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MULTIPLIERS OF SEGAL ALGEBRAS

HARALD E. KROGSTAD

0. Abstract.

The first part of this paper states rather general characterizations of
the multipliers of Segal algebras by means of tensor products. Next, we
study in greater detail a new class of Segal algebras which in some re-
spects differ from those previously known. These algebras can be viewed
as generalizations of the classical algebra M of Wiener and they seem
to be the only known Segal algebras on non compact groups where the
multipliers strictly contain the measures.

1. Preliminaries.

Let G be a locally compact Abelian group with Haar measure dz.
We denote its dual group by G. LY(@) is the usual convolution group
algebra of G. M(G) denotes the convolution algebra of bounded regular
Borel measures. C¢(@) and C°@) denote the spaces of continuous fune-
tions with compact support and the continuous functions vanishing at
infinity. The L?(G)-spaces are defined in the usual way. The Fourier
transform is denoted by *:

F@) = Se(—2,p)f(x)de, ye@.

We also mention 4(G), the subspace of C°(@) which consists of functions
that are Fourier transforms of functions in L‘(@), and P(G), the space of
pseudomeasures (P(G) ~ L¥(Q) = A(G)*). A Segal algebra on @ is a LY(Q)-
dense, translation invariant subalgebra of L'(G) which is a Banach
algebra under some norm ||:||g such that:

) |flls=|flly forallfe8, ze@.
1i) limc—-)a”fz"’f”8=0 for all fe 8.

) fllzyg = £ lls-
(f2 denotes the translated function: f,(f)=f(t—%)).

It is proved in [10] that a Segal algebra is a semisimple regular com-
mutative Banach algebra with maximal ideal space homeomorphic to (&
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such that the Gelfand transform is the Fourier transform restricted to S.
To avoid trivialities we will always assume that G is not discrete as in
this case, all Segal algebras are isomorphic to L}(@). For the sake of
completeness we will give some examples of Segal algebras.

1) The algebras LY(G)nL?(G), 1<p<oo, equipped with the norm
Ifllza+IfllL» are Segal algebras which are isomorphic to L?(Q) if G is
compact.

2) Similarly LMG)nC%@G) is a Segal algebra with respect to the norm
1 llzs + 11f llco-

3) If » is an unbounded positive Radon measure on @ and 1< P < oo,
then the algebras

IN@)n Lr(y) = {fe LNG); fe Lr()},
are Segal algebras under the norm ||f][z:+||f|l LPw) -

4) The algebras W7 defined in Definition 3.0.

A Banach module is a pair (4, V) where 4 is a Banach algebra and V
is a Banach space which is a module in the algebraic sense, and, more-

over,
llavlly £ llalllvlly forallaed,ve V.

The essential part, V,, of a Banach module (4,V) is the closed linear
span of {av},a € 4,ve V.If (4,V) is a Banach module, so is also (4, V*)
under the adjoint action and the essential part of V* is called the contra-
gradient of V and is denoted by Ve.

It is easily proved that if S is a Segal algebra, then (L(G),S) is an
essential Banach module where the composition is convolution. In gen-
eral, one must distinguish between left and right Banach modules, but
in the case (L!(@),S) this distinction vanishes since L(#) is commutative
when G is Abelian. We will let the symbol “~”’ mean ‘‘isometric iso-
morphic” where the relevant algebra or module operations are preserved.

A multiplier on a Banach algebra A is an operator 7' on 4 which satis-
fies T'(ab)=a(Th) for all a,be A. On a Segal algebra, an operator like
this is automatically linear and continuous [1]. In general, the set of
continuous, linear multipliers on 4 is denoted by (4,4) and it is normed
by the usual operator norm. If (4, V) and (4, W) are Banach modules,
then Hom(V, W) denotes the set of all continuous module homomor-
phisms with the operator norm. We frequently use the phrasing that a
set of multipliers or homomorphisms is contained in another. This is



