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UNIFORMITY IN WEAK CONVERGENCE
WITH RESPECT TO BALLS IN BANACH SPACES

FLEMMING TOPSOE

1. Introduction.

Let X be a Banach space and denote by M ,(X) the space of non-ne-
gative totally finite Radon measures on X provided with the topology
of weak convergence, i.e. the weakest topology for which all maps u —
u(f), with f a bounded continuous function on X, are continuous.

Consider a measure y € M (X) for which y(2B)=0 for every ball B
and let (u,),-; be a sequence on M (X) with u, - u. Then of course
4B — uB for every ball B. During the research symposium on functional
analyses and stochastic processes, Durham 1974, J. Hoffmann-Jergensen
asked, if it could be concluded, under these circumstances, that u,B
even converges uniformly to 4B over the class of all balls. It turns out
to be sensible to restrict attention to balls of bounded radius. He was
lead to this question in collaboration with Gunnar Andersen in the
search for Vitali-type theorems in infinite-dimensional Banach spaces.
The idea was to approximate the measure u, for which a Vitali theorem
was desired, by essentially finite-dimensional measures and then to uti-
lize the Vitali theorems known for such measures. However, in spite of
the partly positive answer to the uniformity problem, this program has
not been carried out and very little seems to be known concerning the
Vitali theorem in infinite-dimensional spaces (cf. the discussion in [6]).

The main fact to be established in this paper is that the uniformity
problem of Gunnar Andersen and Hoffmann-Jergensen has a negative
solution for X =c¢, and a positive solution in I?; 1 £p < . Thus we are
faced with a property which is deep enough to distinguish between
“good” and “bad” Banach spaces.

2. Uniformity classes.

We shall work in a Banach space X and need some notations and de-
finitions apart from those mentioned in the introduction.

F (X) denotes the class of closed subsets of X. For closed sets, F is
the topological limit of the sequence (F,) if F is identical to the upper as
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well as to the lower topological limit defined as the set of points every
neighbourhood of which intersects F, infinitely often, respectively for all
sufficiently large n. o < % (X)) is said to be closed if & is closed in # (X)
for the notion of topological limit. If X is second countable, then every
sequence (F,) on #(X) has a subsequence (F,, ) which converges. To see
this, choose (¥,,) such that, for each @ in a countable base, either ¥, ,nG
+ @ eventually, or F,, NG'=0 eventually holds.

Let /< F(X)and ue M (X). o is a u-continuity class, or u is o7/-con-
tinuous, if u(04)=0 for all 4 € o7 (here 4 is the boundary of A4). & is
a p-uniformity class if

]imn»oosupAedllunA -4 =0

for every sequence, (u,) on M  (X) with u, - u.

If o7 is a p-uniformity class, &7 is also a u-continuity class. If & is a
u-uniformity class for every &7-continuous u, then & is said to be an
ideal uniformity class.

Blx,r] denotes the closed, and B(x,r) the open ball with center z and
radius 7. S[z,r] denotes the corresponding sphere, thus S[x,r]=0B[x,].
For A< X, we denote by 9,4 the §-boundary of A, i.e. the set of z e X
for which B(z,d) intersects A as well as [4 or, equivalently, the set of
x € X for which B(z,d) intersects 84. Hence N,_,0,4 =2A4. We also note
that

9,Blz,r] = {y: r—6 < |ly—=| < r+}.

#,=RB . (X) denotes the class of all closed balls with radii <r. We include
in #, the one-point sets (corresponding to balls with radius 0) and also,
for technical reasons, we include in &, the empty set (corresponding to
balls with negative radii). By &,=,(X) we denote the class of boun-
daries of sets in #,: &,=0%,, that is, &, is the class of spheres with
radii 7. By Z,,, respectively &, we denote the class of all closed balls,
respectively all spheres.

The problem to be investigated is whether, for each 0 <7 < 0,4, is an
ideal uniformity class. The cases r=0 and r=oc are uninteresting since
%, the class of one-point sets, is always an ideal uniformity class, and
since &, is (practically) never an ideal uniformity class — just consider
a measure concentrated on a line in R2, say (cf. also Proposition 3). Thus,
when we consider a class #,, it is always understood that 0 <7 < co.

