λ}' is a closed invariant subspace of $\mathscr{D}'(G|H)$. If \mathscr{D}_{λ}' is given the relative topology, then the restricted representation π_{λ} of G on \mathscr{D}_{λ}' is jointly continuous.

 $\mathcal{D}'(G/H)$ is a Montel space so that weak and strong convergence agree on bounded subsets. By this fact the proof is easily worked out.

Let $\mathfrak g$ be the Heisenberg algebra of dimension 2n+1. Choose a basis $X_1,\ldots,X_n,Y_1,\ldots,Y_n,Z$ of $\mathfrak g$ as in Definition 1 and let $\mathfrak h$ be the subalgebra generated by X_1,\ldots,X_n . We introduce $\mathfrak k$ and $\mathfrak m$ as in Theorem 1.

If G is a simply connected and connected Lie group with Lie algebra \mathfrak{g} , then

(20)
$$G = M \cdot H$$
 (semi-direct product)

and M is invariant in G.

The subgroups M and H correspond to the subalgebras $\mathfrak{m} = \mathfrak{f} + \mathfrak{n}$ and \mathfrak{h} , respectively. Since \mathfrak{m} and \mathfrak{n} are abelian, we have

$$M \cong (\mathbb{R}^{n+1}, +)$$
 and $H \cong (\mathbb{R}^n, +)$.

As manifolds we may identify G/H and \mathbb{R}^{n+1} . The correspondence is given by

(21)
$$\exp(\alpha_1 Y_1 + \ldots + \alpha_n Y_n + \alpha Z)H \to (\alpha_1, \ldots, \alpha_n, \alpha).$$

Using (21) we can find the action of G on \mathbb{R}^{n+1} .

LEMMA 4.

(i)
$$\exp(x_1Y_1 + \ldots + x_nY_n + \beta Z) \cdot (\alpha_1, \ldots, \alpha_n, \alpha)$$

= $(x_1 + \alpha_1, \ldots, x_n + \alpha_n, \alpha + \beta)$.

(ii)
$$\exp(x_1X_1 + \ldots + x_nX_n) \cdot (\alpha_1, \ldots, \alpha_n, \alpha)$$

= $(\alpha_1, \ldots, \alpha_n, x_1\alpha_1 + \ldots + x_n\alpha_n + \alpha)$.
for all $x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_n, \alpha, \beta \in \mathbb{R}$.

PROOF. (i) is simply multiplication in M. For (ii) we note that

$$\begin{split} \exp\left(x_{1}X_{1}+\ldots+x_{n}X_{n}\right)&\exp\left(y_{1}Y_{1}+\ldots+y_{n}Y_{n}\right)\\ &=\exp\left(\sum_{i=1}^{n}x_{i}X_{i}+\sum_{i=1}^{n}y_{i}Y_{i}+\frac{1}{2}[\sum_{i=1}^{n}x_{i}X_{i},\sum_{j=1}^{n}y_{j}Y_{j}]\right)\\ &=\exp\left(\sum_{i=1}^{n}x_{i}X_{i}+\sum_{i=1}^{n}y_{i}Y_{i}+\frac{1}{2}(\sum_{i=1}^{n}x_{i}y_{i})Z\right)\\ &=\exp\left(\sum_{i=1}^{n}y_{i}Y_{i}+(\sum_{i=1}^{n}x_{i}y_{i})Z\right)\exp\left(\sum_{i=1}^{n}x_{i}X_{i}\right). \end{split}$$

Applied to (21):

$$\exp\left(\sum_{i=1}^n x_i X_i\right) \cdot (\alpha_1, \dots, \alpha_n, \alpha) = (\alpha_1, \dots, \alpha_n, \alpha + \sum_{i=1}^n x_i \alpha_i).$$

LEMMA 5. D(G/H) considered as differential operators on \mathbb{R}^{n+1} is the polynomials in ∂_{n+1} .

Moreover, the characters of D(G/H) are parametrized by C.

PROOF. The lemma is immediate by Theorem 3.

