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EDWARDS’ SEPARATION THEOREM FOR COMPLEX
LINDENSTRAUSS SPACES WITH APPLICATION
TO SELECTION AND EMBEDDING THEOREMS

GUNNAR HANS OLSEN

1. Introduction.

The aim of this note is to extend the Edwards’ separation theorem
to the class of complex Banach spaces whose duals are L,(u) spaces for
some measure x, also termed Lindenstrauss spaces. In the real case this
was done by Lindenstrauss and Lazar [6]. They used this theorem to
prove a selection theorem, which generalized a result of Lazar [7] for
simplex spaces, which in turn partially generalized a selection theorem
of Michael [10]. This theorem has important consequences. Among these
is the result that every separable Banach space whose dual is a non-
separable L,(u) space contains a subspace isometric to C(K) with K the
Cantor set, and hence contains a copy of every separable Banach space.

The only point in the above mentioned part of [6] which is ‘real’, is
the proof of Edwards’ theorem. However, Effros [4] has developed a
systematic procedure for approximating general L, -functions by step
functions, which may be used as a substitute of the Riesz decomposi-
tion property in the complex case. Qur proof is strongly influenced by
Effros’ proof of the complex analogy of the Choquet—Meyer uniqueness
theorem for simplexes, in fact this result follows from our argument.
Finally, a theorem of Hustad [5] gives that Edwards’ separation theorem
actually characterizes the complex Lindenstrauss spaces. This result was
implicit in Lazar’s work [8] in the real case, see also [9].

2. Preliminaries and Notations.

We use the following notations:

V is a complex Banach space.

K is the unit ball in V* with w*-topology.

M(K) is the Banach space of complex Radon measures on K.
M, +(K) is the set of probability measures in M(K).

T is the unit eircle in C.
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Let now W be a complex L,(X,8,u) space for some measure space
(X,8,u). Given pe W, let

N(p) = {zeX; p(x)+0}.
We say that a countable set #={B,,B,,...} of § is a partition for p if

0 < u(By) < oo, forallj,
B;n B, = O, J¥k,
Np) s U B;.

Given p € W and a partition & ={B,,B,,...} for p, the conditional ex-
pectation of p with respect to & is the step function

E(p| &) = 21 [/"'(Bj)—l SB, pd.“]ZB,-

where yp, is the characteristic function of B;. The following relations
hold for p,g € W, ¢ € C almost everywhere:

(a) E(p+q|B)=E(p|B)+E(q| %)
(b) E(cp|#B)=cE(p| %)
(c) |E(p|B)| = E(p||B)
(d) SE(p|®B)du={pdu.

In particular it follows from (c) and (d) that
(2.1) IE(@| 2| = lpll .

The following lemma, due to Effros, gives a systematic procedure for
approximating general functions with step functions.

Levmma 2.1. Given py,Ps,- - -, P € W and > 0, there 18 a common par-
tition & for py,py,. . . Py With

lpx—E(pp| BN < &5 k=1,2,...,m.
Proor. See [4, p. 50-51].
The next lemma is obvious.

Lemma 2.2. Let 2,,2,,. ..,2, € C with 3;2,=0. Then for all ¢>0 there
exist a € R+, {, €T, n, € Z+ such that

ICima—z| <& Zplema =0, ma < |z .
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3. The key lemma and Effros’ theorem.

For v e M,*(K) let r(v) denote the barycenter of » (see [1, p. 12-13]).
We now come to the key lemma of the paper. Its proof is just a modifica-
tion of [4, proof of theorem 4.3a implies b] and we will get this result as
a corollary.

LremMma 3.1. Let V be a Lindenstrauss space and g: K — (—co0,] be a
lower semicontinuous concave function satisfying

(3.1) >r 19(Cx) 2 0 whenever {;eT, 37, (=0, ze K.
If ve M,+(K) with r(v)=0, then »(g)=0.

Proor. We may select a net of atomic measures
v, = EE‘?’I Cyie(Dprc) 22(3.')1 c = 1, ¢,>0,
22(1)1 CoPyre = 'r(v,) =0,

such that v, converges to » in the w*-topology. Fix y and ¢ > 0. By lemma
2.1 there is a common partition &={By,B,,...} for p,;,0,9,- - s Ppui
such that for all %
”pyk_E(pyklg)” <e.
It follows from (a), (b) of section 2 and (2.1) that
zk cykE(pykIg) =0.
Now by lemma 2.2 we get simple functions
Pk = Z;’i’.l ((ijnkjaj)/cyk)xB,
where {;; €T, ny; € Z+, a; € R+ and
2kl = 05 j=1,2,...,
”(E(Pyklw)—fl”yk)xn,v” < 279%; j=L2,...,
”pcyk” s "pyk" .
Put +*, =3, ¢,,8(0",). Then +, > v a8 y > o0, £ > 0. Let ¢;= M(By)p,,
then the probability measure
Py = 24 (naga)) e, )u(By)d(Crsay) + (1= 11P°,ll) 8(0)

has barycenter p°,. Thus 1°,=3c,A’, dominates »*, in the sense of
Choquet. Now since g is concave and satisfies (3.1)

v)9) 2 7,9 Z 2k e 25 ((m0) e, )u(Byg(Lrsay)
= s a;u(Bg) 35 119(C0sds) 2 0

which completes the proof of lemma 3.1.
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To see the connection with Effros’ uniqueness theorem we need more
notation. A function f: K - C is called T-homogeneous if f({p)=_C_f(p)
forall e T, pe K. If fe C(K) then function