From the outset there is the possibility that no #,-continuous measure
exists (except u=0), and that would make #, an ideal uniformity class
in a rather uninteresting way. However, on any Banach space there
exists a non-trivial measure vanishing on every sphere, one can in fact
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find a Gaussian measure having this property. I owe this observation to
L. Gross who refers to Theorem 1 and to Remark 2 of [2], and to V. Good-
man who indicated a more direct proof.

For the special Banach spaces dealt with in this paper, it is very easy
to see the existence of measures vanishing on all spheres. One need only
notice that in these spaces there exists a line intersecting every sphere
in at most 2 points, and then consider a non-atomic measure concentra-
ted on such a line. [Only I and ¢, are non-trivial; in I* consider the line
through (0,0,...) and (1,1,...), and in ¢, consider the line through
(0,0,...) and a point (a,,a,,. . .) with all co-ordinates distinct from 0]. It
would be interesting to know if, in any Banach space, a line can be found
intersecting every sphere in a most 2 points (A. Szankowski has informed
the author that this can be proved but is non-trivial for an arbitrary
norm on R3).

Instead of demanding the classes %, to be ideal uniformity classes, one
could ask if, for any u € M (X), for any sequence (u,) with u, - u, and
for any r < o,

( 1) limsup n->c0SUPBeg, I;u"nB - :uB I = supBeQ,l“(aB )

holds. This would make the existence or non-existence of measures va-
nishing on all spheres a question of only secondary importance. Actually
(1) does hold in {7; 1 < p < o0, but we shall not spend time on this refine-
ment.

We now state a result giving criteria of a purely geometrical nature —
no measures are mentioned — which implies ideal uniformity (they even
imply the validity of (1)).

Lemma 1. Let & < F(X). If o, the class of boundaries of sets in o,
18 closed, then o is an ideal uniformity class.

If of consists of closed convex sets, and if Knof/={KnA:Aesl} is
closed for every compact and convex set K, then o is an ideal uniformity
class.

In relation to the present problem, this is just a lemma, but the result
is not trivial. The first part is contained in [3], which requires acquain-
tance with [1]. A strict application of [3] requires separable Banach spa-
ces, however, the interested reader can easily deduce the changes needed
in the general case from [4].

The second part of Lemma 1 looks nice, and might be helpful for fur-
ther investigations, but will not be used in the sequel. A proof can be
deduced from Theorem 1 of [6]. We remark that in general, it can not
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be concluded that a class of closed convex sets which is closed in F(X),
is an ideal uniformity class (cf. the example following Theorem 6 of [3]).
Perhaps this conclusion holds for the classes %,, it may even be that &,
is closed if and only if &, is closed, but we do not know.

The next lemma, which is also contained in the above mentioned pa-
pers, is no longer purely geometrical. It involves a measure, but has the
advantage of giving necessary and sufficient conditions.

Lemma 2. Let o =« F(X),u € M (X). The following conditions are equi-
valent

(i) & is a p-uniformity class.
(i) Lim,_, o8up 4o o0 11(3,4) =O.
(111) V(A'n)ngl n Jj’ V(sn - 0: l/’(n::;ladn(An)): 0.
(iv) ud =0 for every set A in the closure of H(0), the class of closed
sets contarned in the boundary of a set in <.

In (iii), (d,) could be replaced with any fixed sequence of positive num-
bers converging to 0.

In view of Lemmas 1,2, it is natural to conjecture that #, is an ideal
uniformity class if and only if every closed set F' which can be obtained
as the limit of a sequence of sets in &, is a subset of a set in &;.

3. The space c,.

In this and in the next section we shall study the sequence spaces I#
and c,. If = is an element in one of these spaces, we denote the n’th coor-
dinate by «(n); n= 1. The n’th unitvector is denoted by e,.

THEOREM 1. Let 0<r < oo and consider the space co. Then 2, is not an
tdeal uniformity class, in fact, for no non-zero u € M ,(c,) is B, a u-unifor-
mity class.

