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WARD’S STAUDT-CLAUSEN PROBLEM

A. F. HORADAM and A. G. SHANNON

1. Introduction.

Morgan Ward [10] once posed the problem whether a suitable definition for
Bernoulli numbers could be framed so that a generalized Staudt—Clausen
theorem existed for them within the framework of Jackson’s calculus [6].

Ward himself generalized Jackson’s calculus of sequences and it is in terms
of the more general Ward-Jackson calculus that we offer a solution to Ward’s
problem. We define our Bernoulli numbers in equation (3.1) and we enunciate
types of Staudt—Clausen theorems for them in sections 5 and 7 by suitable
adaptations of methods of Carlitz [1] and Rado [9].

Another approach which provides a unique and generalized form of von
Staudt’s theorem may be found in Kazandzidis [7].

Gould [2] elegantly extended the work of Ward, whose generalized
coefficients were rediscoveries of work of Fontené; (see Gould). Following
Gould we define Fontené-~Ward binomial coefficients by

nl o u!
k{  wu,_y!

where {u,} is an arbitrary sequence of real or complex numbers such that u,+0
for n>1, uy=0, u;=1, and u,'=uu,_, ... u; with yp!=1.
When {u,} ={n}, the non-negative integers, we get

b - ()

the ordinary binomial coefficient. When {u,}={q,}, the Fermatian numbers
(Dickson [2]), defined by

g, = l+q+...+q""  (n>0)
9 =0,
where g may be indeterminate, g4, =1, and we get
nl _|n
ki k)’
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the well-known g-binomial coeffi¢ient. (Note that I,=n.)
Another example is given by the fundamental linear recursive sequence of
order r, {u®}, defined by

u’ =0 (n=0)

X (=P (n22)

j=1

(in which the P,; are arbitrary integers). This satisfies the criteria to be a {u,}
sequence. Note that when r=2 we get the Lucas fundamental numbers [8],
and the Fontené—Ward coefficients become the Fibonacci binomial coefficients
of Hoggatt [4].

2. Ward-Jackson calculus.

We now set out those salient features of the Ward—Jackson calculus of
sequences which we shall need. Jackson developed similar results for g, and
Ward extended Jackson’s work for the more general u,. Throughout the rest of
this paper we shall consider {u,} to be a sequence of integers for n=0,1,.. .,
and later we shall impose further restrictions.

We define exponents by means of

u,!
X x4 ... +x ) = Y X X
Ss=n un. e u_“.
Note that when x; =x,=...=x,=1, we get
e = u,!
Zs=n Us* usk!

and when =1, k=2, we get
(1 +x)' = x;4%;,
so that |
Xy X+ .+ X +x)" = (X +X+ .. (e + X))

If F(x) denotes the formal power series

00

Fx) = ) cx",

n=0

we define F(x+ y) to mean the series



WARD’S STAUDT-CLAUSEN PROBLEM 241

00

S ooty =3 3 cn{;}x"""y'" ;

n=0 n=0 m=0
We next assume that the sequence {u,} is chosen in such a way that

00

Ex) = Y x"u,!

n=0

is convergent in the neighbourhood of x =0. It accordingly is an element of an
analytic function of x which Ward called the basic exponential. There exists
then a positive number ¢ such that the basic exponential series converges
absolutely within the circle |x|=¢. The basic exponential has the following
most important property for sufficiently small absolute values of its arguments
x.:

i

E(x;+x,+...+x) = E(x)E(x;)... E(x}) .

We also define an operator D, which transforms the power series F(x) into
00
D.F(x) = Y ucx""t,
n=1

with function of function rules
D.F™"(x) = u,F™ ' (x)D F(x)
and
D,yD)x = 1.
In particular then
Dx" = ux""1.

The operator D, is easily shown to be linear and distributive, and it converts a
polynomial of degree n in x into one of degree n—1. Associated with D, we
define an inverse operator I, in a form convenient for this paper:

f@©) = ILDf(x)lo -

When n4 —1,
Ix" = x"*'u,.,+C,

where C is independent of x.

3. Divisibility sequences.
A sequence of integers {u,}, n=1,2,. . ., is said to be a divisibility sequence if
u|u, whenever s|t. The properties of divisibility sequences have been
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examined by Ward [10] and others (mentioned by Williams [12]). For
example, the sequence of Fermatian numbers {q,} is a divisibility sequence-
since if s|t then g,|g, Another example of a divisibility sequence is the
sequence of Fibonacci numbers {F,} defined by the recurrence relation F,
=F,_,+F,_,, n>2, with initial terms F,=F,=1.