(homrf)(p) = §¢-1f(Cp)dL
where d¢ is the unit Haar measure on T, is continuous and T-homogeneous.
When u € M(K) then hom;u=pyuohom;.
Let 0: K - K be the homeomorphism o(%k)= —k. Then

hom;ou = —hom,pu .

We can now state the complex analogy of the Choquet-Meyer uniqueness
theorem for simplexes. The corresponding real result is due to Lazar [8].

THEOREM 3.2. The following statements are equivalent

(a) V is a Lindenstrauss space.
(b) If »y,vqe M H(K) are maximal with r(vy)=r(vy) then hom;y,=
hom-r'ﬂz.

Proor. (a) = (b). Put »= }(»;+ ov,). Then » is a maximal probability
measure with r(»)=0. It suffices to prove hom»=0, that is, »(f)=0
for all T-homogeneous functions in C(X). Choose a net of purely atomic
measures {»,} with r(»,)=0 which converges to » in the w*-topology. In
the same way as in lemma 3.1 construct for each y and £¢>0 4°,. By
w*-compactness {4’} has a convergent subset, which by maximality
must converge to ». But A’ (homf)=0 for all fe Cc(K), so (b) follows.

(b) = (a). See [4, p. 57-58].

4. Edwards’ separation theorem with applications.
Following Cunningham [3] we define an L-projection e on a Banach
space W to be a linear map on W into itself such that
¢ is a projection, that is, e?=e,
llell = |lex||+ |lx—ex|| forallze W .
A linear subspace of W is called an L-ideal if it is the range of an L-pro-

jection. We refer to [2] for the outline of these concepts.
We can now state and prove Edwards’ separation theorem.

THEOREM 4.1. The following statements are equivalent.

(i) V is a Lindenstrauss space.
(ii) Let g be a lower semicontinuous concave function such that

(4.1) 32.19¢Cx) 20 whenever {,eT, 37, 8,=0, ze K .
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If NcV* is a w*-closed L-ideal, and f: NnK — C is an affine T-homo-
geneous w*-continuous function such that Ref<g|NnK, then there exist
he V such that Reh|K <g and h|NnK =f.

(iii) If g vs above then there exist h € V such that Reh|K <g

Proor. (i) = (ii). We shall first agsume that
37 ,9(Cx) = 0 whenever {,eT, 37, (=0, xe K

and that for some >0
Ref < gINNnK-—c¢.

Let z e NnK and assume

x =" a@;, Dou=1, 6,20, x;eK.
Let e be the L-projection onto N and put

Yi = exifllexyll, 2 = (w—ex;)fllw;—ex] .

Then the measure

v = 201 agllex6(y,) +2=1 orglloeg — exyl|0(2;) + 2T q g1 —|l4]])5(0)

is a probability measure with r(»)==z (if |ex;||=0 or |jz;—ex;] =0, just
delete this term). Since the last two terms have resultant zero we get
from lemma 3.1

w(g) 2 3 xqllexliglys)
z D allex | Ref(y;) +e = Ref(x)+e.

Since v dominates 3 «,0(x;) and g is concave we get

> ag(x;) Z v(g) 2 Ref(x)+e.

Now [1, corollary 3.6] gives g=Ref(x)+¢ (here § denotes the lower
envelope of g, see [1, p. 4]).

By Hahn-Banach in product space [1, p. 2], [6, p. 170] there exist
h € V such that

RINNK =f and Reh < g+e.

Let now f and g be as in the theorem and observe that the requirement
(4.1) is equivalent to §(0)=0. (Use lemma 3.1 and [1, corollary 3.6] as
above.) By the preceeding argument there exist &, € V such that

R NNK=f and Reh = g+1.
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From [2, lemma 1.2] and the compactness of the convex hull of two
compact convex sets, we have

SupxC(g A Rek;)” = conv(Supg®g U Supx? Rek,)

where Supgz? denotes the supergraph and C is a constant |g||+1.
Thus there exist p,q; € K, 4; € [0,1] such that

= Lo +(1—2)q,
0 2 (g ARehy)7(0) 2 A,g(p) +(1—1;) Rehy(gy)

= 11(5(?1)"337‘1(1’1)) 2 —4.

6, = max{}, — (g Reh,)7(0)}.

Put

Then the function g; =gaReh, + J; is lower semicontinuous and concave
and §,(0) 2 0. By the preceeding argument there exist h, € ¥ such that

hy| NnK = f, Rehy < g+6,, Rehy < Reh,+6;.
As above there exist py,q, € K, 4, € [0,1] such that

0 = A3pa+(1—25)95,
0 = (gARehy)7(0) 2 Az(g(pz)—Rehz(pz)) 2 —20; .
Put
8y = max {2-2, — (g A Reh,)”(0)} .