Proor. Let u e M (c,) with u(c,) >0 and choose K compact such that
u(K)>0. There exist finitely many points z;;¢=1,2,...,N in ¢, such
that K=UYK, with K,= KnB[xz;r]. Choose i such that u(K,)>0. As-
sume, for the sake of simplicity, that x;=0. Put

8, = sup{lz(n)| : x e K;}; nzl.
Then 4, - 0. Put s=max{§,: n21}. Due to the assumption z;=0, we
have s < r. Consider the balls

B, = B[se,,8]; nzl.
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Then B, € #,; n= 1. We claim that
(2) Ki & nngladn(Bn) .
To see this, let z € K, and fix ». For the point y,=x—z(n)-e, we find

”x'_yn” = 61; and ”yn_‘?en” =8,

hence z € 9, (B,,).
Having proved (2), it follows by Lemma 2, since u(K,) >0, that %, is
not a y-uniformity class.

With just a little extra work, the proof shows that in ¢, every closed
set contained in a ball of radius r, belongs to the closure of J#(94%,), cf.
(iv) of Lemma 2. Thus, when working in ¢,, 64, is very far from being
closed. We note that %, is not closed either — in fact, if f,=37e, then
B[f,,1] converges to the set of x with 02 <2 and limsupz(n) <1, and
this set is not a ball in ¢,.

In ¢y we can easily characterize the ball-continuous measures, i.e. the
measures vanishing on all spheres. For probability measures, the condi-
tion is that all coordinate random variables have a non-atomic distribu-
tion and this of course, implies the existence of plenty of measures va-
nishing on spheres.

ProrosiTiON 1. € M (co) vanishes on all spheres if and only if, for
every n=1 and o« € R,
u({z: z(n)=a}) = 0.

Proor. Assume that y vanishes on every sphere of radius 1. Write the
set {x: z(n)=«} as a countable union of non-empty sets 4,, each of
diameter less than 1. Choose z; € 4; and define y; € ¢, by

z,(m) form=%n
14 form=n.

Yi(m) = ‘

Then
A{ = aB[yb 1] ’

hence uAd,;=0. It follows that u({z(n)=a«})=0.
The converse implication follows from the inclusion

0Blxe,r] € Unua{z: 2(n)=xy(n) £7} .

" The proof showed that if u vanishes on every sphere of radius 1, then u
vanishes on every sphere.
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4. The spaces I°.

We now turn to the positive results. Even though finite-dimensional
spaces are not the most interesting ones in relation to our uniformity
problem, it is natural to start by noting the following result.

ProrosiTiON 2. £, is an ideal uniformity class in any finite-dimensional
Banach space.

Proor. By Theorem 6 of [3] it suffices to show that &, is closed in
Z (X) (Theorem 6 of [3] refers to an euclidean space, but the proof works
for any norm).

Assume then that Blz,,r,] > B. If B+@, (z,) is bounded. We may
then assume that (x,) is convergent, say z, - « and also, we may assume
that (r,) is convergent, say r, — r,. We leave it to the reader to conclude
that B = B[z,r,].

We remark that the proof can also be based on Lemma 1.
We now turn to the IP-spaces. For the next two lemmas, p is fixed with
1<p<oo and ||| denotes the usual norm in I?, that is, for x=x((n)),5,

we have
el = (X e(n)|P)r® .

For 1 < N < oo we define the “head” and ““tail”” projections on I?,py and gy
by

pu@) = SVa(n)e,,  au(@) = SRorzn)e,; welb.
We say that the sequence (x;) in P converges coordinatewise to z if
Pn(,) = py(x) for every N. For sequences (x;) and (8,) of real numbers,
we Wl'ite ckaﬂk if ak—'ﬂk - 0.