MULTIPLIERS OF SEGAL ALGEBRAS 287

just a short way of expressing that there exists a natural continuous
embedding of the former into the latter. The A-module tensor product
of V.and W, V ®,W, is the quotient space (V ®, W)/M where V ®, W
is the projective tensor product of ¥V and W and M is the closed linear
span of elements of the form av @ w—v Q@ aw (strictly speaking, V® W
is just one A-module tensor product, but every other 4-module tensor
product of V and W is isometrically isomorphic to V ® , W). Each ele-
ment ¢ of ¥V ® 4, W has an expansion ¢ =3¥{ , v; @ w; where 3; [lvl||[w;|l < oo.
The norm of ¢ is defined by

llgpll = inf 3y [log]][lwgl

where the infimum is taken over all possible representations of ¢ [11].
If 4 is commutative, then V ® ; W can be made into a Banach 4-module
by defining a(v @ w) =av @ w. (In general, one can define an action of 4
on Ve, Wif V is an A-bimodule, see [11]). The same is true with
Hom (V,W): Define aT by

(e)f = a(Tf), acd, feV, TeHom,(V,W).

A bilinear operator p from ¥ x W into a Banach space D is called 4-bal-
anced if it is continuous and y(av,w)=y(v,aw) for all ve V, we W and
acd.

If y: Vx W — D is A-balanced, then there is a unique linear operator
$:V ®, W — D such that

1) the diagram

VxW—2*-D
|
VoW
commutes,
2) lwll=l1wll.

We recall the following known results: Let (4,V) and (4,W) be
A-modules and let 4 have an approximate identity bounded by 1. Then
(1.1) Hom(V,W*)=(V Q4 W)* (see [11]).

(1.2) If V is essential, then Hom,(V,W)~Hom,(V,W,) (see [11]).
(1.3) Hom, (W*, V*)~Hom, (We¢, V¢)x Hom ,(V, W**) 2 (V @, W*)*
(see [6], [11]).
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(1.4) If both ¥V and W are essential 4-modules and, moreover, the
action of 4 on W is weakly compact, then

Hom (V, W) = (V ® We)*
(see [6]).

2. Multipliers of Segal algebras.

The following characterizations of the multipliers of general Segal
algebras are well known:

ProrosrrioN 2.1. Let S be a Segal algebra on a locally compact Abelian
group G and let T:8 — 8 be a linear operator. Then the following are
equivalent :

(1) T is a multiplier of S.
(2) T 1s continuous and commutes with translations:

T(f,) = (Tf), Jforall fe8, ze@G.

(3) T e Homy, (S, 8).
(4) There exists a unique pseudomeasure ¢ on G such that Tf=oxf.
(6) There exists a unique bounded continuous function $ on @ such that

(Tf)" =§f for all fe 8.
For a proof, see for example [1].

These rather vague statements are about all that can be said in the
general case. For example, if @ is compact, then every bounded function
on @ gives rise to a multiplier on the Segal algebra L#G). Convolution
with a bounded Borel measure is a multiplier on every Segal algebra.

We note that Proposition 2.1 shows that there is a natural isometric
isomorphism between (8,S) and Homj, (S, S).

In [6] we discussed homomorphisms of Banach modules, and it turned
out that the situation was particulary simple when the elements in the
algebra acted as weakly compact operators on the Banach space.

ProrosiTION 2.2. Let 8 be a Segal algebra on a mon compact locally
compact Abelian group G. Then the only weakly compact operator T on S8
which commutes with translation, that is, T'(f,)=(Tf),, x€ G, fe 8, is the
zero operator.
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Proor. Assume that T is non zero, weakly compact and translation
invariant. Choose an fe S such that 740 and a compact set K<@
such that

Song (Tf)(@) | d < ellTf]] .

Then choose a sequence {g,}7° <G such that {K+g,} are pairwise dis-
joint. {f, } is a bounded set in §, and since we assumed that 7' was
weakly compact, {Tf, }={(Tf), } is weakly sequentially precompact.
Thus, there exists a subsequence of {(7f), } which we again denote by
{(Tf),,} which is weakly Cauchy. L*(G) can in a natural way be embedded
in 8*, in particular,

{eh(O)(Tf),, () dt}. s
is Cauchy for all & € L*(@). But taking for A the function
ho(t) = 31 (= )"y (t)e 4 P0O),

which is obvioulsy in L*, we obtain a contradiction. (y is the character-
istic function of K.)

CoroLLARY 2.3. For non compact groups the action of LY(Q) on the Segal
algebras by convolution is never weakly compact.

Proor. The mapping T,: f — h+f, fe 8, b € LN@), is continuous and
translation invariant.

CoroLLARY 2.4. A Segal algebra S is naturally isometric i;somorphic to
(8¢)e if and only if G is compact.

