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CONVOLUTION ON THE REDUCED DUAL
OF A LOCALLY COMPACT GROUP

MARTIN E. WALTER*

In this paper we study the concepts of convolution and inverse Fourier
transform of operators which are integrable with respect to the dual
Haar weight ¢(1) of the left ring M (1) of a locally compact group G.
We thus extend the work in [18] to the general, not necessarily uni-
modular, case. Our work differs with previous work on the subject, cf.,
[16], in that we actually compute the convolution product as an opera-
tor; and we compute the inverse Fourier transform by “integrating”
with respect to the weight ¢(1). We define LY(M(4),(1)), the L'-space
of weight ¢(1), show it has an involutive Banach algebra structure, and
that the inverse Fourier transform is an isomorphism of this algebra
onto A(G), the Fourier algebra of G. We also define the dual Tomita
algebra of G and relate a non-commutative “topology” of the reduced
dual to the Pedersen ideal of C,;*((#), the reduced C*-algebra of G. We
conclude by showing what formal machinery of an inverse transform
persists in the general setting of an arbitrary group representation in
standard form.

The author would like to mention that this paper was in part inspired
by an all too brief visit at Kgbenhavns Universitet Matematisk Institut,
Denmark, during which a meeting on operator algebras was most gra-
ciously hosted by Gert Kjergird Pedersen, Dorte Olesen and their
colleagues. Also, at the suggestion of the referee, we have shortened the
proof of the lemma following Proposition 1, combined the definition of
left and right Fourier transform at the outset, and clarified the nature
of the dual convolution by first discussing it without the use of the ten-
sor product of weights or the P/ cone.

2,
In this section we extend the work in [18] on harmonic analysis and
duality for unimodular groups to any locally compact group. In partic-
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ular we define the L'-space of the dual Haar weight; and we define a
convolution for elements therein, as well as an inverse Fourier transform
which maps this dual L!-convolution algebra isometrically, isomorphic-
ally onto A(G), the Fourier algebra of G. First, however, we establish
some necessary notation.

Let @ be a locally compact group; let m be left-Haar measure; and
let dm(xa)=A(a)dm(x) determine A, the modular function of G. Let
L3@) be the (equivalence classes of) Haar measurable (complex-valued)
functions f for which SG [f(x)]2dx < + o, and LY(@) the (equivalence classes
of) Haar measurable f for which {;|f(x)|dm(z) < + co. Now LY(@) is iso-
metrically #-isomorphic to the two-sided #-ideal of measures in M(G)
absolutely continuous with respect to m, where MY(@F) is the set of
(bounded) complex Radon measures on G, i.e., Co(@)’, the dual space of
the set of continuous functions on G which vanish at infinity. (We shall
let C (@) be the continuous functions with compact support.) Note that
MY(G) is endowed with its usual Banach algebra structure (convolution,
addition, variational norm); but we denote the usual involution by #,
namely, du¥(g) = Zu(g ) for u € MX(@), and f4(g) = 4-1(g) f*(g) for f € LX(@),
where f%(g)=f(g~1)=f"(g), the over-bar denoting complex-conjugation,
the ~ denoting inversion of the variable. (Note that in the text we will
have occasion to apply the involutions # and b, given by the above
formulas, to certain L2-functions which in general are not in L(@).)
We shall let 2 denote the various left-regular representations of @,
LY(@), MY{(G) on L?@), as well as the (left) representation of /(@) < L(®)
on L¥(@®), where 2/(G) denotes the achieved (left) Hilbert algebra consist-
ing of those & € L3(G) which satisfy

(i) &(-)=4-1()&(-) € L¥@), and
(ii) ¢ is left-bounded.

Note that & is left-bounded if # € C,(G)+ A'(n)é € L¥ @) is a bounded
linear map and A(£¢) denotes the extension of this map to all of L%(@).
Recall that A'(n)é=&xn where * denotes convolution (when defined).
Adopting the notation of the Tomita—Takesaki theory we shall let
' (Q)=A(F)’, where JE=§/ =A-1£0 is the usual conjugate-linear iso-
metric involution of L*@). Also, we shall let

A (G) = {E€ L¥Q): A*¢ € (@) for all &« € C, the complex numbers} ,

the Tomita algebra of G. Note that C,(G)co/y(@)<N, .. Domain
A*cfneg’ and that C,(G) is another (in general strictly smaller but
equivalent) Tomita algebra for @. Recall that if £ € &7, then & € o and
A(£%) = A(£)* where * denotes the usual adjoint of an operator on Hilbert
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space. Similarly, if 9 € /', then 7? € &’ and 1'(n®)=1'(n)*. It will also
be efficacious to recall, along with the three aforementioned involutions,
their corresponding cones, viz., P¥={£x&% : £e of), PV ={E+&7 : e o),
and Pb={£+£: £ o'}, where the over-bar denotes closure in L2(G).
Recall that JP*¥=Pb and JP7=P7. Also P¥ and P® are dual cones
(e.g. &€ P¥ if and only if (&|5)20 for all 5 € Pb) while P’ is self-dual,
cf., [2, 4, 8, 14, 19]. Let M(A) (resp. M(1')) denote the von Neumann
subalgebra of #(L*@)) generated by A(s&/) (resp. A'(=)).

Our first task is to define an analogue of Haar measure on @, the
dual group of G when G is abelian. In the abelian case we recall that
A LYG) - M(A) (convolution operators) is unitarily equivalent (via
Plancherel) to & : LY(G) -~ A(@) = L*(@) (multiplication operators), where
& is the Fourier transform; and this unitary equivalence establishes
M(2)~ L>(G), isomorphic as von Neumann algebras. The analogue of
left Haar measure that we seek then is a weight ¢ on M(4). Recall that
a weight on a von Neumann algebra M is an additive, non-negative
homogeneous map of M, the positive part of M, into [0,00]. We thus
define the (canonical) dual Haar weight ¢, (or ¢(1), which ever is nota-
tionally more convenient) to be the weight given in the following.