Lemma 3. If (x;) and (y,) are sequences on IP such that z, converges
coordinatewise to 0 and y, converges in norm, then

3) N1y — 2l = |19l 1P + [l [P -

Proor. We shall not be too exact in this simple proof. Let y;, - y. We
first choose N such that ||gy(y)|| is small. Then we make sure, by choosing
k sufficiently large, that ||y, —y|| is small and that |[py(x;)| is small. As

el = llgw(ye—9)ll+lgn@)I = Ny —yli+lanl

we also have that |jgy(y,)| is small for % sufficiently large. It follows,
that for k sufficiently large, z, does not differ much from gy(x;), and y,
does not differ much from py(yy).
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Then the left hand side of (3) does not differ much from

llow(ys) — an(@) P = [P (yR)lIP + llgn(@elP ,
and this quantity does not differ much from the right hand side of (3).

LemMmMA 4. 2,; k=1, and x are points in P, and r,;k= 0, and s are non-
negative numbers. Assume that

(a) =z - z, coordinatewise ,
(b) lley—2f - s,
(¢) r—> 1.

If ro< s, then 0(B[x;,7,]) > .
If ry 2 x and we define g = (r,? — s?)V/P, then

(Bl 1)) > 8(Blw,el) -

Proor. We may assume that x=0 — since, knowing the result in this
special case, the general case may be dealt with by an obvious transla-
tion argument. Suppose that y belongs to the upper limit of the sequence
(9B[x,7;]). Then there exist k; <k,< ... and points y,, ; »= 1 such that

Yr,~>y and |y, —x )l =17, forrvzl.

By Lemma 3, it follows that r® = ||y||” + s?. In case r, < s, this is a contra-
diction, hence &B[z;,r,] > @. If ry=s, this shows that [|y||=p, that is,
y € 0B[0,p].

Assume next, that y is a point with |ly||=p. By Lemma 3,

lly —2ilP — @+ = 14",

and it follows that y belongs to the lower limit of (0B[x;,7.]).

The same kind of argument shows that if (a), (b) and (c) hold, then
Blzy, 1] - @ if ry<s and Blz,r,] - Blz,e] if rg=s.

THEOREM 2. For 15 p< oo, and any 0<r<oco, %, is an ideal uniformity
class in 1P,

Proor. We shall show that 04, is closed. By Lemma 1, this will imply
the desired result.

Assume that oB[x;,r,] > A with r,<r;k<1. We shall prove that
A€ 04,. This is clear if 4=@. Now assume that 4+@. Then (z;) is
norm-bounded. By extracting, if necessary, a subsequence, we may as-
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sume that for some x € I?,x, converges to z, coordinatewise. This is evi-
dent for 1 < p < o since, by reflexivity, we can even achieve that z, con-
verges weakly to z. In the case of I, we extract a subsequence such that
lim ; x;(n) =x(n) exists for each n, and then we apply Fatou’s lemma to
see that z e IL.

Again by extracting, if necessary, a subsequence, we may assume that
the sequences (||z;,—x||) and (r,) converge. An application of Lemma 4
now tells us that 4 € 94,.

The proof and the remark following Lemma 4 shows that in IP; 1<
p< 0,04, as well as %, are closed.

We shall now show that it is essential with a bound on the radia of the
balls to be considered. At the same time we shall investigate the class
IT of all closed halfspaces.

ProPosITION 3. For every non-trivial measure p on IP (1< p< ), %, as
well as II fails to be a u-uniformity class.

Proor. We first deal with I7. We shall show that the entire space I?
belongs to the closure of dI1. According to Lemma 2, this implies the
desired result.

Let («,) be any sequence of real numbers converging to 0. Define
n, €Il by

7, = {x: x(n) £ 0y}

For any x € I? consider the sequence (x,,) on P defined by

z(m) form$n
Op form=mn.

) = {

It is easy to see that z, — z and that x, e x,; n= 1.
As this holds for every z € I?, we conclude that ox, — I*.
The class Z, is dealt with in a similar way. We shall prove that 0B,, -
? where
B, = Blayenxn); n21

with «, a sequence of positive numbers with &, — co. Let x € I? be fixed.
Since
a7 = (llellP = [2(n)[?)

is eventually positive, say for n = n,, we may define numbers (8,),2n, bY

ﬂn = ‘xn_(o‘np_’("x”p" lm(n)lp))llp ;o M2,
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It follows that 8, — 0. Define z,,; n 2 n, by

z(m) form=£n
B form=mn.

z,(m) = {

Then z, - x and a simple calculation shows that ||z, —«,e,||=«,, hence
z, € 0B,,. As this holds for every z,0B, — I7.