Proo¥. This follows immediately from Corollary 2.3 and the results in

[6].

Corollary 2.4 says in particular that L!(Q) is naturally isometric iso-
morphic to a subspace of (L1(G)¢)e, that is, (O%(G))c when @ is not com-
pact. We do not know if one can give a simple description of this
latter space.

When @ is compact, every Segal algebra is a homogeneous Banach
Space, and in that case (3,8)~ (S ®z15¢)*. See [6]. In [6] it was also
Proved that the mapping y: S ®.:8¢ - C(Q),

P(f@»)(¢) = »(f)

is an injection of norm <1. If we set 44(@)=range(y) and define

Math. Scand. 38 — 19
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”"P(‘P)“As = |lplls ®15°

then Ag is a Banach L!'-module of continuous functions and even a
Segal algebra.

The situation seems to be more complex when @G is not compact, but
analogous results can be obtained if S satisfies a weak additional condi-
tion. Consider L*(G) as naturally embedded in 8* and denote by S,
the closed subspace of 8* spanned by functions in C%@). One easily
verifies that Sy¢ is an essential L!(G)-module.

DeriniTION 2.5. A Segal algebra on a noncompact group has property
“P” if
Iflls = Sul’lﬁso: lu(f)] forall feS.

All Segal algebras we know seem to have this property, but we see
no reason why it should hold in general.

ProrosrrioN 2.6. If S has property P, then 8= (Sy°)e.

Proor. The mapping n: 8 - (Sy¢)°, n(f)(u)=u(f), is an isometric
injection when S satisfies P. From the definition of 8¢, it follows that
(Sy)* can be viewed as a subspace of M(®), and consequently, (Sy¢)c<
LY(@). Moreover, since (S,¢)¢ is an essential module,

lim, |k, *g —gllser = 0 for all g e (8y°)°

when {&,} is a bounded approximate identity for L(Q). But if we now
choose {#,} such that {ﬁa}CO'c(@), then h,*g € 8§ which shows that #(S)
is dense in (§,°)c.

THEOREM 2.7. Let S be a Segal algebra on a locally compact, noncompact,
Abelian group. If 8 satisfies P, then

i) (8,8) ~ Homy,(8,8) = Homy1(S8,¢,8,°)
~ (S ®r18,%)* = Homp: (8 ®118,°% 8 ®118,°).

ii) Homy,(S,8) ¢ Homy, (S, 8**) =~ Homj, (S*,8*).

Proor. We first establish that Hom,, (S, 8) 2 (S ®11 8,°)*:
Homy,(8,8) =~ Homp:(8S,(8,¢)¢)
= Hom, (8, (8,°)*)
= (8 @1 8)* .
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From the general theory of Banach modules over algebras containing an
approximate identity bounded by 1, we know that Homg,(S,¢,8,¢) is
isometrically embedded in Homy,(S,S) (see [11]). To prove that the
embedding is onto, it remains to prove that the adjoint of an operator
in Homy,(S,8) leaves §,¢ invariant. Let 7 € Homy, (8, S). Since the
adjoint T is bounded, it is enough to prove that T'* maps a dense set of
8S,¢ into itself. Let g € A(G) represent the functional u e Sy¢:

pf) = Sef(@)g(~=)dz .

(T*)(f) = W(Tf)
= {a(Tf)@)g(~2)dx
= (eP®F ©a)dé
ol AGHGHELS
= {o(09)"(~2)f(@)dz ,
which shows that 7" maps u onto the functional represented by the func-

tion (79)” € 0@). (~ denotes the inverse Fourier transform).
Define

Then

(8 HomL1 (S, S) -> Hole(S ®L1 Soc,S ®L1 Soe)
by
p(T)f@Y) =Tf®v.