ProrosiTION 1. For x € M(), put g,(x)=|&||? if there exists a £E€ o
such that A(&)=ux}, and put g,(x)= +oco otherwise. Then @, is a faithful,
semifinite, normal weight on M(1); and it satisfies, in addition:

(1) @(A(E0)*AE5)) = (§2] é1) ey Jor &1, left-bounded,

(i) 1 N1G* =A(H),

(i) Moy = nw)*ngu) =A(?),

(iv) @A AUEDAUE)) =P UEIUED)) for £1,8, € 2,

(V) @iA(E¥xE)) = EF&(e) = TEx(JE)(e) = Ex&P(e)
where e 1s the identity of G, and &€ o,

(vi) pi(A(pE¥*E)) = p(e)g(A(£%+£))
where &£ € o/, and p is any (continuous) positive definite function
such that the pointwise product of p and E¥x& is in A *xsf. (Bvery
continuous positive definite function p has this property, cf. Theo-
rem 3.)

Proor. Faithfullness, semifiniteness, and normality of ¢, as well as
parts (i), (ii), (iii) are proven in [3, Théoréme 2.11]. We observe that (i)-(iv)
hold in general for any von Neumann algebra in standard form (with
respect to a left-Hilbert algebra &), and their validity is not confined to
left-von Neumann algebras of groups. Recall that
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Ny = {T € M(A) : @i(w*x) < + 0}

is a left ideal and m ;) =n,;*n,, is the complex-linear span of the face
{we M), : (%)< 4 o0} =(myyu),. Also ¢, is the unique extension of ¢,
to m,;. We have not seen (iv) proven before so we include its trivial
proof here (which is valid for general von Neumann algebras in standard
form). From (i)

‘Pz(l(fl#)ﬂ(fz)) = (6]&) = (52|(§1b)b) = (§1b|§2#) = ?’1('1(52)}“(5117)) .

Asfor (v), JEx(J&)? is a continuous function, in particular, J&x(J&)? €4(G),
cf., [7, p. 218]. Clearly J&x(J¢&)%(e) is well-defined and equals ||J&[f.q =
612y = P(A(EFxE)) by (i). Also J(JEx(JE)P)=E#x&, and applying J does
not change continuity or the value at e. We might remark that if we
interpret JEx(JE)? as wy, € M(1),, the predual, then (v) is capable of a
more abstract interpretation; see section 3. As for (vi), we must show
Pi(A(pE*xE)) = p(e)EFx£(e). Now if p&¥x& € o2, then (without loss of gener-
ality) A(p&¥+&) =33 _ 47A(C,*+¢,) for some ¢, e/, n=0,1,2,3. By [3]lemma
2.2 pE¥xE=33_ 1", *xC,, and by continuity and (v) above ¢,(p&¥x&)=
p(e)&*x&(e). Thus part (vi) is true for any continuous function p such
that p&*x& € o2, In case p is positive definite, however, we have in addi-
tion that pé¥x&=(p(£¥x£)7)’ € P¥; and by [14] that A(pé¥+&)=0.

REMARK. Property (vi) is an invariance property of ¢, analogous to
an invariance property of m, viz., for f € LY(G), u € MY(G),

Sourf @) dm(y) = (o{of (@ y)du(@)dm(y) = (odu(@) §of (y)dm(y) ,

which follows from the left-invariance of m. It turns out that ¢, is “two-
sided invariant’’, cf., Theorems 1 and 2 below.

Now m,, is the analogue of LNG)nL>(B) for @ abelian, and we know
that LY(G)nL>(@) is closed under convolution with respect to Haar
measure. In [18] a convolution and inverse Fourier transform are intro-
duced for trace class operators when ¢(4) is a trace; below we introduce
a convolution and inverse Fourier transform for m,,;, for the general case.
But first a lemma.

LeMMA. We have that A(g)mq,q =) and my,;A(g) =m g, ; and ¢,(A(g)a) =
@:(ak(9))A(g) for each g € G, and a € m,;,.

Proor. This lemma follows by a short, straightforward computation
involving Proposition 1. This lemma also follows from the more general
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considerations of [13, § 3] since the easily verified identity A4%A(g)4-%=
A%(g)A(g) for all z € C shows that A(g) is an analytic element (in the sense
of [13]). Hence by [13, lemma 3.3] we have the first half of our lemma,
and from [13, lemma 3.5] follows the second.

Remark. This lemma exhibits the very special relationship that exists
between the unitary subgroup A(G) and @(4). If wmgy =m,q=m,,u for
all unitaries « in M(4), then m,; would be an ideal, which cannot be
expected in general.

DEriNtTION 1. If @ € My, the (inverse) Fourier transform of a, @, is
the complex-valued function on G given by a(-)=A4-%(+)g,(A(+)a).

ReMARK. The above definition is asymmetric in the sense that it is a
“left-handed” definition. The correct ‘“right-handed” definition as well
as its equivalence with the “left-handed’ are given in the next proposi-
tion.

ProPOSITION 2. If a € my,,, then

a(+) = A7 )@y(A(-)a) = A3 )@y(al()) .
In particular, if a=37_,A(n;)*A(E;) is some decomposition of a where

Eomped, i=1,...,n, then
a(+) = 3 (A )| JE) -

Also G e A(Q), and a =0 implies 8 is positive definite. This Fourier trans-
form is linear and one-to-one.