Specifically, Ward has proved two theorems related to what he calls
Properties A and B. A divisibility sequence is said to have property 4 provided
that:

A: if C=(a,b), then u = (u,,u,), for every pair of terms u,,u, of {u,}.
It is said to have property B if:

B: for every prime divisor p and every positive integer a, u,, =0 (mod p°)
when and only m=0 (mod z), where z is the rank of apparition of p* in {u,}.

The two theorems of Ward referred to above are:
THEOREM A: Property A and Property B are equivalent to one another.

THEOREM B: The binomial coefficients belonging to every divisibility sequence
having Property A or Property B are all integers.

We now define generalized Bernoulli numbers, B,, by

L = Y By,

(3.1) EO=1 ~ .%

where {u,} is a divisibility sequence with Property A. (This condition on the
{u,} will apply in the rest of this paper.)

4. Generalized Hurwitz series.

We now define some generalized Hurwitz series. Ordinary Hurwitz series
have the form Y% ; a,t"/n! where the a, are integers; the ordinary exponential
series is an example of a Hurwitz series. We shall call a series of the form

00

4.1 Y. a,t*/u,!

n=0

where the a, are arbitrary integers, a generalized Hurwitz series (GH-series).
The Cauchy product of (4.1) and another GH-series 33, b,t"/u,! is also a GH-
series .

(5, o
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since the {} are integral for divisibility sequences with Property A. (This is, of
course, a special use of the term “product” and is discussed by Ward [10].)

GH-series are changed into other GH-series by the operators D, and I,:

00 00
Dx Z anxn/un! = Z an+1xn/un! s
n=0 n=0

00

Y ax"/u,

n=0

t oo}

Y a,_(t"u,! .

0 n=1

I

X

For a series without constant term

o0

Hl(t) = Z antn/un! ’
n=1

it follows from the function of a function rule that

D.H}(x) = uH} ' (x)DH,(x) .

Then
HA () = 1D, HE (W
= L HE (D,H, (o
and
S HAO - Ix%i‘!i’val(x)L .

So, by induction on k, we can prove that

1
4.2) ul Hi()

is a GH-series for all k=1.
It is important to note that by the statement

00

Y a,tfu,! = f b,t"/u,! (mod m)
n=0

n=0
we mean that the system of congruences
a, = b, (modm) n=0,1,...,

is satisfied. This is equivalent to the assertion

i a,t"u,! = i b,t"fu,! + mH(t)
n=0

n=0
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where H (t) is some GH-series. Thus the result concerning (4.2) can be stated in
the form

4.3) H%(¢) = 0 (modu,))
provided H,(0)=0.

Accordingly, we now define the GH-series

4.4) f@ = Z t"/u,!
so that

f(®) = E@®—-1 with f(0) =0.
If we consider the formal inverse function f ~!(t), then

E(f7'@) = 1+f(f71(®)
1+¢;

SO

I

3 (=1r O,

5. Staudt-Clausen Theorem.

LEMMA.
fFi) = - i "~ Y/y, ! (modp) for prime p .
n=1
PROOF.
f@® = E(@®)-1
Pt p—1 .
=3 (—l)f{ ; }E((p—f—l)t)

i

p- p—1
(=1F~ +Z( 1)‘{ }E((P j=1))

=1+ Z (- 1)’{ }E(p—j—l)t) for p>2.

j=0

- - P2y -1 P“l .
Drfri = ¥ (=1upZi, j E((p—j-1))

j=0
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1]

P=2 {p—1
> IK_I)J{ i }E((P—f—l)l) (mod p)
j=o

—14fP"1(t) (modp)

245

since u2~}_; =1 (modp), j=0,1,...,p—2 (from Fermat’s theorem), (u;,p)=1.

p—ji—-1=

A solution of this differential congruence is given by

00

frrig = Y Yy, ! (modp).

n=1

This can be verified as follows:

o0 00
-1 -1 — -1 -1
D? (‘ 2 e )/“r«p—l)!) = =) TV Ve !

n=1

which is what we seek. When p=

2,

n=1

00
= =2 """V, 4!
n=0

00
-1 +(~ Y Oy
n

=1

00

77U =0 = % ",

n=1

—f t"/u,!  (mod2).
n=1

We now introduce the arithmetical function d(m,s) defined by

o(m,s) =

S B.f (0" u,
n=0

1 if m|s,

{0 if m,{’s.

t

S (— 1y (0,
n=1

3 (<1 Oty

).

Since the coefficients of f"(t) are multiples of u,! from result (4.3), if (u, 4, u,,
=1, then u,,, divides u,! divides the coefficients of f"(¢). Let H(t) be a GH-

series. We then get

!

.