136 ARNE HOLE

For each $\lambda \in \mathsf{C}$ let χ_{λ} be the character of $\mathbf{D}(G/H)$ given by $\chi_{\lambda}(\partial/\partial x_{n+1}) = \lambda$ and put $\mathscr{D}_{\chi_{\lambda}}' = \mathscr{D}_{\lambda}'$. Then

(22)
$$\mathscr{D}_{\lambda}' = \{ T \in \mathscr{D}'(\mathbb{R}^{n+1}) : (\partial/\partial x_{n+1})T = \lambda T \}.$$

The solutions of $(\partial/\partial x_{n+1})T = \lambda T$ are exactly $\mathcal{D}'(\mathbb{R}^n) \otimes e^{\lambda x_{n+1}}$ where

$$(23) (T \otimes e^{\lambda x_{n+1}})(f) = T(\int_{-\infty}^{\infty} f(x_1, \dots, x_n, x_{n+1}) e^{\lambda x_{n+1}} dx_{n+1})$$

for all $f \in C_c^{\infty}(\mathbb{R}^{n+1})$. In particular, \mathscr{D}_{λ}' is isomorphic to $\mathscr{D}'(\mathbb{R}^n)$ for each $\lambda \in \mathbb{C}$.

LEMMA 6. If f is a function in $\mathcal{D}'(\mathbb{R}^n)$ then π_{λ} acts in the following way:

(i)
$$[\pi_{\lambda}(\exp\sum_{i=1}^{n}\alpha_{i}Y_{i})f](x_{1},\ldots,x_{n})=f(x_{1}-\alpha_{1},\ldots,x_{n}-\alpha_{n}),$$

(ii)
$$\pi_{\lambda}(\exp \alpha Z)f = e^{-\lambda \alpha}f$$
 and

(iii)
$$\left[\pi_{\lambda}(\exp\sum_{i=1}^{n}\alpha_{i}X_{i})f\right](x_{1},\ldots,x_{n})=e^{-\lambda\sum_{i=1}^{n}\alpha_{i}x_{i}}f(x_{1},\ldots,x_{n}).$$

Proof. Let $\varphi \in C_c^{\infty}(\mathbb{R}^{n+1})$, then by (23)

which proves (i).

(ii) is proved in the same way.

For (iii) we find by Lemma 4 (ii)

$$\begin{split} & \big([\pi_{\lambda}(\exp \sum_{i=1}^{n} \alpha_{i} X_{i}) f \,] \otimes e^{\lambda x_{n+1}} \big) (\varphi) \\ & = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \varphi(x_{1}, \dots, x_{n}, x_{n+1} + \sum_{i=1}^{n} \alpha_{i} x_{i}) f(x_{1}, \dots, x_{n}) e^{\lambda x_{n+1}} \\ & = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_{1}, \dots, x_{n}) e^{-\lambda \sum_{i=1}^{n} \alpha_{i} x_{i}} \cdot \\ & \qquad \qquad \cdot \big(\int_{-\infty}^{\infty} \varphi(x_{1}, \dots, x_{n+1}) e^{\lambda x_{n+1}} dx_{n+1} \big) dx_{1} \dots dx_{n} \,. \end{split}$$

This is just an equivalent form of

$$\left[\pi_{\lambda}(\exp \sum_{i=1}^{n} \alpha_{i} X_{i}) f\right](x_{1}, \ldots, x_{n}) = e^{-\lambda \sum_{i=1}^{n} \alpha_{i} x_{i}} f(x_{1}, \ldots, x_{n}).$$

Theorem 4. π_{λ} is topologically irreducible if and only if $\lambda \neq 0$.

PROOF. Suppose $\lambda \neq 0$ and let $(0) \neq E \subseteq \mathcal{D}'(\mathbb{R}^n)$ be a closed and invariant subspace. If $T \in E$, and $f, \varphi \in C_c^{\infty}(\mathbb{R}^n)$ we find by restricting the representation π_{λ} to the subgroup K of G (K corresponds to the subalgebra \mathfrak{k} of \mathfrak{g}):

$$(f*T)(\varphi) = \int_{\mathbb{R}^n} f(x) T_y (\varphi(x+y)) dx.$$

By Lemma 4 (i)

$$(24) \qquad (f*T)(\varphi) = \int_K f(x) [\pi_{\lambda}(\exp \sum_{i=1}^n x_i Y_i) T](\varphi) dx.$$

This is nothing but the integrated form of π_{λ} restricted to K. If $_{K}\pi_{\lambda}$ denotes the restriction, then (24) can be written

(25)
$$(f * T)(\varphi) = \lceil \pi \pi_{\lambda}(f)T \rceil(\varphi) .$$

Summing up

$$f * T = \kappa \pi_{i}(f) T \in E .$$

If $T \in \mathcal{D}'$, $T \neq 0$ and $\{f_n\}_{n=1}^{\infty}$ is an approximative identity consisting of C_c^{∞} -functions on \mathbb{R}^n , then (as $n \to \infty$) $f_n * T \to T$ in $\mathcal{D}'(\mathbb{R}^n)$. In particular there exist C^{∞} -functions $\neq 0$ in E.