Proor. From its definition, the Fourier transform is clearly linear.
Now let us consider a=A(n)*A(§), n,& € .
We have

#:(Ag)a) = p(MAgF)NE))
= (£1(a(gm))
— (£]J44(g)4~4)
= (4¥(g)A-¥n| J§)
= A¥g)(Ag)In| JE) ,
where we have used Proposition 1 (i) and the identity Ati(g)4-t=

A¥(g)A(g). Now by a similar direct computation (or by the previous
lemma) for a=A(n)*A(§), ., € L,
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Pi(ad(g)) = A-Hg)(A(g)Tn| JE) .
By linearity if a=37, A(n**¢£,), n,,fied i=1,...,n, we get

a(g) = 271 (Mg)In;1 J&))

for all g € G. Now in*(Jni)b(g)=( (9)Jn;| J&;) is in A(@) by [7, p. 218].
If az0, then at e n,;nn,,*; and A(€)=at for some &€ .o/: thus & is
positive definite. That the Fourier transform is one-to-one follows from
the fact that a=24(4-'@)* for all a em, My TO see this more explicitly
consider a=A(n*x£), 7, fEM i.e., @=JEx(Jn)’. Thus A& =E%+ij e o2,
hence A(A—#8)* = A(n¥x£) =

CoroLLARY. We have
My = L'(G)? < LAG),
a-t m.p(&) = A(G)? < LXG),
and
a = MA-Ha)* = AJa), for all aem,,, .

REMARK. From the point of view of the Tomita—~Takesaki theory the
At is a natural factor, since JP¥=P? and A(x) =0 for x € P¥n&Z, cf., [14].
Further insight into the A% factor may be obtained by directly verifying
that if aemy,, az0, then 3, ;u;i,4(9,9,7)20 for gy,...,9,€G and
Hise o sty € C.

REMAREK. As can be seen from the previous proof an alternative defi-
nition of & for a=37"_, AnUE;), n, & €, 1=1,...,n, could be given as
a(g)=37_1(Mg)In;| J&). It is easy to verify that & indeed depends only
on a (not on the particular representation of @ as a sum), cf., section 3.
(This latter approach to the definition of @ is quick and concise, yet we
have chosen our present exposition since it more clearly relates to the
classical theory while at the same time emphasizes the interrelationship

of p(4), myy, and A(Q).)

We now turn our attention to the problem of computing the convolu-
tion a,*a, of two operators a, and a, from m,, . In particular, we first
compute a,*a, for a;,a, € (myy),. Thus let a;=A(&FxE), §,e o, 1=1,2,
and consider (8,8,)(g)=(A(g)J&,|JE)(A(g)JE;| JE;). We wish to find a
vector &, € &/ such that

(Mg)T& | J&) = (Mg) &1l T&1)(Ag)T&x| &)

for all g € G. Such a &, exists; in fact, &, can be chosen from & nP*¥,
We proceed with the proof.



CONVOLUTION ON THE REDUCED DUAL ... 151

First we observe that @,d, is a continuous positive definite function.
Since J is an involution of L?(G)and M(A) is in standard form, cf., [6, 8,19],
there exists a vector £, e L*@) such that (8,8,)(g)=(A(g)J&,|J&). We
now show by direct computation that any such &, is left-bounded, i.e.,
that the map 7' € &' & A (9')&, € L¥ @) extends to a bounded linear map
on L*({). Letting n=Jn" we have:

14" ") &olFae = ITA' (7" T&lF g
= A" )W &L
= (AnFxn)J&y| J&)
= San*en(9)(A(g)J & | J&y)dm(g)
< $oln*n(@) (M) & | J&o) dm(g)

(Note that we could without loss of generality restrict n € C,(G); also see
formulas (2.9), (3.11) of [7]). Now

InFsn(g)l = S ln* ()| In(h—g|dm(h)
Se4(h=1)n(R)| [n(h-g)| dm(h)
= (o |n(®)|n(hg)|dm(R)

< |l (Vo In(hg)2dm(R) 2

= [|Fe@47H(g) -
Now A-¥(+)|(A(+)JE&y| J&y)| is integrable, since

A=) AW T&) = A7 YA )T | &1 )(A(- )&, | T &)

and
AN )& | TE) = EFE e « LYQ),
(A )&, | J&;) = TEA(JE,) € ()2 = LY@ .
Thus A(&,) is in M(A) and
A = Sad~H@) (M) & TE)I(Ag)TEs| T&o)ldmig) -

Now let A(%,)=u|A(&,)| be the (left) polar decomposition of i(£,). We
have A(u*&,)=u*A(&)=|1(&)|, cf., [3, lemme 2.3]. To see that w*{, e o/
we observe that A(u*&,)*=A(u*f,) and apply [3, lemme 2.4]. We see
that u*&, € P¥ from [14, Proposition 2.5]. We define

ayxay = Wu*Ee)*Au*Ey) = Mu*Ee)* € (Myg)s 5
and we observe that
(ayxa5)~(9) = (Ag)Tu*Ey| Jursy) = (Mg)&|J&) = 81(9)85(9) »
since u € M(A), uu*éy=&,, and JA(g)J € M(1)". Since the (inverse) Fou-
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rier transform is one-to-one a,*a, is uniquely (well) defined. We note in
passing that there is exactly one vector &€ ./ NP* such that A(£)2=
ME)*A(€)=a, for a some fixed element of (m,y),; since if A(£)2=21({)?
&, e Z/nP¥ then A(&)=A(f) and hence £={ in L2(@).

We have thus proved most of

THEOREM 1. Given a,,a, € (My,)., the convolution a,xa, e (m,y), ex-
ists  (uniquely). Moreover, a;*ay=ayxa;, @,(a;%0,)=@,(a,)@,(a5), and
(ayxay)” =@,8y, where = is the (inverse) Fourier transform.

The only thing left to prove is that ¢,(a,*a,)=g¢,(a;)p;(a,). But in the
notation of the proof of Theorem 1,

Palagxa,) = %(’1(50)*}»(50)) = 50#*50(3) = (ay*a,)”(e)
= Gy(e)8y(e) = @a(ar)ps(as) ,

gince A-¥(e)=1.

Using the one-to-oneness of the inverse Fourier transform on m;,
the fact that m,, is the linear span of (m,y).,, Theorem 1, and the fact
that A(@) is an algebra, we can easily extend the convolution operation
to all elements of m,,;,.

