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COMPACT GROUPS OF AUTOMORPHISMS OF
VON NEUMANN ALGEBRAS

WILLIAM L. GREEN

Let 4 be a von Neumann algebra, and let G be a group of (*-preser-
ving) automorphisms of 4. By a result of Erling Stermer [22], 4 is
G-finite if and only if @ is relatively compact in a certain topology on
the space Z,(4) of all ultraweakly continuous bounded linear maps of
A into A. This topology is just the topology of pointwise convergence,
where 4 has the weak operator topology, and if we write #(A4) for the
space of all bounded linear maps of 4 into 4, then the unit ball #(4),
of #(A) is compact in this topology [14, p. 974]. Since @ is contained in
#(A4),, we may paraphrase Stermer’s result as follows: 4 is G-finite if
and only if the pointwise-weak operator closure @ of G in Z(4) is a set
of ultraweakly continuous maps.

Even when 4 is G-finite, G need not consist of automorphisms. Indeed,
a pointwise-weak operator limit of automorphisms need be neither mul-
tiplicative nor invertible. (See section 2 below.) However, as @ is always
pointwise-weak operator compact, it is of interest to know when it is
a topological group in this topology. In section 1 below we show that
even without the assumption of G-finiteness, @ is a topological group
if and only if it is a set of one-to-one maps, and that in this case it is
also a group of automorphisms. Moreover, if these conditions are satis-
fied, then @ is relatively compact in the (stronger) u-topology of Haage-
rup [13]. Section 2 contains examples of relatively compact groups of
automorphisms.
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1. Compact groups of automorphisms.

Let 4 be a von Neumann algebra, and let G be a group of automorph-
isms of 4. We write I for the identity of A and A, for the unit ball of
4 in the weak operator topology. By a G-irace of A we mean a G-inva-
riant state of 4. We say that 4 is G-finite if for each positive element
b+ 0 of A, there exist a normal G-trace of 4 which does not annihilate b.

Let T be a topology for A. The pointwise-T topology for £ (A) is the
topology of pointwise convergence, where A has the topology 7'. Suppose
in addition that 7' is one of the following topologies: weak operator,
strong operator, ultraweak operator, ultrastrong operator, or strong*. By
the uniform-T' topology we mean the topology for #(4) which has for
a basis at « € #(4) the family of all subsets of the form

{8: (B—a)4)c U},

where U is a T-open neighborhood of zero in A. Since the weak and
ultraweak operator topologies coincide on bounded subsets of A4, the
pointwise-weak operator and pointwise-ultraweak operator topologies
coincide on #(4),. On Aut(A4) these two topologies are just the p-topo-
logy of [13]. Similarly, the uniform-weak operator and uniform-ultra-
weak operator topologies coincide on #(4),, and on Aut(4) these topo-
logies are the u-topology of [6] and [13].

Let M(A,) be the set of all mappings of 4, into itself. Then restriction
to A, gives an embedding 7 of £(4), into M(4,). If we give £(4), the
pointwise-weak operator topology and M(4,) the pointwise topology, or
if we give #(A4), the uniform-weak operator topology and M(A4,) the
topology of uniform convergence, then r is a homeomorphism of #(4),
onto its image. We note that a map in #(4), is one-to-one (respectively
ultraweakly continuous) if and only if its restriction to 4, is one-to-one
(respectively ultraweakly continuous). The group G, equipped with the
discrete topology, acts as a topological transformation group on 4,, and
we may identify @ with the enveloping semigroup of this transformation
group [10, 3.1 and 3.2, pp. 15-17].

Lemma 1.1. If G is a set of one-to-one mappings, then G is a group.