)
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THEOREM 1.
[o.¢] tll o0
Zo B,.f(t);—, = Ht)+ ), (1-06(u,t5.,")
n= n* n=1
in which
= =Y " Y, ! (modp).
n=1

That the theorem is a generalization of the ordinary Staudt-Clausen
theorem can be seen if we let {u,} ={n}: then since

fo Bytnt = HO+Y (—f(0F~Y/p
n= »

and
Fri) = = 3 0 Ynp—1)! (modp),
n=1
we get

(=1y (modp)

]

PBu-1)
which is a form of the ordinary Staudt—Clausen theorem. The generalization

follows since (n, (n— 1)!)=0 for all ordinary composite n>4, and é(p, (p— 1))
=1 for all ordinary primes p.

6. Examples. )

We shall illustrate the result for the Fibonacci numbers.
We set B,=1 and B,,.; =0, n21, as with ordinary Bernoulli numbers and
we establish that

(6.1) B,= 3 {,’:}Bk

k=0
Proor. Since

EME(—t) = E(t—t) = E0) =1,

I

we have that
t(1-E@) = (-)(E@®-1)
and

t(1 —E(@) = tE@)(E(—1t)—1)
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so that
tE@)) (=1
E()—1  E(-1)—1
= ¥ B0,
n=0
But B
tE(t) i .
EO—1 — E@®) ngo B,t"/u,,!
= oﬁ t"/u,! of: B,t"/u,!
m=0 n=0
= i i {n}Bn-'kt"/un!
n=0 k=0 k
and so

since B,,,,;=0 for n>1. Thus

When {u,}={n}, these give the known results for the ordinary Bernoulli

numbers.
Consider {u,}={F,}:

B, = -1, B, =1-% B, =1-4-3(1-9).
5(F2aF1!) =1, 5(F3an!) =0, 5(F5,F4!) =0,
F3B, = —1 (modF,); F;B, = —1 (modF;); FsB, = —1 (modFy).

7. Generalized Euler—Maclaurin Formula.

Another approach can be made using a generalization of the Euler-
Maclaurin sum which is an important use of the ordinary Bernoulli numbers.

The generalization in question is

n—1 k nk+1—j k
R

j=1 j=0 Uk+1-5 U
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PRrROOF.

I
<
%
™
DM
~

n—1
w!x Y E(jx)
j=0

and the coefficient of x**! is 3724 /* on the right hand side;

n—1
w!x E(jx) = u! —— (E(nx)—1
00 xj 00 . xi+1
= y! B,— nitt
. jgo j“j! .';o Uisq!
= f: i n' Iyl Bt

i=0 j=o U '(“. ,+1)'
and the coefficients of x**! is

k nk—j+1 k
) 0B
j=0 Uk—j+1 (J
as required.

The proof of the next result parallels Rado [9]:

p—1
Z j* = —6(p—1,k) (modp).
j=1

Proor. If 6(p—1,k)=1, by Fermat’s theorem then
1 (modp).

n

So
p—1 (modp)

™
%
1]

]

—6(p—1,k) (modp).
If 6(p—1,k)=*1, and g is a primitive root of k, then

p—1 p-1

Y (&t = Y j* (modp)

i=1 j=1
or

p—1
(g-1) Y j*=0 (modp).

i=1

But g*% 1 (modp).
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THEOREM 2. For any prime p,

2n-1 p2n+1—j 2n
pBy, = —d(p—1,2n)— Y {j }B,. (mod p) .

=0 Uan+1-j

Proor. From the previous results in this section we have that

J

kopkti=i ()
Sp—1Lk)+ Y {,}Bi = 0 (modp)
=0

Upr1-5 U

or

2n—-1 p2n+1—j 2"
pBZn+5(p'—192n)+ Z { . }BJ =0 (modp)

ji=0 u2n+1-—j

since u, =1. This gives the required result.
When {u,} ={n}, this result becomes

pB,, = —d(p—1,2n) (mod p)

which is another form of the ordinary Staudt-Clausen theorem. As an
example, consider the Fibonacci numbers:

n=1 p=2 pB,,=2B,=1= —1 (mod2),
and
_6(1,2)420 1272‘: {}2,}3,- = —l—gBo+4B ,
= —1 (mod2);
n=2 p=2 pB,,=2B,= -3 = -1 (mod2);
and

3 2577 (4 32 16 8 2 4
- - = 12 3 2x3x i a2
o(1,4) j:[,o Fs-,-{'}B’ I-Z+3x3-5x3x5-2x5

= —1(mod2).
To specify the result any further, two conditions would be needed:
u, < 2!
which is satisfied by the Fibonacci numbers and ordinary integers; and
2B, = —1 (mod2)

which is obtained with the ordinary integers but perhaps not with any other
sequence.
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Thanks are due to Professor Richard Rado and Dr. David Daykin of
Reading University, England, for drawing our attention to some of the
references.
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