It is obvious that ¢ is well defined and that |jp(7')|| < ||T'||. Let ¢ be the
isometric isomorphism of Homg, (S,S) onto (S ®718,%)*. Further define

b L'/ HomLx (S ®L1 Soc, S ®L1 Soc) -> (S ®Ll Soc)*
Y
wO)f @) = (eDNT(f®7)

where I € Hom;,(8,8) is the identity operator on 8. Since [o(f)[|=1,
lp(TU)|| < ||U||. This gives us the following diagram:

Homy, (S, 8) —2— (8 @1 8,°)*
v
Homy (S ®118¢°%); 8 @11 8¢°)
Let T € Hom,, (8, S), then:

Y(eD)(f ®r) = eI)Tf®7)
= v(Tf) = o(T)(f®7) -

Thus g=yogp and it follows that ¢ is an isometric isomorphism.
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This establishes i) and we pass to ii). The isomorphism
Homyp;(S,8**) ~ Homg,(S*, 8*)

follows from (1.3). Also, the inclusion Homy,(8,S)<=Homp, (S, S**) is
immediate. Furthermore, 8 @, S¢¢ can be regarded as a subspace of
8 @11 8*. Let

yp: 8 @1 8* - Cv(G)

be the mapping defined by y(f @#»)(x) =»(f,). Then
l¥(Pleo = lllls @250 forall pe S @z 8*.

The function identically equal to one is in the range of i, and since
every ¢ € 8 ®118,° is mapped onto a function in C%Q), this shows that
8 @11 8,¢ is not dense in § ®1 S*. By the Hahn—Banach Theorem there
exists a mon zero functional g in (8 ®718*)* which vanishes on
8 ®118,°. The corresponding operator 7, is in Homp, (S, §**)\
Hom,,(8,8): If T, e Hom,(8,8), there is a non zero 7 € (8 @1 5,°)*
such that
n(fQv) = v(T.f), fel, vel§,°.

But »(T',f) = u(f ®») which leads to a contradiction. This ends the proof.

The mapping y: 8 @71 8,¢ — C%G) defined in the above proof is an
injection. This follows if one proves that the range of the adjoint mapping
v*: M(G) ~ (S @1 8%,

is w*-dense in (S ® 1 8,¢)*. But p* is just the natural injection of M (@)
into Homy,(S,8) composed with the isometrical isomorphism from
Homy,(S,8) onto (S @1 8,¢)*. Let T be a multiplier on § and define
T,e Homy,(8,8) by

T.f=Th,*f) =T(h,) *f
where {h,) is a bounded approximate identity for L!(Q) such that
h,€8. Then puggye Rangey* and uy — pp in the w*-topology: For

2. [i @ e8 @8 il < oo,

bra(2efs ®v:)
= D v(T(h,) * f3)
= 27Tk, * f)))
>, 24 v(Tf)
= up(3;f;®v;) by dominated convergence .

we have:
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Thus, if 8 has property P, then (8,8) can be identified with the dual
space of a Banach space of continuous functions vanishing at infinity.

3. The WP-algebras.

This section is devoted to a class of Banach spaces which at least from
the Segal algebra point of view doesn’t seem to have attained previous
notice. Among their interesting properties we mention that they con-
stitute examples of Segal algebras on non compact groups where the
multipliers strictly contain the measures. As far as we know, this is
contrary to all previously known Segal algebras on non compact groups.
Although similar algebras can be defined on fairly general groups, we
avoid unnecessary technicalities by restricting ourselves to the case
where @ is equal to R?, n = 1. We fix some notations. The letters x,y,. . .
will denote points in R® with coordinates {x,,...,%,}, {¥1,.. -, ¥n}s- .- -

2] = (24 ... +2,2)t and xy =2y +...+2,9,.

Z" is the subgroup of R™ consisting of points with integer coordinates.
If A is a set in R?, b e R, and = € R*, then

b4 = {ba;ac A} and A, = {x+a;acd}.

@ will always denote the cube {x; — } < x; < }}. x, will denote the character-
istic function of 4. For simplicity, we shall write y; instead of y,,. The
n-dimensional torus, T*, is identified with R*/2rZ™. We also follow the
usual convention and write I instead of L?(Z") and ¢ instead of C°(Z").
Sums without limits will always be over Z*. The “winding” operator
T: LY(R™) -~ LY(Tn) is defined by
Tf(.’l?) = zmeZ"f(w+2nm)’ reT".

See [10].

Drerinrrion 3.0. For 1 <p< oo, let
WP = {f e L"R"); Spmezn ltmfllp <20} -
W = {fe C%R"); Zpezn [tmfllo <0} -
) Any locally integrable function f such that 3|ly,fll, < oo is of course
BTblo 8S s = S Sl S 3 il <
To get a translation invariant norm, we define

”f”WI’ = ma’xteQ 2 "xmft"p’ 1< P <o,
and similarly for W.
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When n=1, W is the Banach algebra of Wiener used in the proof of
his Tauberian theorem [3].