Proor. (R. Ellis, [10, 5.3, p. 36].) By [10, 5.3, p. 36] it suffices to
show that @ acts distally on 4;. Suppose then that {«,} is a net in &
and that there exist a, b, and ¢ in A4, such that {x(a)} and {x(b)} con-
verge to ¢ in the weak operator topology. By passing to a pointwise
convergent subnet, we may assume that a(a)=c=«(b) for some « € G.
Since « is one-to-one, a=b, and therefore G acts distally on 4,.
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TraEOREM 1.2, The following are equivalent:

1) Gis a set of one-to-one maps;

2) @ is a topological group in the pointwise-weak operator topology;

3) The pointwise-weak operator and wuniform-weak operator topologies
coincide on G.

If these conditions are satisfied, then A is G-finite.

Proor. If condition 3) is satisfied, then every element of G is a uni-
form limit of ultraweakly continuous maps, so is ultraweakly continuous.
In particular, 4 is G-finite by the result of Stermer mentioned above
[22]. Moreover, @ is a family of continuous functions which is compact
in the topology of uniform convergence, hence is equicontinuous. By
[10, 4.4 and 4.5, pp. 25-26], G is a group of homeomorphisms, and by
[3, 10.3.5, Proposition 11], @ is a topological group. Thus condition 3)
implies condition 2).

Condition 2) clearly implies condition 1). Suppose then that condition
1) is satisfied. Then by Lemma 1.1, @ is a group. Each & € G is then
an invertible, positive, linear map of 4 onto 4, hence is an order iso-
morphism of 4. In particular, G consists of positive normal maps, so
by [7, Theorem 2, p. 53], G consists of ultraweakly continuous maps. As
@ is a group, G is a group of homeomorphisms, so G acts equicontinu-
ously on 4, [10, 4.4, p.25]. But then the topologies of pointwise conver-
gence and of uniform convergence coincide on @, so condition 1) implies
condition 3).

REMARK 1.3. Suppose conditions 1)-3) above hold. Let S(4) be the
state space of 4, and let u be normalized Haar measure on G. If p is
any normal state of 4, then using the argument of the theorem on p.
255 of [22], together with [9, V.6.4, p. 434], one can show that the weak*
closed convex hull in S(4) of {pox: « € G} is a set of normal states of 4.
Since the map p*, defined by

P*@a) = (gp(x(a))dp(x), acd,
lies in this closed convex hull, p* is a normal G-trace of 4. Clearly p*=p
if and only of p is G-invariant.
If 7 is a state of 4, let |||, and ,||-]| denote the seminorms

a — v(a*a)t and a - t(aa*)t
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respectively. If 7 is a normal G-trace, then we have for each « € G and
eachac A,

dx(@) = all and |lx(a)ll, = [all. .
We note that if 4 is G-finite, then an element u of 4 is unitary if and
only if for each normal G-trace 7, |ju|,=|u|=,lu||=1. For if this latter
condition is satisfied, then u*u <1, wu*=<1, and 7(l —wu*u)=1(] —uu*)
=0 for every normal G-trace 7, whence u*y=1=uu¥*.

Lemma 1.4, If a € G, then for each mormal G-trace 7, « is ||||,— and
- ||-decreasing.

Proor. Let a € A and £> 0 be given. We have

lot@lls = supypy, 1| w(b*x(a))] -
Choose b, € A with ||by|l,=1 and
ll(@)ll = |7(be*x(a))] < e .
The map B — 7(by*B(a)) is continuous on @, so there exists §, € @ such
that
17(bo* Bo(@)) — 7(bo* x(@))| < e .
But then
llc(@)ll — [7(Bo* Bo(@))| =
llov(@)ll; — [ (B0* (@) 1| + || w(bo* x(@)] = | 7(bo* Bo(@))]] < Be+3e
so that

le(@)ll; < 17(bo*Bo(@)) +& = Ilboll-l|Bo(@)llc +& = llall. + .

In similar fashion, one shows that
dlx(@)]l < llall+e.

TarorEM 1.5. If G consist of one-to-one maps, then @ consists of auto-
morphisms of A.