Suppose $E \neq \mathcal{D}'(\mathsf{R}^n)$. By the Hahn–Banach theorem there exists $\varphi \in C_c^{\infty}(\mathsf{R}^n), \ \varphi \neq 0$ such that

(26)
$$T(\varphi) = 0 \quad \text{for all } T \in E.$$

Choose $f \in E \cap C^{\infty}(\mathbb{R}^n)$, $f \neq 0$ and put for $z_1, z_2, \ldots, z_n \in C$

(27)
$$F(z_1, z_2, \ldots, z_n) = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} e^{z_1 x_1 + \ldots + z_n x_n} \varphi(x_1, \ldots, x_n) f(x_1, \ldots, x_n) dx_1 \ldots dx_n$$

F is complex analytic in each of the variables. For every choice of $t_1,\ldots,t_n\in \mathbb{R},$ the function

$$g(x_1,\ldots,x_n) = e^{\lambda(t_1x_1+\ldots+t_nx_n)}f(x_1,\ldots,x_n)$$

is in E (Lemma 6 (iii)).

Because of (26) $F(\lambda t_1, \lambda t_2, \dots, \lambda t_n) = 0$ for all $t_1, \dots, t_n \in \mathbb{R}$. Fix $t_2, \dots, t_n \in \mathbb{R}$. Then

$$z \to F(z, \lambda t_2, \ldots, \lambda t_n)$$

is zero on a line through 0. This implies that $F(z, \lambda t_2, \ldots, t_n) = 0$ for all $z \in \mathbb{C}$. Since t_2, \ldots, t_n were arbitrary, we have

$$F(z_1, \lambda t_2, \dots, \lambda t_n) = 0$$
 for all $t_2, \dots, t_n \in \mathbb{R}$ and $z_1 \in \mathbb{C}$.

We repeat the argument in the second variable z_2 etc. From this it follows that $F(z_1, \ldots, z_n) = 0$ for all $z_1, \ldots, z_n \in C$. In particular

(28)
$$F(iy_1,\ldots,iy_n) = 0 \quad \text{for all } y_1,\ldots,y_n \in \mathbb{R} .$$

(28) means that the Fourier transform of $\varphi \cdot f$ disappears,

$$(\varphi f)^{\hat{}}(y_1,\ldots,y_n)=0$$
 for all $y_1,\ldots,y_n\in\mathbb{R}$.

This implies

$$\varphi f = 0.$$

(29) is true for every $f \in E \cap C^{\infty}(\mathbb{R}^n)$. By Lemma 6 (i) we may translate f. In particular, there exists a f-translate g such that $\varphi g \neq 0$. This is a contradiction to the assumption $E \neq \mathcal{Q}'(\mathbb{R}^n)$. Thus π_{λ} is irreducible if $\lambda \neq 0$.

If $\lambda = 0$ the subspace of $\mathcal{D}'(\mathbb{R}^n)$ consisting of the constant functions is closed and invariant, hence π_0 is not irreducible.

THEOREM 5. Let ϱ_{λ} be the restriction of π_{λ} to $\mathscr{E}(\mathsf{R}^n)$ (= $C^{\infty}(\mathsf{R}^n)$ given its natural topology). ϱ_{λ} is topologically irreducible if and only if $\lambda \neq 0$.

PROOF. Suppose for $\lambda \neq 0$ that $E \subset \mathscr{E}(\mathsf{R}^n)$ is a proper closed subspace. Let $T \neq 0$, $T \in \mathscr{E}'(\mathsf{R}^n)$ such that $T(\varphi) = 0$ for all $\varphi \in E$. For $f \in C_c^{\infty}(\mathsf{R}^n)$ we find by Lemma 6 (i) that f * T is orthogonal to E. If $f \neq 0$ then $h = f * T \in C_c^{\infty}(\mathsf{R}^n)$ and $h \neq 0$ [6, p. 173]. Let ϱ be the linear functional on $\mathscr{D}'(\mathsf{R}^n)$ given by $\varrho(S) = S(h)$ for all $S \in \mathscr{D}'(\mathsf{R}^n)$. $\varrho = 0$ on the closure of E in $\mathscr{D}'(\mathsf{R}^n)$. Since π_{λ} is irreducible it follows that h = 0. This is a contradiction, hence ϱ_{λ} is irreducible.