We now have

THEOREM 2. With convolution *, my; is a commutative algebra with in-
volution, ¢, and ~, the (inverse) Fourier-transform, is an involutive-algebra
isomorphism of {m,,*,°} onto a norm-dense involutive subalgebra of A(G),
viz, ' (Q)*'(G). Furthermore, (mygxmy,;)~ <LY(G); and ¢,(a;*a,)=
P2(21)Pa(ag).

Proor. The involution ¢ can be characterized in two ways. First if
x € M(A), ¢ € L¥@), °¢ =xf, where the bars denote complex conjugation.
Alternatively, (x¢,a)={x,a) for all ae A(G)~ M(), also defines ar.
To see the equivalence of these two characterizations recall (3.11) of
[7], i.e., (&, Ex7") = (¥n|£) 2, Hence

<“'c,§*77b> = (x"nlf)m(e) = (ﬁ[f)f,z(a) = <x77|5_)L2(G) = (@,&xnP) .

It is easy to see that ¢ is a conjugate linear x-automorphism of M ()

which leaves A(@) pointwise fixed. Now x=A(£)*A(£) for & € & is equiv-

alent to a¢=A(£)*A(§) for £ € o7 ; thus g,(a°) =g,(x) for z € M(A),, and °

leaves m,, invariant. In addition, it is clear that (a?)~ =& for a € m,,.
To see that 7?‘(;»(1) is dense in A4(G) we need only look at
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{AG)* A&, « &6z C@} .
Clearly

{51#*52 : 51,52 € Gc(G)} = {El*fzb : 51,52 € Cc(G)} < do(G)
is dense in A(@), cf., [7, (3.4)]. Also

MED*A(E,) € myyyy for §1,8,€C(G),
and

(AED)*UE))” = J_fz*(jgﬁb € {4601 £1,6, € C (@)} .

As for (my*m,;))"~ < LY(G), we have w’iW)C.pi "< L?@); and we are done.

Remark. The vector space m,; has now two involutive-algebra
structures. For the non-commutative algebra structure, with operator
norm and operator adjoint for involution we get that the completion of
My 18 a C*-algebra. Completing m,,, with respect to the norm it inherits
from A(G), we get (taking ¢ for the involution) another involutive-
Banach algebra, isomorphic to 4(@), which we call LY{M(A),p(1)). One
should investigate representations of the elements of LY(M(A),p(1)) as
“measurable operators”, in the spirit of [17]. Since we do not yet have an
application which requires this study, we postpone it. We note in passing
that the LYM(4),¢(4))-norm of a € m,; can be computed ‘‘internally”,
e.g.,

”a“m,p(;_) = SUPz2 | aagolagyst lpa(2ie1 2:A7Hg)Ag))a)l

where 4,,...,4, are complex numbers and g,,...,9,€G. Also for
a*=a € My,

”a”mq,(g) = mf{%(h)"‘%(k) : a=h_k’ h:k € (mq:(/l))+} 4

cf., section 3.

We now turn our attention to extending Theorems 1 and 2. Namely,
in the abelian case where @ is the dual of @ we observe that

MYG) = {{LNG) n L=(@)} < LYG) n L=(0);

in particular, [|uxf| L@ < lellan@llf oo, In our general case, the corre-
sponding (dual) statement (which we prove below to be true) is that
w?,,p(l)=.;a¢ "(@)*s7'(Q) is a module (with respect to pointwise multiplica-
tion on @) over B(G). In the strict sense the following Theorem 3 in-
cludes the essence of Theorems 1 and 2, viz., M, is a subalgebra of
A(@). The proof of Theorem 3 is, however, different; for it does not so
readily yield the same information about niw) as does the (simpler, more
direct) proof of Theorem 1. For example, the proof of Theorem 1 tells
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us that for (A(:)J&|JE), & € L¥(@), to be the transform of some element in
(M), it is sufficient that A-}(-)(A(-)J¢|J&) € L{G). From the corollary
of Proposition 2 we see that a necessary condition for (A(-)J&|J&) to be
in M is that it be in LX), or equivalently, A-#(-)(A(+)J&| J&) € LA(G).

The problem at hand then is to show that p(£¥x£) € (o (G)*(G))n P*
for all continuous, positive definite functions p and all £ € 7. The proof
of Theorem 1 is not of much help here because p(&¥x£) always satisfies
the necessary but ‘‘rarely’” the sufficient conditions just mentioned
above. We have

THEOREM 3. Given locally compact group G, A(G) (respectively, B(G))
the Fourier (respectively, Fourier—Stieltjes) algebra of G, A'(G)xL' (),
and (@) (G):

(i) B(G)A @)+ (G)
={bl : (pointwise product on G) b € B(G), { € A (G)*H(G)}
= (G)*HL(G),

(ii) B(GL'(G)xHA'(F)
={bl’ : (pointwise product on G) b € B(@), {' € &' (G)*xL"'(G)}
=" (G)x"(G),

(i) B(GYMy ="My, i.e., My 38 an ideal in B(G),

(i) 7?%(1) 18 a dense ideal in A(G).

Proor. We will show that if p is a continuous, positive definite func-
tion on G and & € &7, then p(&*x&) € (o *)NP*. Since B(G) is linearly
spanned by such p and o/+o/ is linearly spanned by such &#x¢ (i) will
then follow immediately. Since J(&/'*o/') = o/*27, and B(G)®=B(G), we
have that

b’ = bJ(JL') = J(BPJ(') € ' (G)xH'(G)

if ¢'edd'(@)xH'(@), and if (i) is true. Thus if (i) is proven (ii) follows,
after which (ii)’ and (iii) are immediate.