If p < oo, there is a natural isomorphism of W? onto I*(L?(Q)), that is,
the space of all absolutely convergent L?(Q)-valued series on Z», In
fact, define 7: W7 — I} L?(Q)) by

f)(m)(x) = f(x—m), =ze@.
Then
(3.1) fIl = 3 f (m)ligagy = 2 Imfllp = Ifllwe < 27IIf)] -

It is well known that the spaces I}(L?(Q)) are complete, and consequently,
so are the WP-spaces.

ProrosrrioN 3.1. The Banach spaces WP, 1 <p< oo, and W are Segal
algebras.

Proor. For W, we refer to [3], so let p<oo.

As we already have observed, ||f||z1g =|fllwe. The norm is translation
invariant by definition and continuous functions with compact supports
are easily seen to be dense in W?. Hence a simple argument shows that
the translation is continuous, that is, ||f,—flly» > 0 for  — 0. Thus,
if f and g are in W?, then f * g exists as the Bochner integral

§rn f(t) g, dt

If > glliwe = Ifllze - Igllwe = Ifllwoligliws -
This completes the proof.

and

Banach spaces similar to the W?-algebras are mentioned in a paper
of R. E. Edwards [2].
We observe the continuous inclusions

W& Werd Weed LY(R") when l<py<p <oo.

Moreover, W?<LY{R*)nL?(R*). When 1<p<oo, the Wr-algebras are
dual spaces. Let (L%,,)y, 1 <g<oo, be the set of all locally g-integrable
functions such that for each &> 0, there exists a compact set K in R"
such that

llxeflly <& forall t¢ K.

By a similar argument as above, (L%,,), equipped with the norm
IFll = supyllxfllg
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is isomorphic to ¢°(L(Q)), the Banach space of all L¢(@Q)-valued functions
on Z™ vanishing at infinity. Now, the dual space of ¢°(L%(Q)) is isometric-
ally isomorphic to I}L?P(Q)) where 1/p+1/g=1. Carrying this pairing
back to ((L9)e, WP?) we get:

ProrosITION 3.2, Let 1<p<oo, 1/g+1/p=1. Then the dual space of
(L%o0)o 8 tsomorphic to WP, and a functional p in (L,.),* 18 canonically
represented by a function g in WP by the integral

u(f) = Sanf(t)g( —t)dt .

Similarly, (W?)* is isomorphic to (L%,.)., that is, the space of all
locally g-integrable functions such that
sup;[lxflly < oo

The dual space of W has been constructed several places. One easily
verifies that W* is isomorphic to the space of Radon measures u such
that

sup|lxpl < oo

Reiter [10, p. 62] has shown that if S is a Segal algebra on a locally com-
pact Abelian group G containing a closed subgroup H, then the range of
the winding-operator 7': LY@) — LY(G/H) restricted to S is a Segal alge-
bra under the quotient norm. That is, T'(8)=range (T'|5) is a Segal alge-
bra on G/H with the norm

TSl gy = inng-Tf”g”S .

Lemma 3.3. There exists a function j in C°(R™) such that

Smeznjl@+2mwm) = 1.
Proor. See e.g. [13, Lemma 3.12 p. 265].

ProrosrrioN 3.4. For 1<p<oo, the Segal algebras T(W?) on T* are
tsomorphic to LP(T*). Furthermore, T(W) is isomorphic to C(T").

Proor. Suppose p < co. If f € WP, then obviously

S (Scznay,, |f(@)PdR)P < o0 ‘
This shows that the series 3,.f(x-+2wm) converges in L#(T"). Thus
T(Wr)< L»(T). Conversely, take any function g in LP(T") and place
it on the cube 2. This function is in ? and is mapped onto g by 7.
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Thus T maps WP onto L?(T?). In the case of the Wiener algebra, we
need the lemma : If g € C(T"), first extend g to a periodic function § on
R®. Then multiply by j. This produces a function in W and T'(j§)(z) =
g(x). Inclusions between Segal algebras are always continuous by a
simple application of the Closed Graph Theorem, and the proposition
follows.

