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MANIFOLDS CARRYING BOUNDED QUASIHARMONIC
BUT NO BOUNDED HARMONIC FUNCTIONS

LUNG OCK CHUNG

The main unsolved problem in the harmonic and quasiharmonie classi-
fication of Riemannian manifolds is the existence of manifolds carrying
quasiharmonic functions with various boundedness properties but not
carrying nonconstant harmonic® functions with similar boundedness
properties. Only a few scattered results have thus far been obtained in
this direction (cf. [1]). In the present paper, we will introduce a mani-
fold which completely solves all these problems for dimension N =3 and
combines earlier results in one construction.

Let M be a Riemannian manifold. A function f: M — R is, by defini-
tion, harmonic (or quasiharmonic) on M if Af=0 (or Af =1, respectively),
where A=dd+dd is the Laplace~Beltrami operator. Let H (or @) be the
class of harmonic (or quasiharmonic) functions. Denote by P, B, D, C, L»,
(1= p< ), the classes of functions which are positive, bounded, Dirich-
let finite, bounded Dirichlet finite, or possess a finite L? norm. If X, Y
are classes of functions, we set X¥ =XnY, and denote by ONx, 0N,
the classes of Riemannian N-manifolds for which X \ R is void or non-
void, respectively.

We shall construct a Riemannian manifold M € OV xn 0¥,y , with
X,Y=P,B,D,C,L?. Throughout this paper, we assume N = 3.

Let R2=R x R be the 2-space, T¥-2=8x ... xS, with N2 factors,
the (N — 2)-dimensional torus. On the topological product M =R2 x T'N-2,
choose the coordinate system

(r,60%,62%,...,60-1) = ((r,0%),(6%,...,60-1)).
Endow M with the metric
ds® = (r)dr2+ 3N p2(r) (4692,
where @,vy;,...,9y_; are positive C° functions satisfying
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1 for r< %,
r~2  for r>1;

o(r) = {

p(r) =r for r<4},
pi(r) =1 for r<i, i1,

Note that on the subspace R2, the metric for r<} is the Euclidean
ds? =dr? +r2(d61)2.

The following further requirements on the y;, ¢=1,...,N—1, are in
terms of an auxiliary function y to be specified later, and a certain parti-
tion {I;;:i%j;4,j=1,...,N—1} of {l<r<oo}:

y(r) for rely,,

'l/)i(r) = 1/1/)(7‘) fOI' Ttei 3
1 for ré& I ; 01y,

For the definition of I;;, consider the interval I*=(n,n+1], nx1.
Divide I™ into (N —1)(N —2) equal half-open subintervals, open on the
left, closed on the right. Since there is a one-to-one correspondence
between the numbers 1,2,...,(N—1)(N—-2) and the ordered paris
{(#,5) :1%j;4,j=1,...,N—1}, we can index these subintervals in the
form Iny;. Let I;;=U}_ I"..

We shall define y(r) for each interval I™;. Since  can be viewed as a
set-theoretical union of the restrictions of ¢ to the I, our procedure is
legitimate. Divide each I™; into five equal half-open subintervals I,, I,,
I, 1,, and I;, in this order. Choose

1 forrel,,
r2 for rel,,
for rely,
for rel,ul,.

) =1
1

v

It is clear that ¢ and the y,’s can be chosen to be C™.
Every r>1 is in exactly one I”;. Thus
Aot i) = wiws(n) = wn)fp(r) = 1,

and, in the volume element,

Vg =¢lys=r? forr>1.

Our Riemannian manifold is thus well defined. We shall show that it has
the desired properties, i.e., it excludes nonconstant harmonic functions
with the required boundedness properties, while it carries quasiharmonic
functions with such properties.
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By a standard application of the Peter—Weyl theorem [9], we see
that each harmonic function

h(r,0) = h(r,04,62,...,6N-1)

can be written as a series, convergent absolutely and uniformly on com-
pacta,
h(r,0) = >, fu(r)G,(0%. . .,0N1),

where each G,(0)=ITN'G, (0" with G,i(6%)= +sinz,0¢ or + cosn,6¢ for
some integer 7,. Such representation is unique up to a sign. In particular,
we may replace f,,(r) by —f,(r) by changing the sign of G, . In what follows,

we shall further study the individual summand f,()@,(6). For conve-
nience, we shall drop the subindex n (but retain the superindex in G?).

Lemma 1. If fG is a nonconstant harmonic function, then G is not con-
stant. In particular, a nonconstant function f(r) is not harmonic.

Proor. Assume that @ is a constant, say c¢. The harmonic equation
A(f@)=cAf=0 on the submanifold M, = {r <3}} reads
Af = —r10f") = 0.
The general solution is f(r)=a logr+b. Since f is regular at 0, we have

a=0, hence f=const.

Lemvma 2. If h=fG is a nonconstant harmonic function, then f(0)=
|f(7)] s strictly increasing, and, for some constant ¢>0 and every r=

If(r)] > cr.

0,
2,

Proor. The fact that f(0)=0 follows from the mean value property,

as
k) =c§,_, fGdo = 0
for a nonconstant G.

If |f(r)| is not strictly increasing, say on {a<r<b}, then for r<b,
|k(r,0)| =|fG| takes on a maximum in the interior, contradicting the
maximum principle.

Thus, with at most a change of signs in @, we may assume that f(r)
is itself nonnegative. We shall estimate the rate of growth of f as r>1
increases.