ProoF. Let « € G, and let 7 be a normal G-trace of 4. By Lemmas 1.1
and 1.4, G is a group of ||-||,— and |-||—decreasing maps, so & must
preserve each of these seminorms. By a similar argument « preserves the
operator norm, and by a remark above it follows that « maps the uni-
tary group % of A into itself. Let u,v € %, and let {«, } be a net in & such
that «, > &« pointwise-weak operator. Since multiplication is jointly
weak operator-continuous on % x %, we have

o (uv) = o, (w)o,(v) - x(u)x(v) .
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Thus « is multiplicative on %. Since % spans A4, « is therefore multipli-
cative on A4, hence is an automorphism.

CorOLLARY 1.6. Each of the following is equivalent to each of conditions
1), 2), and 3) of Theorem 1.2:

4) G is a set of automorphisms of 4;
5) G is relatively compact in Aut(A) equipped with the pointwise-weak
operator topology ;

6) G is relatively compact in Aut(A) equipped with the uniform-weak
operator topology.

REeMARKS. It is easy to check that on Aut(4) the pointwise-weak ope-
rator topology coincides with the pointwise topologies from the ultra-
weak, strong, ultrastrong, and strong* topologies. Hence we may use any
of these latter pointwise topologies in condition 5) above in place of the
pointwise-weak operator topology.

If G consist of automorphisms, one can use [7, 1.4.6, Proposition 4]
to show that the pointwise-weak operator topology coincides on G with
the topology determined by the family of all pseudometrics of the form

(¢, 8) = llx(@) = B(a)ll. »

where « € A and v is a normal G-trace of 4.

By [13, 3.7], Aut(4) is a topological group in the uniform-weak ope-
rator topology. Another proof of Theorem 1.5 can be based on the fact
(observed by Connes in [6] and Sakai in [20]) that Aut(4) is complete
in the uniformity which is the supremum of the left and right unifor-
mities of this topological group. For if @ is a topological group, then the
compactness of G implies that this supremum coincides on G x @ with
the family of all neighborhoods of the diagonal. The identity map is then
uniformly continuous from G into Aut(A), hence extends to a continuous
map of @ into Aut(4). It is easy to check that this extension is again
the identity map.

Theorem 1.2 and Corollary 1.6 give various characterizations of rela-
tive compactness of G'in Aut(4). We may also characterize such relative
compactness in terms of the natural action of Aut(4) on the predual of
A. Let Sy(A4) be the set of all normal states of 4, and let Sy(4) have the
weak topology from A. If 4 is G-finite, then G may be identified with
a set of continuous maps of Sy(4) into itself. Moreover, the pointwise-
weak operator topology for @ is then the topology of pointwise conver
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gence on Sy(4). It follows that as G is compact, @ is the closure of @
in the space of all maps of Sy(4) into Sy(4).

ProrosiTiON 1.7. Let X be any Hausdorff space, and let (X,G) be any
transformation group with the property that for each x € X, the orbit closure
of x is compact. Let E be the enveloping semigroup of (X,Q), that is, the
pointwise closure in XX of the group of homeomorphisms induced by the
action of G. Then E is a topological group in the topology of pointwise
convergence if and only if G acts equicontinuously on each orbit closure
n X.

ReMARK. That E is a semigroup is proved as in [10, 3.2, pp. 16-17];
the compactness assumed there is not used in that portion of the argu-
ment.

Proor. Since each orbit closure in X is compact, ¥ is pointwise com-
pact, and it follows that for each z € X, the orbit closure of x is zF =
{xx: « € E}. For each x € X and each « € , let r,(x) be the mapping
of zE into xE determined by restricting « to E. Then r,: o — 7,(cx) is
a continuous map of F into the enveloping semigroup E? of the trans-
formation group (¢E,G). By the compactness of K, r, maps E onto E=.