If we now turn to the multipliers for the W»-algebras, we first observe
that the W»-algebras have property “P”, c.f. Definition 2.5. This follows
immediately from Proposition 3.2. If 1 < p < oo, then (WP?),¢ is isomorphic
to (L9,,)e since this is the closure of C%Q) in (L%,,),,. Furthermore,
We is isomorphie (LY,.), and W is the essential part of what we could
call W=,

By means of the results in section 2 we can now state abstract charac-
terizations of the multipliers of the W?-algebras:

PropoSsITION 3.5. For 1<p<oo, 1/p+1[g=1,

(Wp, Wz)) = Hole (Wp, Wp) = Hole((quoc)o’ (quoc)o)
= (Wp ®L1 (quoc)o)* .

ProprosrTioN 3.6. For the Wiener algebra, the following holds:

(W’ W) = Hole(Wa W) = Hole((Llloc)o’(Llloc)O)
= (W @11 (L'ioo)o)* -

(To get the isomorphisms in 3.5 and 3.6 isometric, we must assume
that (L9,,), is given the equivalent norm induced from (W?),c.)

We recall that a LP-multiplier is a bounded, translation invariant
operator on L?(@). The following basic facts about the LP-multipliers
on an infinite locally compact Abelian group are well known:

1) (L4,LY) = M(®)
9) (L4, IN ¢ (L7, I9) = (Lo, L & (L%, LA = P(@), 1fp+1fg=1, 1<p<2

(See [7]).

By the support of an LP-multiplier (or a W?-multiplier) we mean the
support of the corresponding pseudomeasure.

Every multiplier on W2 can be extended to a multiplier on L2, but
apart from the trivial cases, p=1,2, we do not know if (W», WP) is
contained in (L?, L?). However, we have the following elementary result:
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PrOPOSITION 3.7. Let ¢ be a pseudomeasure with support in 2NQ and let
1<p<oo. Then T defined by Tf=0 » f on L{(R"NA(R™) is extendable to
a multiplier on LP(R™) of and only if it is extendable to a multiplier on W2,
and in this case the following estimates hold:

2-"(2(N +1))="VP|T, , < | Tlews, woy S 4N + )™ T i, -
Proor. Let T e (L?,L?), fe WP and m € Z". Let g be the function
9(2) = f(@) 2+ 10)m(®) -
12T llp = xmT9l,

S 1T9lp = 1T, wl9ls = 1T, 2 1Xmdlls
= T, » 2iectr+n@m Xefllp -

Then:

If we now use (3.1) and sum over m, then

27T lwe = Zom XTSI < 1T N, o 2(V + 1)) f oo -
Conversely, suppose T € (W», W») and let fe W?. (It is of course enough
to establish the L?-inequality for functions in W?). Set f=3, x.f=
Yufm. Then Tf=%, Tf,..
Now Tf,(t)=0if |t;—m;|>N+1,i=1,...,n Thus

12 Tfa® < (X |Tfn@))V7(2N +2)™ .

17f1l,? = 2 Tfullp?
= (rel2 Tfm(®)Pdt
(2N +1))m2/2 §pn 3 [ TS (t)IPAE
= (2N +1))2/2 3 T fllp?
(2N + D)2 3 TS llpe
(2(N + 1))/2 T |Pp, woy(2™)P 2om 1 mllp?
272(2(N + 1))"2/4||T([Ep, wayllfllp? -

Taking p-roots, we get the left estimate.

Hence

IA

A 1A

]

CoROLLARY 3.8. When l1<p<oo, WP has multipliers which are not
measures.

Proor. It suffices to take a singular integral of Calderén-Zygmund
type chopped off at || = 1. If n = 1, take for example the truncated Hilbert

t .
ransform : Tf = P.o. (et y-q,1) +f.
See [13].
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The next theorem exhibits a multiplier on the Wiener algebra which is
not a measure. For simplicity we carry out the argument for W(R).

THEOREM 3.9. (W, W) is strictly greater than the measures.