It would be interesting to know if #, is an ideal uniformity class in .
On various occasions I have announced a positive result in [*°, but my
proof contained an error. To see the difficulties, just try and decide, for
a %#,-continuous measure x on I*° and a sequence 9, | 0, whether

((N15m12aBlens 1) = 0
holds.

It is conceivable that a characterization of the #, — continuous measu-
res on I® (or, equivalently, the measures which vanish on all spheres)
would lead to an understanding of the problem. We remark that any
%,-continuous measure vanishes on ¢, and on translates of ¢, Slightly
more general is the observation, that for any x €™ and any sequence
ny <Ny, < ... (including the possibility =, identically constant), we have

p({y €l : lim, , |y(n,)—2(n,)| = 0}) = 0

if u is #,-continuous. It is unknown whether this property characterized
the #,-continuous measures.

5. Uniformity in a subspace.

ProposITION 4. Let Y be a closed subspace of the Banach space X and
suppose that the class of spheres & (X) is closed. Then, for e M_ (Y), a
necessary and sufficient condition that Z.(Y) is a uy-uniformity class s,

that (¥ 0 S[z,e]) = 0

for every sphere S[x,0] for which S[y,,r,] — S[z,¢] for some sequence (y,)
on Y and some sequence (r,) with r, <r for all n.

Proor. We first prove necessity and assume that Z.(Y) is a y-unifor-
mity class. Let S[y,,,7,] = S[z,¢] with y, € Y,r,S7; n2 1. We shall prove
that, in the space Y,

(4) Y n8Sy,,r.] > Y n8z,0] .

Clearly, a point in the upper limit of the sequence of sets on the left hand
gide of (4) must belong to ¥ nS[z,0]. On the other hand, assume that
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ze Yn&8[x,0]. For ¢>0 we know, as S[y,,r,] > S[z,0], that B[z,e]n
S[Y,,7,]+ D eventually say that

w, € B[2,e]1n8y,,r,] fornzmn,.

Consider an » 2 n, and assume for a moment that z+y,. Put

(5) w'n* = yn+Ilz_yn”-l”wn—yn”(z_yn)'
Then
(6) w,* € Y n B[z,&] n S[y,,,7,]

a8 is easily seen. If z=y,, (6) will also hold, provided we take in place
of z in (5) any element in Y distincet from y,,. The validity of (6) tells us
that z belongs to the lower limit of the sets on the left hand side of (4).
(4) is now fully proved. As Y nS[y,,r,] is nothing but the sphere in the
space Y with center y, and radius r,, it follows by (4) and Lemma 2
that u(Y nS[x,p])=0.

We shall now establish sufficiency and assume that the condition of
the proposition holds. To prove that #,(Y) is a u-uniformity class, we
shall apply Lemma 2, condition (iv). Let y, € ¥Y,r,<r;n21, let

F, < Yn8Y,r.); m21,

and suppose that F, - F in the space Y. We have to prove that uF =0.
By taking a subsequence if necessary, we may assume that the sequence
of sets S[y,,r,] converges in X, and by hypothesis, there exists z € X,
and p such that S[y,,r,] — S[x,0]. By what was proved above, it follows

that Y 0 8[g,r,] > ¥ 0 S[z,e]
in the space Y. Clearly then, F< Y nS[z,0] and uF =0 follows.

We note explicitly that during the proof we saw that if S[y,,r,]
8[x,0] in the space X with all the y,’s in a supspace Y, then

Y 0 8[ypra] > Y n8[z,0]
in the space Y.

Combining Proposition 4 and Lemma 4 it ought to be possible to
decide for the space P with 1<p< oo, whether every closed subspace
satisfies the uniformity condition we are studying. However, our attempts
in this direction have been fruitless.
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