Suppose ¢ acts equicontinuously on each zE. Let {x,} and {#,} be nets
in K such that &, - « and g, -~ g in E. Let x € X. Since (z&, Q) is equi-
continuous, the pointwise closure E* is also equicontinuous, and by
[10, 4.4 and 4.5, pp. 25-26], E* is a group of homeomorphisms of zE.
By [3, 10.3.5, Corollary, p. 48], EZ is a topological group in the topology
of pointwise convergence on xzE. By joint continuity of multiplication
in this topological group, «, f, converges pointwise on xzE to «f. Since
x is arbitrary, «,8, - «f pointwise on X, i.e. multiplication is jointly
continuous on the semigroup K. Let « € E and let a, - «,a, € G. Passing
to a subnet, we may assume «,~! > g € E. Then &,a, - fx and «,«,*
- aff, 80 « is invertible (in %). The same argument shows that if x, € &,
x € B,n, > &, and § is any cluster point of {x,~!}, then =x-1. By com-
pactness of E, we then have &,~! — &~1, whence inversion is continuous
on E.

Suppose then that E is a topological group, and let x € X. We show
that G acts equicontinuously on xE. Since E is compact, it suffices to
show that the map @: (2«,8) - xxf of xE x E into zE is continuous,
i.e. that (zE,E) is a transformation group. Consider the map y: (z,x,8)
— zaf of {x} x E x E into zE. This map factors into y==Po0, where 0:
(%,,8) - (@, ) maps into E x K. As 6 is continuous, and as {z} x £ x E

Math. Scand. 37 — 19
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is compact, 0 is closed. Hence #E x £ has the quotient topology from
0, so @ is continuous if and only if y is continuous. But the continuity
of y follows from joint continuity of multiplication in E.

COROLLARY 1.8. Let A be a von Neumann algebra, and let G be a sub-
group of Aut(A). Then G is relatively compact in Aut(4) if and only if
A is G-finite and G acts equicontinuously on each orbit closure in Sy(A4).

Proor. Apply Proposition 1.7 and Theorems 1.2 and 1.5.

ReMARK. We may identify the state space S(A4) of 4 with the comple-
tion of the uniform space Sy(4). By [11, 2.5 and 2.6], a group @ of auto-
morphisms of 4 is pointwise-norm relatively compact in Aut(4) if and
only if G acts equicontinuously on S(4). By [3, 10.2.2, Proposition 4],
these conditions are equivalent to uniform equicontinuity of G on the
whole of Sy(4).

2. Examples.

Our first example is drawn from harmonic analysis. Let I" be a locally
compact group with identity e, and let u be a left Haar measure for I'.
We recall some results from [4]. If Aut(I") is the group of all continuous
automorphisms of I', then Aut(I") is a topological group in the Birkhoff
topology [4, p. 59]. Moreover, there exists a continuous homomorphism
4 of Aut(I') into the multiplicative group R+ of all positive real numbers
such that if 1 <p< oo, if fe LP(u), and if « € Aut(I"), then

Ao (2) Ap() = §rfoa(z)dulz) -
The map &: f — foo~! satisfies

A2 fll, = 1&F)llp
for each fe LP(u), and &« — & is a strongly continuous representation of
Aut(I'") on LP(u). If f+h denotes the convolution of the functions f and
k, then
A(x)a(f*h) = &(f) * a(h)
for each & € Aut(I'), each fe L'(u), and each h e L?(u). It follows that
if @ is any subgroup of Aut(I"), then the following are equivalent:

1) A®={1};
2) for each & € G, & is an isometry of L?(u);
3) for each « € G, & is a ring homomorphism of L(u).
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If uy(x)=sxs~! and d(s)=A4(u,), then § is the modular function of I'.
If x e Aut(l), then u,y=axouont, so that A(u,,)=4(us). It follows
that

Af)* = &(f*) forfeIMu).

