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ON THE SPECTRUM OF A ONE-PARAMETER
STRONGLY CONTINUOUS REPRESENTATION

DAVID E. EVANS

Let «; be a bounded strongly continuous one-parameter group on a
Banach space X, with infinitesimal generator ¢Z. If spa denotes the
spectrum introduced by Arveson [1] of the representation «, we show
that spa =0Z. This generalises Olesen’s result [3, 2.5] for norm continu-
ous one-parameter groups of isometries.

We recall [1] that if fe LY(R),

Az = (xx)f()dt zeX,

defines a bounded linear operator 4 on X. Thus we can lift x to a rep-
resentation x, of LY(R). The spectrum of «, written spx, is defined as
the hull of the ideal kernel (x,).

The following proposition and the usual characterisation of spo (e.g.
[4, 2.4.1]) prove our claim that spa=0¢Z. If I is a subset of R, we will
denote by L., the set of f in L'(R) such that f has support in 1.

ProPOSITION. Let I be a compact interval in R. Then
i) I<o(Z) tmplies that =, (f)=0 for all fe LA
ii) #,(f)=0 for all f € L implies that I°< o(Z).
Proor. The proof is inspired by that of [2, Lemma 5.5].
i) Take fe L*. Then
f@t) = {*2e-af(a)da a.e.inR.
For 8> 0, define
[5H(t) = {*2 f(a) exp(—iat—dt)da for t>0
o) = {2 f(a) exp(—iat+68t)da for £<0.

Then
fot@®)=f(t) = f(t)(e*~1) for t>0,
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and
Jom(®)=F(t) = f(t)(et*—1) for t<0.

Hence by dominated convergence, there exists ,> 0 such that
§ 1f+ () —f @) de, § o lfs=(t) —f ()| dE < ¢/2 for 0<d6<4,.
Since [|o|| < M|[z|| for some M < oo, all ¢ € R, and
() = §Ef o) di+ o f Oo(@)dt Vo e X
we get for 0<d <4, that

llea ()|
< Mzlle + |I§3 §%0 () f (@) exp (—iat — ot)dadt +
+ §% 0§ o s(@) f (@) exp (—iat + 6t) dadt]]
= Malle + [|{%f(a) (P exp(— iat—ot)o(x)dtda +
+ (. fla) §° o exXp (—iat + 8t)oy(x) dt dal|
= M|zlle + [§ f(@)[R(a—148,Z)x — R(a+1i,2Z)x]da .

The integral tends to zero as 8 0, since f has compact support in I and
Ico(Z). Hence m,(f)=0.

(ii) Suppose x,(f)=0 Vfe L.

We restrict ourselves to fe &(R), such that f has support in I. Then
with the same notation, for 6> 0

§ ISt (0) —f () dt = §21f (0] |e=*—1]|d¢
§C (L+3)|f (0] le~*—1|/(12+1)d¢
e\ If(B)2(1+12)2dt .

IA

for suitably small §, independently of f.
Then looking at the previous manipulations we see

I§:[B(a—48,Z) — R(a+id,Z)] x f(a)da| < |flel|M ,

where |+| is a continuous seminorm on S(R)".
We now apply an edge of the wedge theorem [5, Theorem 2.16] and
deduce that R(4,Z) is analytic for 1 € I°. Hence I°<oZ.
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