We observe first that &#x&=((&#x&)7)7 where (&¥x£)7 =JEx(JE) is a
continuous positive definite, square-integrable function in A(G). Thus
p(E#*E)" is also a continuous, positive definite, square-integrable function
in 4(@). Now

PEFE) = p((£55)7)7 = (p(E¥5E)7)7 € PF .
Also
PEE) = pay = payd
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where y is a square-integrable, positive definite function which is right
bounded if p(&¥x£)7 is, and

V() = ¥(p(Esg))t,
cf., [5, first half of the proof of Théoreme 13.8.6]. If we could show that
p&¥«& is left-bounded, then
MpEte) = Ae?)aw’) = Ap”)?

would be in (m,;),, since

PAMPEE)) = Iy |Tae) = IWpliae < +oo.
To see that p&*+£ € of we observe first that A(p&¥s+£) is a densely defined
positive operator on L*@). In particular, (p&*x&)sne L¥(Q) if ne 0y (Q),
since (Jn)*p(&¥+£)7 is clearly in L¥(@) for € C,(@), p(£¥+£)7 € L¥(@), and
J(Tnrp(§¥+£)7) = (p&*x&) .
Now the linear functional ¢ defined for a € 4(G)nL¥G) by
(p.a) = (op(@)§¥+&(x)a(x)dm(z)
can be extended to all of A(@) such that p=pi(£¥+&), i.e.,
(p,a) = (A(E¥+£),pa) for all a € A(G),

where A(£¥+£) e M(A) is viewed as a continuous linear functional on 4(G)
in the canonical way, cf., [7, (3.10)]. To see this rigourously we must

establish that
(UEE),a) = (¥ *é(@)a(z)dm(z)
for a € 4(G)n L3 #). But this follows from the following three observa-

tions. First, if a=n,+n,% € 4(Q), where 5, € L¥X@Q), 1, € C,(G), then it is
easy to see that

UEE) @y = (ME*E)T | 71n) = (E54&|fjyany”) = (obF #é(@)a(z)dm(z) .
Second, let {u,},<=C (@) be an approximate identity in L'(@) satisfying
u,(*)20, {gu,(x)dm(x)=1 for all x. Then w,*xu, is an approximate
identity such that A(u,*su,) converges x-strongly to 1,4 . Hence by
[21, cf., proof of Proposition 1 (i)] we have for all a € A(G) that a+(u,*+u,)

=A(u,¥*u,).a converges to a € 4(F) in A(G)-norm. Third and finally,
for a € L¥ @) we have

QUERRE), ax(u,Fru,)) = (E¥x&|ar(w,Fru,)) .

Now if a € A(G)NnL%G) the limit of ax(u,¥+u,) in L%@G) is @, and the
limit of ax(u,**u,) in 4(G) is a. Thus

UEHE),a) = (¥ xE(@)a(z)dm(x)
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for a € A(G)nLA(@). Thus ¢ (defined above) and pA(£*x£), the continuous
linear functional on 4(®) defined by

(P& xE),a) = (MEFE),pay, ae A(G),

agree on a dense set of 4(G). Thus the unique extension of ¢ (also de-
noted by @) to all of 4(Q) is pA(£¥+£), and ¢ satisfies

(p,a) = §o&¥*&(@)p(x)a(x)dm()

for all a € A(G)nL*@). Now by [7, Théoréme (3.10)], there exists a
unique operator 7', € M(4) satisfying

@ xng®) ™) = L@ Tjgxny” ) = (T 1| m)
for 7,7, € LX(@). But

(A(pEF*E)My | ma) = (PEF*E|mpxny®) = (@, Faxny ") = (Ty11172)
for 1, € 0(Q), ny € L¥G). Thus A(p&*x&)=T, € M(1),, i.e., p&#s£ € o nP*.

In particular,
2@ ) lae = 1Bl mllAE *n)llarn

for b € B(@), &,m € o, exactly generalizing the inequality in the abelian
case mentioned above. We are thus done.

Looking back then, Proposition 1 (vi) takes on added significance.
Namely, it says that the dual Haar weight is invariant in a very strong
sense. Though the next proposition could have been proven somewhat
earlier we have waited for the full strength of Proposition 1 (vi) to be
demonstrated. Before proving the next proposition let us note that a
weight ¢ which satisfies Proposition 1 (vi) is essentially ¢#?-invariant,
where

oW (x) = A¥zA-% e M(A), teR,
o being the modular automorphism group of M(1) corresponding to
@(A). To see this note that g € G+ A%(g) € C is a continuous group char-
acter for each f e R hence also a continuous positive definite function.
Also
A“(f“*f) = (A“E)*’*(A“E), Eedd .
Thus
MAME$E) = opP(AEFE)) = A(AHEP*(AHE)) € ()., -

Thus if ¢ satisfies Proposition 1 (vi), ¢(a,"¥(x)) =g(z) for all € (m,). .
Therefore assuming ¢ to be ¢7®-invariant is not too great a restriction
on ¢ if it already satisfies Proposition 1 (vi); and, of course, ¢,?®-invari-
ance is vacuous in the unimodular case.
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DEeriniTION 2. We call a weight ¢ on M(A) invariant if ¢ satisfies
Proposition 1 (vi) and ¢(o?(x))=¢(x) for all x e M(1),.

Analogous to the uniqueness of Haar measure on groups, we have

ProrosiTioN 3. If ¢ is a normal, semifinite, non-zero, invariant weight
on M(R), then p=kyp,, k some positive constant. The (canonical) dual Haar
weight @, is uniquely specified by the choice of Haar measure m on Q.

Proor. We parenthetically remark that the reader may consult refe-
rences [9] and [13] for various equivalent definitions of normal. Since ¢
is semifinite and also non-zero, there exists an x € (m,,), such that
O0<p(z)< +oo. Let g=2+0, and recall that A(Jg)=2. Now if p is a
continuous positive definite function in n’iq,m we have from Theorem 2 or
3 that Jp, Jq, Jpg € &/2n P¥. Since ¢ is invariant

(M P])) = p(A(PA1G) = p(e)p(A(J9)) = a(e)p(A(JD)) .
PA(AJID)) = ple),  @AJQ)) = q(e)

p(e)/g(e) = #(A(JP))/e(A(T7))
for all p € (m,)."~. With g fixed let

k = o(AJ9))esATT))

We now have that q:(A(Jﬁ)) p(e), P € (M)~ . Thus p=ky, on my,,.
Note that p(z+z)=@(A(Jq?))=k[g(e)]? + 0. Whereas @(x) = p(A(JG)) = kq(e).
Thus if (z*x)=@(x)?, k must be 1. Observe that » and ~ are defined by
®;, and thus they are ultimately determined by Haar measure m. This,
of course, is immediately observable from the definition of ¢,.