Now let A be the left regular representation of I' on L?(u), and let 4=
A(I')" be the von Neumann algebra generated by A(I"). We write L, for
the operator h — fxh, where fe L'(u) and b € L*(u). We may then iden-
tify Ll(u) with a weakly dense x-subalgebra of 4 via the correspondence
fe L, If seI and A is a neighborhood basis at s in I" consisting of
compact subsets of I, let Lz be the operator

h— u(K)1%exh, where K e .

Then A(s) is a weak operator point of closure of {Lx:K € }. (See
[8, 13.2.5]).
For any fe Ll(u), any pair b,k € L¥(u), and any « € Aut(I"), we have

f)xh, )y = A()Xfx&H(h), a7 Y(k)) ,

and it follows that & is weakly continuous on 4,nL*(u). By the argument
of [15, Remark 2.2.3], & has an extension to an ultraweakly continuous
linear map of 4 into 4 such that &Ly =Ly As &(xx)=x.x, and as
A(s) can be weak operator approximated in 4, by operators of the form
Ly above, we have &(A(s)) =A(x(s)) for each « € Aut(I") and each s e I'.

If now G is any subgroup of Aut (") with 4(G)={1}, then each & with
a« € @ is multiplicative on L'(u), hence extends to an automorphism of
A. If conversely each & is an automorphism, then in particular each &
is multiplicative on L(u), so 4(G)={1}. If A(G)={1}, we say that @ is
extendable, and we write E(I") for the group 4-1{1} of all extendable
automorphisms of I. We note that as 4 is continuous, the closure of an
extendable group is again extendable. If G is extendable, then by the
ultraweak continuity of & and the ultraweak density of L'(u),

{a(@), k) = Cas~i(h),a(k))
foralla € G, all a € 4, and all &,k € L¥(u).

LemMa 2.1. The map « — & 18 a continuous tsomorphism of E(I') into
Aut(4).

Proor. Since &oﬁ=(aol3)~ on L'(u), these maps must agree on all of
A.1f &=/§, then fox~1=fof-! for all continuous f with compact support,
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so a~1=f-1. The continuity of « — & follows from the norm continuity
of o — &-1(h) into L*(u) and the fact that

@@, by = (az=*(h),&"*(h)) .

If G is relatively compact in Aut ("), then ["is said to be an [FIA]-;-
group. (See [18].) If I'" is [FIA]-,, then A(G) is a relatively compact
subgroup of R+, so A(G)={1}, so G is extendable. It follows then from
Lemma 2.1 that if I" is [FIA]—4, then G is relatively compact in Aut(4).
As we shall see below, the converse is also true. If I'is discrete and G is the
group of all inner automorphisms of I, then I' is [FIA]- if and only
if every element of I'" has only finitely many conjugates [12, Theorem
4.2]. Such groups are studied in [19]. More generally, I' is [FIA]- if
and only if

1) I' possesses a neighborhood basis at e consisting of G-invariant sub-

sets of I, and
2) for each x eI, the orbit of x under G is relatively compact in I"

[12, Theorem 4.1].

LeEMMA 2.2. Let I'* be the one point compactification of I'. Then A ex-
tends to a homeomorphism of I'* onto A(I")u{0}, where A(I")u{0} has the

weak operator topology.

Proor. Put A()=0. Then 1 is a bijection of I'* and A(I")u{0}, and
A is continuous on I'. If {z,} converges to z in I'* and x+ o, then {z,}
is eventually in I', where we know already that 4 is continuous. If on the
other hand x, - oo, then for any compact ST, {z,} is eventually out-
side 8. Then for compact H and K,

@)z 1w = Srax(@, ) xa®)dul?)

is zero whenever x,& HK-. Since {yz: K<I is compact} generates
L*(u), and since A(I") is uniformly bounded in operator norm, it follows
that A(z,) — 0 weak operator. Thus 4 is continuous, and by compactness
-of I'* it is a homeomorphism.