Since f and the G* are mutually orthogonal, we have

A(fQ) = (Af)G+fAG .
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Here,
af = =1y
Since G(60%)= +siny;0% or + cosn,;0%, we have

ATLG 6 = 3X (2t TIN 69).
Consequently

A(fG) = —r*(%f") G+ (57 nldp AfG .
A fortiori, f@ being harmonic and @ nonconstant,
=) + (5 nde A = 0,

() = 25" 02w
The right-hand side being positive, we conclude that,

(') > e(r2 X7 nly;?)
where ¢ > 0. Here and later, we shall use ¢ to denote a constant, not always
the same.

Since G is not constant, there is an ¢,=1,2,..., or N—1, such that
14, + 0. We infer that

(") > er Py k.
Integrating from 1 to r, we obtain
r2f' —f'(1) > ¢ ] r™2y; 2 dr.
Since f is strictly increasing, f'(1)=0. We have
f/(r) > er2 (] r=2y; 2 dr .

Recall that y; *(r)=r* for r € I";; 5 with j=1,2,...,N—1; j=+1,, where
the index 3 indicates the middle subinterval of I » It follows that

t2dt,

r -2 [r-1] §'N-1_
Sl" Vi, dr > 250 f=1;74=tosl"jios

where [r—1] is the largest integer <r—1. We obtain, for some d<1,

o2t 2 40 |f g ear-oa-or
[5(N — 1)(NV —2)([r — 1]+ d) + 1] = [5(N = 1)(N = 2)([r — 1]+ )]
3(5(N —1)(N —2))3

[B(NV — 1)V —2)([r—1]+d)?
3(6(N —1)(N —2))°

> cr?,
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and therefore
ff>e22=c.

We conclude that, for some ¢>0 and every =2, f(r)>cr+f(1) >ecr.
The proof of Lemma 2 is herewith complete.

Next we show that M € OVNgp.

LeMmA 3. Every bounded harmonic function on M is constant.

Proor. Suppose that there exists on M a nonconstant bounded har-
monic function A(r,0). Write

h(r,0) = znfn(r)Gn(e) .

Since % is not constant, some f,G,,, say f,G,, is not constant. Further, the
product k@G, is bounded as both % and G, are. Hence the following trans-
form is a bounded function

(Th)(r) = [§o h(r,0)G+(0)d6] = cfy(r),

as @, is orthogonal to each @,, r=+ 1. This violates Lemma 2.
We proceed to show that M € OV p.
LemMmA 4. Every nonnegative harmonic function on M is constant.

Proor. Suppose that there exists on M a nonconstant nonnegative
harmonic function

h(T,O) = c+2n>0fnGn .

Let 2+ and 2~ be the positive and negative parts of 3 f,G,=2+—X-.
Since Y f,&, is bounded from below, X~ is a bounded function, and so is

the transform
(TZ-)r) = SOGIZ'—dG ,

where we may take G,, say, to be a nonconstant term in the sum
3.fuGn. As a consequence, the function r—#7'2-) - 0 as r — oo.
Since
SO zfnGnde = z so.fnGnde =0,
we have
§o2+do = {4 2-d6 .
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Hence the function

[(TZ+)(r)] = 1,612+
S,,|G’12+|d6 <ec S,,Z'+d6
¢ §o2-do

IA

It

is bounded in r. Consequently, r—#(7X+) - 0 as r — oo,
We have a contradiction: for r= 2,

r(TZ4)—(T2-)] = r1§,6, 3 f,6, db
= crtfy(r) > ert > + o0,

Next we show that M € OVg,,.
Lemma 5. Every harmonic L~ junction, 1 £ p< oo, on M i3 constant.

Proor. Suppose that there exists on M a nonconstant harmonic L?
function A(r,0) =3f,G, . Assume f,G,, say, is not constant. Since }/g=r-2
for r> 1, the function G,, being bounded, is in L?’, with 1/p+1/p’'=1.
From this and the conjugate theorem of L? spaces, we see that

|SMGI Zf'nandVl < o0,

However, this integral is equal to ¢ {>f;(r)r—2dr by the orthogonality
of the @,’s. This latter integral cannot be finite because f;(r) > ¢r for all

sufficiently large r.
It is known that ONgp<ONgp,<O¥ge (e.g. [6]). We may therefore
collect our results thus far into the following relations:

MGONHx, X=P,B,D,C,Lp .

It remains to exhibit a quasiharmonic function ¢(r,0) on M which is
bounded, in L?, and has a finite Dirichlet norm.

Lemma 6. The function

g(r) = —\59(s)"1p%(s) Sy 9(t)idtds
belongs to QCL»,

Proor. It is clear that ¢ is a solution of the quasiharmonic equation

1
4q= (Vgg*q) = 1.
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It is also obvious that ¢(r) is bounded, as for s,t> 1, we have
g(s)te¥(s) = s and g(t)f = £2,

and these functions are therefore integrable in {0 <7 < oo}.
The finiteness of the Dirichlet norm of ¢ is seen as follows:

D(q) = Sulg' )9 Vg drdo
G $ro1 S ety §ogr4r2dr < oo,

Finally, ¢ is in L?, since J/g=r-2 for r>1 makes the L? norm of any
bounded function finite. This completes the proof of Lemma 6.

Trivially, ONop<O¥qp (for a complete array of inclusion relations see
[2], [3]). Therefore:

M € O’Noy, YZP,B,D,C,LP .
We have established the following complete result:
THEOREM. OV xnONyp +@ for N>2; X,Y =P,B,D,C, L».

Finally, it should be remarked that our manifold M has other inter-
esting properties. For example, it carries a biharmonic Green’s function y
as defined in Sario [4]. For a discussion of this, as well as other aspects
of y, see [4], [5], [7], [8] and references in them.

Grateful acknowledgements are made for the valued advice given by
Professors L. Sario and C. Wang.
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