The case $\lambda = 0$ follows as in the proof of Theorem 4.

If $\lambda = is$ where $s \in \mathbb{R}$, we see by Lemma 6 that $L^2(\mathbb{R}^n)$ is invariant under π_{is} . Also, π_{is} restricted to $L^2(\mathbb{R}^n)$ is a unitary representation μ_s of G.

Theorem 6. If $s \in \mathbb{R}$, $s \neq 0$ then μ_s is irreducible.

PROOF. Suppose $s \in \mathbb{R}$, $s \neq 0$ and let $(0) \neq E$ be a closed and invariant subspace of $L^2(\mathbb{R}^n)$.

Lemma 6 (i) tells us that E is translation invariant. It is well-known [5, p. 190] that E can be described by a Borel set A in \mathbb{R}^n in the following way

(30)
$$E = \{ f \in L^2(\mathbb{R}^n) : \hat{f} = 0 \text{ a.e. on } A \}.$$

If $f \in E$, then by Lemma 6 (iii) $g \in E$ where

$$g(x_1,\ldots,x_n) = e^{-is\sum_{i=1}^n \alpha_i x_i} f(x_1,\ldots,x_n)$$

for all $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$.

Calculating the Fourier transform of g we find

$$\hat{g}(x_1,\ldots,x_n) = \hat{f}(x_1+s\alpha_1,\ldots,x_n+s\alpha_n).$$

(31) proves that \hat{E} is invariant under translations.

Choose $f \in E$, $f \neq 0$, then $\hat{f} \neq 0$. If $g \in C_c^{\infty}(\mathbb{R}^n)$ we find as in the proof of Theorem 4 that $g * \hat{f} \in \hat{E}$. Moreover, $g * \hat{f} \in C^{\infty}(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$. We may choose g such that $g * \hat{f} \neq 0$.

In particular $g*\hat{f}$ is continuous and $V = \{x \in \mathbb{R}^n : (g*\hat{f})(x) \neq 0\}$ is an open non-empty set. By (31) we may move the set V freely in \mathbb{R}^n . Denote by μ the Lebesgue-measure of \mathbb{R}^n . If $\mu(A) > 0$ (real or ∞) there exists a translate V_1 of V such that $\mu(V_1 \cap A) > 0$.

Because of (30) $\mu(V_1 \cap A) = 0$, hence $\mu(A) = 0$. This implies that $E = L^2(\mathbb{R}^n)$ and the proof is complete.

REMARK. If $C = \{ \exp tZ : t \in \mathbb{R} \}$ and χ_s is the unitary character of HC given by

$$\chi_s(\exp(\sum_{i=1}^n \alpha_i X_i) \exp \alpha Z) = e^{i\alpha s}$$
,

then the induced unitary representation $\chi_s \uparrow G$ equals μ_{-s} . By Kirillov-theory [4] it is easily found that the μ_{α} 's are the only irreducible unitary representations of G which are not characters.

We will now consider the case $1 \le \dim \mathfrak{h} < n$ and see if some of the spaces studied above are irreducible.

 \mathfrak{h} is the Lie algebra spanned by X_1, \ldots, X_r where r < n. \mathfrak{k} and \mathfrak{n} are as in Theorem 1. Denote by H, K and N the analytic subgroups of G corresponding to \mathfrak{h} , \mathfrak{k} and \mathfrak{n} respectively. By Theorem 3 $D(G/H) \cong D(N)$. If λ is a character of D(N) then

(32)
$$\lambda(Z) = \lambda(X_{r+1}Y_{r+1} - Y_{r+1}X_{r+1}) = \lambda(X_{r+1})\lambda(Y_{r+1}) - \lambda(Y_{r+1})\lambda(X_{r+1}) = 0.$$

 λ is uniquely determined by its values on the basis vectors $X_{\tau+1}, \ldots, X_n, Y_{r+1}, \ldots, Y_n, Z$. (32) is the only condition for a [2(n-r)+1]-tuple to define a character of D(N). This means that the characters are parametrized by $C^{2(n-r)}$. The correspondence is the following: If

$$(c,\gamma) = (c_{r+1},\ldots,c_n,\gamma_{r+1},\ldots,\gamma_n) \in C^{2(n-r)}$$

put $\lambda(X_k) = c_k$ and $\lambda(Y_k) = \gamma_k$ for $r+1 \le k \le n$.