COROLLARY 2.3. The weak operator closure of A(I') ts A(I")u{0}.

THEOREM 2.4. The group I' 18 [FIA]-¢ if and oﬁly if G is relatively
<compact in Aut(4).
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Proor. We established above that if I"is [FIA]-,, then G is relatively
compact in Aut(4), so suppose this latter condition is satisfied. By
Corollary 2.3, for each seI', {#(s): f € G} is a compact subset of A(I")
u{0}. Since each f§(s) has norm one, {(s): f € G} is contained in A(I),
and by applying -1, we get {x(s): « € G} relatively compact in I'. By a
remark above, it suffices to show that I" has a neighborhood basis at e
consisting of G-invariant subsets. Let K be any neighborhood of e in I".
Since @ is a group of homeomorphisms of 4, and is compact in the
topology of uniform convergence, @ is equicontinuous on 4,, and hence
on A(I')u{0}. In particular, it is equicontinuous at A(e), so there exists
an open neighborhood ¥V of A(e) in A(I") such that GV A(K). Let U=
A7Y(V). Then GU is an invariant neighborhood of e with GU < K, and it
follows that I" has a neighborhood basis at e consisting of G-invariant
subsets.

It is now easy to give examples of G-finite 4 such that the closure
@ of G in #(A) contains non-multiplicative maps. Let I" be discrete,
A=MI")" as above, and G be the group of all inner automorphisms of
I". The G-invariant states of A are just the finite traces of 4, and by
[8, 13.10.5], 4 is G-finite. Let I" contain an element x which has finite
order n+1 and infinite conjugacy class. (For example, take I" to be the
non-commutative semi-direct product of the integers with the two ele-
ment group and let x be the generator of the two element group). Then
there exists a net {x,} in G with {«(x)} not convergent in I'. Thus
Mev,(x)) - 0in 4,, and we may assume &, - f in Z(4), so that f(A(z))=0.
On the other hand, 2" =e, so that g(A(z)*)=p(I)=1, so # is not multi-
plicative.

Our last example clarifies the relationship between pointwise-weak
operator compact groups of automorphisms of von Neumann algebras
and pointwise-norm compact groups of automorphisms of C*-algebras.
Let A be a von Neumann algebra and G a compact subgroup of Aut(4).
It follows from a theorem of Aarnes [1, Theorem 9] that there exists a
weakly dense, G-invariant C*-subalgebra B of A such that B contains
the identity of 4 and @ is pointwise-norm compact in Aut(B). Conver-
sely, suppose B is any C*-algebra with identity I, and let G be a sub-
group of Aut(B). If ¢ is pointwise-norm compact, let 4 be normalized
Haar measure on G. For each state p of B, put

p¥(b) = §gpoa(d)du(x), beB.

Then by [11, 38.1], the set {p*: p is a state of B} is a faithful family of
G-invariant states of B.
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Let = be a non-degenerate representation of B on a Hilbert space 5#,
and let « — & be a representation of G by unitaries on J#. We say that
the pair =,& - & is a unitary implementation of (B,G) on # if

1) « — & is continuous from the pointwise-norm topology into the strong
operator topology, and
2) for each x € G, each a € A, and each x € 5, we have

(¥(a)z,z) = (aa(z),&*(2)) .

If = is faithful, we say the implementation is faithful.

LrmmA 2.5. Let B be a C*-algebra with identity, let G be a subgroup of
Aut(B), and let K be a family of G-invariant states of B. For each p e K,
let 7, be the representation of B obtained by applying the Gelfand-Naimark-
Segal construction to p, and let H#, be the space of n,. Then (B,G) can be
unitarily implemented on H =@3 g H p, and if K is a faithful family,
then the implementation can be chosen to be faithful.