Then the function g,=gaAReh,+ d, is lower semicontinuous and concave
and §,(0)20. Thus, we may proceed by induction to get a sequence
{h,} from V such that

(4.2) h ) NnK = f, Reh, < g+d,_;, Reh, < Reh, ;+6,_,,

where
8p-1 = max{2-®-D, —(g A Reh,_,)7(0)}.

As above we get p,,q, € K, 4, € [0,1] such that

(4.3) 0 = A.Pp+(1—-2,)4y

(44) 02 (gAReh,)7(0) Z A,(§(ps) —Rehy(pn)) 2 —Anbpy

If there exist 4 € (0,1) and a positive integer N such that 4, <48 for all
n2 N then it follows from (4.4) that lim, . 8,=0. From (4.2) we then
get that the sequence {#,} converges in norm to an element 4 € ¥ which

has all the required properties. Now assume there is a subsequence
{An,} = {4} such that lim, 4, =1.
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Then from (4.3) it follows that lim, ,.|lp,/l=0 in particular
lim,, _,oop,,k=0 in the w*-topology. Now it follows from (4.4) that

z limsup(g A Reh,,)” (0) 2 liminf(g A Reh,,)”(0)
= hmmﬂnk( (Prg) — Rehn;,(Pm,))
z liminf(§(py,,) —Reky,(py,,)
z liminf §(p,,) —limsupReh,, (p,,)
2 §(0)—limsup (|lgll+2)|[pn,ll = §(0) Z 0
This gives limd,, =0 so by (4.2) we get that the sequence {#,, } converges

in norm to an element A in ¥ which has all the desired properties. The
proof of (ii) is complete.

ReEMARK. Part of the above proof borrows ideas from [2, proof of
lemma 5.3].

(i) = (iii). Take N ={0}
(iii) = (i) When W is a Banach space ze W, r> 0, then

B(z,r) = {xe W | |x—=z||<r}.

Let now {B(z;,r;)} be n balls in V with the weak intersection property,

that is
Ni=1 Blx*(x),r) £ @ for a*e K.

Define g: K — R, by
g(x*) = (Rea*(x)—ry) v ... v (Rex*(x,)—r,).
Then g is continuous and convex. For each z* € K, choose

z € 7oy Bla*(z),7s) -

Then we have
drigCa*) £ 37, Re(lz) = 0; whenever {;eT, 370, (=0
Now by (iii) there is « € ¥V such that for all z* € K

g(z*) = Rex*(z),
or equivalently
Rex*(x,—x) < 1 k=1,...,n.

So by the Hahn-Banach theorem

@ € (a1 Bl@*(2e),7s) -

Now a theorem of Hustad [5, theorem 4.9] gives that V is a Lindenstrauss
space.
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ReMARK. The concept of biface used in [6] and L-ideal coincides
when the L-ideals are restricted to K in the case V is a real Lindenstrauss
space, see [2, p. 168].

Let now E be a locally convex space. Denote by ¢(Z) the convex non-
empty subsets in £ and by ¢(Z) the closed sets in ¢(#). A map ¢ from a
convex set C into ¢(X) is called convex if

dp(my) + (1= A)p(x5) S Pz +(1=A)zy), 02121, 2,2,€C.
The map ¢ is said to be lower semicontinuous if
{x; p(x)n V+£@} is open for every open U in E .

We say that ¢ is T-symmetric if ¢({x)=_C@(x), (€T, {z,x € C. By a selec-
tion for ¢ we mean a map f: C — E such that f(x) € p(x) for all ze C.

TureorEM 4.2. Let V be a Lindenstrauss space and E a Frechét space.
Let ¢: K —~&(E) be a convex T-symmeitric w*-continuous map. Then ¢
admits a w*-continuous affine T-symmetric selection h. Moreover, if N is
a w*-closed L-ideal and f: NnK — E a selection for ¢| NnK, then h can
be chosen such that h|NnK =f.

Proor. Assume first £ =C and let U be an open disk in C and define
g: K - Rby
g(x) = supRe(p(x)+U) zecK.

Then g is a lower semicontinuous and concave, and the T-symmetry of
@ ensures X, ,g({,x) >0 whenever 37_,(;=0,(;eT, x € K.

By theorem 4.1 we get & € V such that
Reh(z) < g(z), VzeK.

Now the T-symmetry ensures kh(x) € p(z)+ U for all z € K. The rest of
the proof is now as in [6, p. 172-173].

The above selection theorem has interesting applications. Among them
we should like to mention the following theorem due to Lazar and Lin-
denstrauss. The proof is now similar to the real case [6, p. 174].

THEOREM 4.3. If V is a separable Lindenstrauss space with nonseparable
dual space, then V contains a subspace tsometric to C(K) with K the Cantor
set, on which there is a contractive projection.
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