Now for &,m € &/ we have

P(oFDAUENAM)) = P(AAHE)A(n)) = @(A((4¥€)*n))
= ko, (A((A4E)xn)) = ko, P(A(E))Am)) »
since A((4%)xn) € my,, . Similarly
<p(l(77)o't°’(‘)(l(§))) = k(pl(l(n)a"’(‘)( ))) .

Thus (1/k)p satisfies the K.M.S. boundary conditions for ¢,#®, and we
are done, cf., [13, lemma 5.2, or Proposition 5.9, also Theorem 5.12,
Proposition 7.8 are of interest in regard to the above result].

Thus

and
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REMARk. ‘“Haar weights’’, namely, non-zero, semifinite, normal inva-
riant weights on M(4), are automatically faithful.

Now there is a natural dual Hilbert space associated with ¢(4), viz.,
L¥M(2),p(2)) (which we sometimes write as L*(4)), the completion of
Ny NMpy™ (0T Mgy, of., [3, (2.13)]) with respect to the inner product

(@1 |Ta) oty = Pa(T2*T1), 1, %5 € Mgz N Mp®

From the construction of ¢, we have (A(£)*A(&)) = ||£]7xq, for each & € o7,
Now &/ is dense in LX), A(&)=mn,;Nn,p* is dense in L¥ M (), p(4)).
Thus the map

A: e A& e Ty N Mgy ™

extends to an isometry (again denoted by 1) of L#Q) onto LM (1), p(2)),
which we will call the Plancherel transform. It satisfies

(A 1 MED) Loy = (E11&2) e for all &,&, € LA(@) .
Conversely, “: m,, — (')? < L*(@); and if a,,a, € m,,, then
(@1 9) oy = (AT B) | AJTB)) g2y = (811 8) 120 -
It is thus clear that the map
a€emyy < LAA)»ade (H')? < L¥G)
is an L%-isometry. We call the unique extension of the above map,
aeL*A)vdeLl¥q),

the (¢nverse) Plancherel transform.

ProrosiTiON 4. The map
. *
Al =m0 My,

extends to an isometry of L*G) onto L*(M(2),@(2)) called the Plancherel
transform. The map

a€my, < LAA)»ade(A)? < L¥G)
extends to the (inverse) Plancherel transform of L¥ @) onto L*(1). We have
(11é)raey = (MEDIAED) ) Loy €1, € LA(G)

and
(@1]@9) 12y = (@1|8a)Laayy @150 € LA(A) .

We now show
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ProrosiTionN 5. The involutive algebra {m,,,*,°} is a commutative
(hence unimodular) Tomita algebra.

Proor. We verify the axioms of a Tomita algebra with ¥ =?=¢. First
if a;,a,,a3 € my,, then

(“1*“2'“3)L2(A) = ((“1*“2)A las)Lz(G) = (alazlaa)Lz(G) = (azlalc*“s)Lza)-

Next a € my; + bxa € m,, for b € m,, is L*(A)-continuous, because

[Bxay — byl gy = [1(681) — (Baa)l|aca)
p-S ”b”Loo(G)H&1 - da”Lz(G) = ”b”LOO(G')”al — | L2z -

Now (mgpy#my;,)~ contains (&;+&,0)(£3+6,°), (pointwise product of two
convolutions), &; € Cy(@), 1=1,2,8,4. Thus m, g, *m,, is L?-dense in m,;, .
The remaining axioms are trivially satisfied since the modular operator is
the identity.

DrrinirioN 3. We call {m,;,*,°} the dual Tomita algebra of 7,(@),
the Tomita algebra of @.

Before leaving the convolution algebra {m,,,,*,°} let us briefly con-
sider (for the sake of intuition and insight) a more classical formulation
of the notion of convolution in which the vestiges of ordinary integration
are more apparent. This alternate formulation is altogether equivalent
to our previous formulation, but more closely follows [18].

Let us start with a,,a, € (m,;)).. We have a;=wu*u, for some u; € n.),
t=1,2. Now consider the tensor product, cf., [6, Chap. 1 § 2], M(A)QM(A),
a von Neumann algebra with (the canonically constructed) faithful,
normal, semifinite weight ¢(1)Q¢(4). Now this weight has the property
that if x;,x, € m,,, then

Q%3 € Moy oi)
and

(pA)RP(A), 2,@%2) = Po(x1)Pa(%s) -

Now let @: M(4) - M(A)®@M (1) be the co-multiplication determined by
the unitary map W: f(z,y) — f(z,2y) of LAG®G)x L*G)QL* (), namely

D(x) = W z@A(e))W for xe M().

Now @ is a (normal) *-isomorphism of M(4) into M(A)QM(A) such that
D(A(g)) =Mg)RA(g) for each g € G, and such that the diagram
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M) —2— MOA)QM(A)

@ QI

I®o
—_—

M(2)QM(4) MA)SM(A)QM(2)

is commutative, where [ is the identity automorphism of M(1), cf.,
[16], [20].
Now the formula, valid when @ is abelian,

{aar*as(9)b(g)dm(g) = $aSaai(9)as(h)b(gh)dm(g)dm(h) ,

where g¢,h €@, a,,a,€ LY(G), a,*a, denotes their usual convolution,
be LY(G), and b is the Fourier transform of b, cf., [18, p. 48], leads us to
consider the following:

z € M(A) = {p(A)Qp(A), D(x)u*u; @ug*ug)
z € M(A) - {p(A)Qp(A), uy* Qua*D(x)u Qus)

where a;=w*u;, w; € n,;, a; € (Myy)y, t=1,2. Now the problem with
the first candidate for the convolution formula for a,*a, is that although
1R85 € My @py» Men@ew 18 DOt necessarily an ideal ; and the expression
is thus not always defined. It turns out, however, that there are suffi-
ciently many analytic elements in M(1)QM(4) to determine a,*a,. Re-
call that the modular automorphism group of ¢(1)QR¢(1) is PR PP,
hence @(g), g € G, is analytic in M(1)QM(A). Thus the weakly dense
(in M(A)) =-algebra of finite linear combinations of elements of G are
sufficient to determine a,*a,. By arguing differently, however, it is
possible to “integrate’” with respect to all of M (4).