Proor. Let n=@®@3, xm,. Then x is faithful if and only if K is faith-
ful. If K consists of a single state, the lemma reduces to [21, 5.3]. Hence
we may assume that (B,d) is unitarily implemented on 3, by =,
a—>o, If 2=3, gx,ed, put &(x)=3, g x,(®,). As the &, are
pairwise orthogonal, each & is an isometry of #. If «, -« in G, then
by the uniform boundedness of {||&|: x € G} and an }¢-argument,

|&,(%) —&=)]| > 0 for each z = H# . '
Since condition 2) above holds for any p € K and any x € 5, it holds
for any x in any finite sum of the 5#,, and hence for all x € # by a
density argument.

ProrosiTionN 2.6. Suppose B is a C*-algebra with identity, G is a point-
wise-norm compact group of automorphisms of B, and (B,d) is faithfully
unitarily implemented on 5. Then each « € G extends to an automorphism
& of the weak closure A of n(B) in #(H), and the map x — & s a homeo-
morphism of G into Aut(A) equipped with the pointwise-strong operator
topology. In particular, G is pointwise-weak operator compact.

Proor. We identify B with n(B). That « extends to 4 follows from
[15, Remark 2.2.3] and condition 2) in the definition of unitary imple-
mentation. Let « € 5#. As the ultraweakly continuous states

a - (G(a)x,zy and a - (@& (x),&(x))
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agree on B, they agree on all of 4, and in particular ||&a)z| = |ead—(z)].
Suppose «, - « pointwise-norm in Aut(B), and let ac 4, xe€H# be
fixed. Then for any b € B,

[I(&,(@) — &) ]|
= (&(@) — &,(b))ell +11(&,(5) — &) )| + [|(&(b) — &(a))al|
= [l(a—)&, (@)l + o, (6) — (O] llell + ll(@ — b)a—* ()] -

Taking the limit over y, we get
lim,|(&,(a) — &(a))x]| < 2l(a—b)a (=),

since & 7}(z) - & () in norm in . By choosing b e B with ||(a—b)
& Yx)|| < 1¢, we can ensure

lim |(&,(@) —&a))z] < &.

Thus &, ~ & pointwise-strong operator in Aut(4). By the density of B
in 4,0 — & is injective, and by compactness of ¢ in Aut(B), it is & homeo-
morphism.

Now let B be the C*-algebra of the canonical anti-commutation rela-
tions and G the gauge group of B [5, 5.1]. By the discussion in [5, 5.1],
G is a pointwise-norm compact subgroup of Aut(B) which is isomorphic
and homeomorphic to the circle group. Since B is uniformly hyperfinite,
B has a unique finite trace 7, and the representation n determined by
7 is a faithful factor representation of B [8, 6.7.3]. As 7 is invariant
under @, (B,@) is unitarily implemented on the space J# of =, and we
may identify ¢ with a pointwise-weak operator compact subgroup of
Aut(4), where 4 =n(B)".

By aresult of Kallman, G cannot be pointwise-norm compact in Aut(4).
For suppose this is the case. Then the pointwise-norm and pointwise-
weak operator topologies coincide on G. Let @ be a continuous homo-
morphism of R onto G. By [16, Theorem 1], @ is norm continuous into
Z(A), and since G has the quotient topology from @, G is norm-com-
pact in Z(4). Using again the discussion in [5, 5.1], it is easy to see
that G cannot be norm-compact.

Note ADDED IN PROOF. There exists an algebra 4 =A(I")"’, where I' is
a discrete group, such that the group G of inner automorphisms of I’
is relatively compact in Aut(4) in the uniform-weak but not in the
uniform-strong operator topology. Choose I' so that I'/Z is infinite,
where Z is the center of I', but so that I' contains no element with
infinitely many conjugates. One checks that in the uniform-strong oper-
ator topology, Aut(I") is a discrete, closed subspace of Aut(4), then
applies G~1I'|/Z and Theorem 2.4. The author would like to thank
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M. Reynolds for pointing out that in general these two topologies do not
coincide on Aut(4).
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