Proor. Let g in L®(R)nL*R) be the function defined by
g(x) = {O if 2<8x

n-1.2-nginz  if Iy << 2mtl-27, 9=2,8,....

g is not integrable and hence does not represent a bounded measure.
Nevertheless, we shall show that there exists a constant C such that

(3.2) lg * Al = Clihllo

for all A € L™ with support in [0, 2x]. This will prove the theorem. Indeed,
the inequality (3.2) will hold with the same constant also if 4 is supported
in [2nk,2n(k+1)] for some k € Z. Further, if fe W, there is a constant
C,, independent of f, such that

Dkez SUP2k<t<2a0o4 1y ()] = Collf
So, if fe W, then
If * 9l = 12k Kiznt, 2ate+nf) * 9l
= >k Wttonk, ente+0if * 9l

< O 25 tizak, 2ne+0if lloo
< O-Cillfllw -

We return to the proof of the inequality (3.2).
Let h € L*(R), supp (®) € [0,2x].

oo max (8x, )

(h * g)(x) = Sg(t)h(x—t)dt - S gtz —t)dt .
8a max (8=, &~ 2n)
Thus,
=0 if x<8xn,
ho* g(x)l (2 @n/n2™)|bll,) if 2r2r<z<(2"+1)27,
= (hm)/n2r)einz  if (2P +1)2mSw<2mHl-2m .
This gives us:
=0 if k4
BUDelank, anti+1 |4 * y(x)l{ < @an2)|bl, i k=27 n=23,...
= [h(n)|/n2" if k=2n41,...,2041—1,

n=2,3,...
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Hence:

oo

b * gl < Cy 3 SUDsetank, zak+an % * 9(2)]

k=—-0c0

2 2 2 ) .
0 (3 e+ 3 T2 @)

n
n=2’”’2 n=2

IA

IA

s (IAlla+ in‘llﬁ(n)l)

oo oo <}
<0, (uhnm+ ( 3 n zzlﬁ(nnz) )
< Oy [hllo+ bl
< Ol -

(Here we have used the fact that since supp(h)€[0,2xn], we have
[A]ly2 = (27)~1 3, |k(n)|2). This finishes the proof of the theorem.

Our next proposition is an easy consequence of the Banach space valued
Riesz—Thorin theorem:

Let T defined on a suitable class of test functions be extendable to a
bounded linear operator simultaneously on IP(L"(Q)) and IP(L'(Q)),
1< o, 01,7911 <00. Then T is (extendable to) a bounded operator on
IP3(L(Q)) where
1 1-6 6 1 1-6 0

Pa Po P17 o
The statement is also true for p,= oo if we replace I°(L™(Q)) by c*(L"(Q)).

, O0<fO<l.
1

For a proof, see e.g. [9], Theorem 5.1.1 and 5.1.2.

ProrosrTION 3.10. Suppose that 1<p<oco and that T is a multiplier
both on WP and W4 where 1/p+1/g=1. Then T € (L?,L?) (= (L9, L9)).

Proor. Since 7T is bounded on W4, T* is bounded on (L?,,), which is
isomorphic to c(LP(Q)) (Proposition 3.2). From the pairing defined in
Proposition 3.2 it is easy to see that 7' and T'* coincide on functions in
LY{R™)nA(R®). We now apply the Riesz-Thorin theorem with p,=1,
Py=0c0, ro=r,=p. Then, choosing @ such that p,=p, we obtain that T
is bounded on 17(L?(Q)) which is isomorphic to L?(R").
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The spaces IP(LP%(@Q)) can of course in a natural way be regarded as
generalizations of the W7-spaces and inclusion results for the multipliers
can be obtained by interpolation. For example, if 1<p<2 and 7' is a
multiplier of W7 and I(L?(Q)), then T is in (L?(R®),L?(R")). However,
no simple characterization of the multipliers of I?(L?(Q)) similar to the
ordinary L2-result seems to be available unless p=2.

Our last theorem is a consequence of an extension theorem for L7-
multipliers due to Jodeit [5].

TeeorEM 3.11. For 1<p< oo, there is a homomorphism of (W2, Wr)
onto (LP(T®), LP(T")) which maps U in (WP, WP), represented by ¢ € L”(R”),
onto the LP(Tr)-multiplier represented by the function w, w(m)=p(m).
(Recall that @ is continuous.)

Proor. From Proposition 3.4 it is easy to see that (T(W»),T(W?)) is
isomorphic to (L#(T*),L?(T")). Let ¢ e L*(Rm) represent the W»-multi-
plier U and let U be the operator defined by

(Og)~(m) = p(m)j(m), meZr.
For a g in T(W?) there is an f in W? such that

g = Tf and "f"WP = ”g”T(l?P'?)"I'8 *

(Tg)"(m) = (T(Uf))"(m)
= (2x)=(Uf)" (m)

Now,

which shows that Ug e T(W?) for all g in T'(W?). Moreover,

109llraws, = ITTS)llzaws
= |Ufllwe
= 1UIIf llwe
= [1UIdlgll+e) -

Thus, U is in (T(W?),T(W?)) and ||U|| < ||U||. The function in I* represent-
ing U is just y. U is also in (L?(T*), L?(T*)) and it remains to prove that
every L?(T")-multiplier can be obtained in this way.