We may identify G/H and \mathbb{R}^{2n+1-r} as manifolds. The isomorphism is given by

(33)
$$\exp(x_{r+1}X_{r+1} + \ldots + x_nX_n + y_1Y_1 + \ldots + y_nY_n + zZ) \to (x_{r+1}, \ldots, x_n, y_1, \ldots, y_n, z).$$

140 ARNE HOLE

Denote by $\mathscr{D}'_{(e,\gamma)}$ the eigendistributions of D(G/H) on G/H defined by (18) for the character $\lambda_{(e,\gamma)}$. Using (33) $\mathscr{D}'_{(e,\gamma)}$ can be considered as a subspace of $\mathscr{D}'(\mathbb{R}^{2n+1-r})$:

where

$$e^{\mathbf{c}\cdot\mathbf{x}+\mathbf{\gamma}\cdot\mathbf{y}} = e^{c_{r+1}x_{r+1}+\ldots+c_nx_n+\gamma_{r+1}y_{r+1}+\ldots+\gamma_ny_n}$$

and

$$[T \otimes e^{\mathbf{c} \cdot \mathbf{x} + \mathbf{\gamma} \cdot \mathbf{y}}](f) = T(\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_{r+1}, \dots, x_n, y_1, \dots, y_n, z) \cdot e^{\mathbf{c} \cdot \mathbf{x} + \mathbf{\gamma} \cdot \mathbf{y}} dx_{r+1} \dots dx_n dy_{r+1} \dots dy_n dz).$$

In particular $\mathscr{D}'_{(\mathbf{c}, \mathbf{r})}$ is isomorphic to $\mathscr{D}'(\mathsf{R}^r)$.

Denote by $\pi_{(c,r)}$ the representation of G on $\mathcal{D}'(\mathsf{R}^r)$.

LEMMA 7. If f is a function in $\mathscr{D}'(\mathsf{R}^r)$ then $\pi_{(\mathbf{c},\gamma)}$ acts in the following way:

- (i) $\pi_{(c,\gamma)}\left(\exp\left(\sum_{i=1}^r \alpha_i X_i + sZ\right)\right) f = f.$
- (ii) $[\pi_{(e,\gamma)}(\exp\sum_{i=1}^r \alpha_i Y_i)f](x_1,\ldots,x_r) = f(x_1-\alpha_1,\ldots,x_r-\alpha_r)$
- (iii) $\pi_{(\mathbf{c}, \gamma)} \left(\exp \sum_{k=r+1}^{n} (\alpha_k X_k + \beta_k Y_k) \right) f = e^{-(\mathbf{c} \cdot \mathbf{a} + \gamma \cdot \boldsymbol{\beta})} f.$

The proof is straight foreward and follows the lines of the proof of Lemma 6.

THEOREM 7. If $1 \le r < n$ then none of the natural representations of G on $\mathcal{D}'(\mathsf{R}^r)$, $C_c^{\infty}(\mathsf{R}^r)$, $\mathscr{E}(\mathsf{R}^r)$, $\mathscr{E}'(\mathsf{R}^r)$ and $L^2(\mathsf{R}^r)$, respectively, are irreducible for any character $\lambda_{(\mathbf{c},\mathbf{r})}$ of $\mathbf{D}(G/H)$.

PROOF. By Lemma 7 the action of G is simply translation of functions (distributions) on R^r .

Let E be the subspace consisting of the constant functions; then E is closed in $\mathscr{E}(\mathsf{R}^r)$ and $\mathscr{D}'(\mathsf{R}^r)$ and it is invariant under $\pi_{(e,\gamma)}$.

By duality we find that neither $C_c^{\infty}(\mathbb{R}^r)$ nor $\mathscr{E}'(\mathbb{R}^r)$ is irreducible. It is well-known that $L^2(\mathbb{R}^r)$ is not irreducible under translations. This completes the proof.

REMARK. If r=0 then $H=\{e\}$ and the construction gives nothing but the characters of G.

REFERENCES

- F. Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97-205.
- S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York and London 1962.
- S. Helgason, Group representations and Symmetric Spaces, Actes, Congr. Int. Math. Nice 1970, Tome 2, 313-319.
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104.
- 5. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
- 6. L. Schwartz, Théorie des distributions (Publications de l'institut de mathematique de l'Université de Strasbourg 9), Hermann, Paris, 1966.

UNIVERSITY OF TRONDHEIM, NORWAY