We thus offer the following which is new even in the (non-abelian)
unimodular case.

DEeriniTION 4. We define the special (Radon—Nikodym) derivative,
(da/dg,)} for a € (m,y),, to be A(£), where & is the unique left bounded
element of P7 such that A(£)*A(£)=a. We define the split Fourier trans-
form of ae(m,,), to be the following continuous function on G,

a( ) =@, (A(E)*A(-)A(E)).

ReMARK. If we do not make the special choice of & e P/ the split
Fourier transform is not in general unique (well-defined) for non-abelian
groups.

The following proposition guarantees the existence of the special deri-
vative for a € (m,g). .
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ProrosiTioN 6. Each a € (m,y), has a unique representation as
a = ME)*AE) for &£ P, & left bounded .
Furthermore, a=A(E¥*E) and £ x£ € /2.

Proor. First @ is continuous and positive definite, thus it has a rep-
resentation satisfying a(g)=w/(A(9))=(A(9)£|&)=ExE%(g) for a wunique
Ee P/, [8, Theorem 2.17]. Now there exists & €.&/ such that a=
ME)*A(&,), and @(g) = JE*(JE,)%(g) = wy (9) for all g € G. Thus J& e o’;
and w;=wy,, on M(A). This implies the existence of a partial isometry
v’ € M(A) such that &=v'&7. Hence A'(§)=v'2"(&7) by [3, lemme 2.3];
and & is right bounded. It follows that & is also left bounded since J&=&.
Furthermore, & *x& =J(JE *(JE&)?)=J(Ex&%) =E¥+& since JE=¢. Thus
a=MJ8) = M&¥*E) = A(£¥+E). We now compute
MEV*AE) = MJEV*A(TE) = JX(E)*A(§) = JH (J&) "™ X' (&)

= JA(JE)* AN (W' TE)T = JATE)V(TE) = A&)*UE) = a.

COROLLARY. Given a € (myy).,, then a=a.

Proor. The transform & is independent of the representation of a.
In particular, if a=A(E)*A(&)=A(E*+¢§), &€ P/, & left-bounded, we get

a(g) =Ex&(g) for g € G. But a(g) =@, (A(E)*A@)AE)) = (M€ | £) Loe =E+EX(9),
for ge@.

We thus see that an equivalent formulation of convolution involving
“integration’ with respect to all of M(4) can be stated thus: Given

1,85 € (My)ss @ = ME*AE), & = (day[de))t, i=1,2,
then a,xa, is that unique operator
MEV¥A(E) € (mygp)s, With & = (dayay/dp,)t
which satisfies
PAA(E)*2A(E)) = {P(A)DP(A), A(51)*BAE)*D(2)A(&1) ®A(E2))
for all « € M(2).
We close this section with two propositions that link the non-commuta-

tive “topology” of [1], the Pedersen ideal (our terminology) of [11], [12],
and the “measure’ @(4).

ProrosrrioN 7. If G is unimodular, the Pedersen ideal of C,*(G) s
contained in m;, .

Math. Scand. 37 — 11
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Proor. Recall that the Pedersen ideal of a C*-algebra 4 is the ideal
K, (which is minimal-dense) generated by the face K ,+, where K ,+ is
the smallest (invariant) face which contains

{x € A+ : there exists y € A+ with xy=x} .

Namely, K¢,4g is an analogue of C,(G) for @ abelian; recall that C,*(Q)
is the uniform closure of A(LY(®)) in M(2). Now consider some a € C;*(G),
(without loss of generality suppose [|a||y;=1) such that there is an
z € C;*(@), with ax=a. Let p be the support projection (which is pre-
compact in the sense of [1]) in M(2) of a. We have pxr=p. Now there
exists & € C,(G) with ||A(&) — 2|lp <&, With A(§) 2 0. Now pA(§)p € (myy).
since A(§) € my, is a two-sided ideal, and

1pA(E)p — Pl = IPAE)P —P2Dllprey = N1AE) —@lprny < -

Now pi(§)p and p commute, thus by spectral theory (for ¢=}, say)
PA(&)p > p[2. Hence

P2(@) 2 @i(p) < 23(PA(&)P) <00 .

Since every element of K. is a linear combination of elements which
are in turn majorized by linear combinations with positive coefficients
of elements like a discussed above, we get Koug Smyp-

Remark. For G nonabelian, non-discrete it is very likely difficult to
find any general situations where K. is closed under convolution,
cf., [15]. Whenever there exist a,,a, € Kp,g such that a;*xa, € Ko
an affirmative answer to a problem of Pedersen is attained, cf., [12, 3.4].

ProrostTION 8. (Riemann-Lebesgue lemma) Let G be any locally com-
pact group. Given a € C;*(@), and £>0, there exists a projection p,, pre-
compact in the sense of [1], with @,(p,) < + oo and ||2(A(e) — p)law < &-

Proor. The proof is precisely the same as in [18, Theorem 9.19].