This follows from a result of M. Jodeit [5] who proves that every
Lr-multiplier on T* can be extended to a multiplier on L?(R®) with
compact support. (Actually, he proves that the extension is the limit
in the strong operator topology of multipliers with supports in the
closure of 27Q. This clearly implies that the extension also has support
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in the closure of 2zQ). See [5 p. 221-222]). The theorem now follows from
Proposition 3.4.

Remark. The first part of the above proof also works for the Wiener
algebra W (and even for a general Segal algebra). This shows that the
restriction to Z” of a ¢ in L“(ﬁ”) representing a multiplier of W is a
Fourier-Stieltjes transform. Since a bounded measure x on T* can be
extended to a bounded measure & on R” such that

A
'~

fm) = (2m)"(m) ,

Theorem 3.11 is true for W as well if we replace (L?(T"),L?(T*)) by
(e, o).

4. Generalizations.

Segal algebras similar to the W®-algebras can be defined on more
general locally compact Abelian groups. Let @ be a non discrete locally
compact Abelian group containing a discrete subgroup A such that G/4
is compact. Since the quotient mapping n: & — G/A is open, there exists
a compact set K <@ with nonvoid interior such that n(K)=G/A. The
family {K,},., is a locally finite covering of G since every compact set
contains only finitely many elements from 4. We now define W? to be
the set of functions f such that

supIeK EZEA(SKA !f‘(x)lpdx)llp °

Changing if necessary to an equivalent norm, it is easily seen that W?
can be made into a Segal algebra, moreover, arguing as in Proposition
3.7, (W», W) will contain every L?(G)-multiplier with compact support.
We then apply the following proposition and conclude that when
l<p<oo, (WP, WP) is strictly greater than the measures.

ProposrrioN 4.1. Let G be a non discrete, non compact locally compact
Abelian group and let 1<p<oo. Then there exist compactly supported
L»(@)-multipliers which are true pseudomeasures (i.e. not represented by
measures.).

ProoF. The proof is based on the following extension theorem due to
Saeki [12]:

Let G be a locally compact Abelian group containing a closed sub-
group H. Then a L#(H)-multiplier represented by the pseudomeasure
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o€ P(H) can be extended to a LP(G)-multiplier represented by the
pseudomeasure u € P() defined by

i) = 6()

where ¢ is the coset of & in G/H* and where G/H* is identified by H.

The general structure theorem asserts that @ is topologically isomor-
phic to R” x G where n = 0 and G, contains an open compact subgroup H.
In our case, either n>0 or H is infinite. Suppose n>0. Let
o € (L?(R*), L?(R")) be a true pseudomeasure with compact support (see
the proof of Corollary 3.8). Since R” can be identified with R™x {0g,},
0 ® d{og,) is & LP(R™ x {05, })-multiplier as well.

The extension of ¢ ® 0{0g,} 18 0 ® Og, Where 8, is the Dirac measure
on G,. This pseudomeasure has obviously compact support and applying
0 ® dg, to functions of the form fi(x)fs(y), x € R*, y € Gy, we see that
0 ® dg, is a true pseudomeasure. If n=0, let first ¢ be a LP(H)-multiplier
which is a true pseudomeasure. Such multipliers exist since H is infinite.
Then extend ¢ be a LP(Q)-multiplier x as in Saeki’s theorem. The
extension has still support in H, i.e. compact support. We observe that
H! (the annihilator of H in @) is compact, and if fe A(H), then the
natural extension f of f to G is in A(G):

I llae = &l (©)1dé _
Soims (Sma (€ +B)|dh)dé
= m(H*) {51 1] (£)|dé

= m(HY)|f sz -

Moreover, (f,u)=(f,0). If now {f,} < A(H) is a uniformly convergent net
such that

lima(f »? 0) = o0 b
then also { f“} -converges uniformly (to a function in C%@)), but
lim, (fo,p) = oo

This proves that u is a true pseudomeasure.
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