We now proceed to a very general setting and give a construction
promised in [22]. Let = be a continuous unitary representation of G' on
Hilbert space H,. Let M, or M(n) when it is notationally more con-
venient, denote the von Neumann algebra {n(g) : g € G}'' generated by
7(@). Let @,, or ¢(n), denote a normal weight on M (x), which exists and
is not unique. Note that since ¢ is normal there are projections p,,
q, € M(n) with p, <q, such that ¢ is semi-finite on ¢,M(x)q, and faithful
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on (1-p,)M(z)(1—-p,). Let us suppose that ¢ has been chosen so that
g+ (1-p,)g,7(9)g,(1 —p,) is still a group representation, e.g., if p,,q,
are central. By replacing M(x) with (1—p,)q,M(n)q,(1 —p,) We can then
without loss of generality assume ¢ is faithful, semi-finite and normal.

Let us now recall (cf. [3], [8], [9]) the process of the standardization
of 7 with respect to faithful, semifinite, normal weight ¢ on M (). Namely,
let

n, = {x € M(n): p(a*r) <o}, m, = n*n, = span{y*r: x,yecmn,}.
Let H, be the Hilbert space completion of n,, where
(1e() | 1(9))&,, = Py*2) ,

and 17,:n, - H, is the canonical injection. Let 7 (x) be the bounded,
linear extension to H, of m,(2)n,(y)=n,(zy), x € M(n), y €n,. Then x,
is a (normal) *-isomorphism of M(x) onto x (M(n))=M on H,. Now =,
carries ¢ on M(n) to the canonical weight ¢, on M given by

po(@) = P if at = A(§), ée,
@ (a) = +o0 otherwise,

where o =n,(n,Nn,*) is an achieved left-Hilbert algebra in H, contain-
ing left-Hilbert algebra 7,(m,), i.e.,

(@) (y) = Mg(2Y), 77¢(x)# = n,(@*), @,y €m, etc.,
and
Ang(@)m,(y) = np(xIgy) = ny(xy) € H, .
Now we have all the machinery of the Tomita—Takesaki theory available,
including the achieved right Hilbert algebra .&/’, the three involutions
%, b, J, the corresponding cones P¥, Pb, PJ the modular operator 4,
and the Tomita algebra o/,<.«/ne/’ <H,. Now

M) = n, nn, * and AHL?) =m,,

where we will henceforth drop the subscript ¢ (since we will only be
dealing with ¢, on M from now on).

We now wish to define a generalized inverse transform of m, into M,,
the predual of M, as the map “:aem,+~ &€ M, determined by

@,7) = (Ja*In,(u) |1,(0)) = (aTn,(v)| Jn,(u) ,

where a=v*u, u,v €n,. (Note: technically we should write 7,(=,~*(u)),
etc.; but we abuse notation slightly to simplify it.) It is not difficult to
check that ~ is well-defined, i.e., independent of the representation of a,
and linear. The only hard part is the additivity of the map satisfying
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. %k ’ ’
0: a=v*uem,o o0 nm € (M) .

This follows from a standard technique, cf., [6, Chap. 1, § 6, proof of
Théoréme 1]. Indeed the map 0 is studied in detail in [9, Lemma 1.1].
We now have

PrOPOSITION 9. The generalized inverse transform * is a linear posttivity
preserving, one-one map of m, onto a norm dense subspace of M.

Proor. We first show density. Because {M,H ,J,P’} is in standard
form, each w € M, is a vector functional, i.e., w=w, ,, §,7 € H,. Hence
there exist £;,m; € & such that

61— JElm, < &2mllay lm—Jnlm, < &/2)élg,
(Note & is dense in H, cf., [3, (2.13)]. Thus A(£,*)A(n,) =a € m,,. Now
@ = wal,Jﬂ]_EM* )

and
”wg,n—wJEl,Jm”M. S |IJ§1—§”H¢|I77IIH¢+|l£I|H¢I|n—Jn1||H¢ < g2+¢[2 = e.

To show one-oneness it is sufficient to show that

0: a=y*rem,p w0 € My
is one-one, where x,y € n,,. First, suppose
a =h*h—k*kem, hken,nn*,

such that @=0. This means w, dh)=w;¢(k) hence there exists a partial
isometry v € M such that vz, (k) =17,(k). Now

k*k = An,(k))*A(n,(k)) = A(ng(h))*v*vA(n,(h))
= Mny(R))*A(v*on, (k) = A(n,(k))*A(n,(R)) = h*h,

hence a=0. Now since 6 of a self-adjoint element is self-adjoint, we get
0 is one-one, in general. The proof is thus finished.

Now by the same proof as was given for Proposition 6, each a € (m,),
has a canonical factorization (determined by ¢) in the form A(£)*A(£)
where & e P/ is left-bounded, i.e., i(£) en,. We call A(§) the special
(Radon—Nikodym) derivative (da/dp)t. We thus have

DerFiNiTION 5. Given von Neumann algebra M with normal, faithful,
semifinite weight ¢, there is a map “:aem,+ &e M, which is the
unique, linear extension of
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a € (my),+> €8, ) = ¢((dajdp)*(-)(da/dp)t) € (M), .

We call © the generalized inverse transform (in canonical form), and it is
a linear isomorphism of m, onto a norm-dense subspace of M,.. We define
LY M,p), the L*-space of weight @, to be the completion of m, with respect
to the norm induced on m,~m,< M, . We thus get the linear isometry
LY (M,p) > M, .

Remark. We have |lall,,=inf{p(k)+¢(k): a=h—kh,ke (m,),} for
a=a* em,, cf. [9, Lemma 1.2]. Also |lal|,,, is determined by the duality
{M,M,}, for a em,,.

The reader will have noticed that thus far section 3 has had nothing
explicitly to do with the group @, save for the fact that M, can be inter-
preted as a closed, translation invariant subspace of B((), the Fourier—
Stieltjes algebra. This section is essentially a purely von Neumann alge-
braic statement. To apply this section to the problems envisioned by the
author, cf., [22], it is necessary initially to select the weight ¢(x) on M(x)
so that it is intrinsically related to the unitary group =(@) in M(x).
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