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STRONG LIMIT THEOREMS FOR SUPERCRITICAL
IMMIGRATION-BRANCHING PROCESSES

SOREN ASMUSSEN and HEINRICH HERING

0. Abstract.

Consider an increasing sequence of random times and a corresponding
sequence of random populations. Let these be the starting times and initial
values of otherwise equivalent stochastic branching processes. The resulting
superposition is an immigration-branching process. It is readily conjectured,
that if the branching process is supercritical and the immigration dominated in
some appropriate sense by the branching, the immigration-branching process,
averaged and normalized exactly as the branching process, converges almost
surely to a superposition of the limits of the composing branching processes.
We verify this conjecture, satisfactorily sharpening and generalizing a number
of results to be found in the literature. Our analysis shows that limit theorems
for processes with immigration follow more directly and easily from
corresponding results for processes without immigration, than is apparent
from the literature. As underlying branching processes we admit either a
general positively regular process in the sense of [1], or a Bellman—Harris
process. Our auxiliary material on the Bellman—Harris process also contains
improvements of results of [3] and [8].

1. Introduction.
Let X be an arbitrary set, X the symmetrized n-fold direct product of
X, 0 some extra point, and X® ={6}. Define

~ 00
Ri=@x» .
n=0
F4+§:= % ieX,9=0,

= (xl,...,x,,, yl,...,y,,); X = <x1""1xn>’ .}A] = <.)'l"'~’ym> EX:
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%[A] := 0; x=0,

Y o1,0x); X=Xy, %,0 eX,
v=1

X[¢] J E(x)X[dx] ,

X
for Ac X and every real valued function & on X.

Let 9 be a o-algebra on X and U the g-algebra induced on X by . Let
either T=N={0,1,2,...}, or T=R, =[0, 00[, and suppose to be given

(a) the immigration process {t,,J,, P}, where 0<t,T00 is a sequence of (not
necessarily finite) random times and {J,},cn( is @ random sequence in
(X, ), both defined on the same space with probability measure P,

(b) the Markov branching process {X,, P}, that is, an (X, ¥)- valued Markov
process with parameter set T and stationary transition probabilities
satisfying the branching condition as in [1].

Denote by {X, ,;t=1,} the branching process initiated at time t, by ¥, and set
N, = max{v: 1,=t}.

The immigration-branching process {2, P} is then given by

2: = Z ’%v,t '
vsN, =4 . . .
and the corresponding probability measure P, with expectation functional E,

defined on the appropriate product space. The formal construction is the same
as in [5] except for the trivial adaptation to the more general, not necessarily
Poissonian case considered here.

As branching processes we admit

(i) supercritical positively regular processes with a finite or infinite number of
types, T=N or T=R,,

(i) supercritical Bellman—Harris processes, identifying types with ages, X
=R,.

A common feature of such processes is the existence of a real number ¢>1, a
bounded function ¢ 20 on X, and a bounded measure ¢*[1,] on (X, A) such
that

W, := ¢ '%[e]l, 120

is a non-negative martingale and for all  in a suitable class of averaging
functions ‘

(LY lim ¢7'%[n] = *[(n]W, as.,

100
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where W, :=lim,_, W, is non-degenerate if and only if a certain moment
condition is satisfied.

It is our aim to prove corresponding results for immigration-branching
processes, where the branching dominates the immigration in the sense that
¢’ remains the proper normalizing factor for Z[-]. Setting

W, =0 W%, [o]; t21

v

W, o= lim W,
t— o0
W:=0 '%[e]l = ¥ o7 oW,,

vEN,
we want to show that W, :=lim,_, W, exists and is finite a.s., that

=) ¢ %W, as
=1

and that for a sufficiently large class of 5

lim ¢7'2[n] = @*[M]1 W, as..

t—o00
Some of our results follow immediately from the structure of {,} as a
superposition of branching processes, others rely on special properties of
the underlying branching model. The problem seems to be non-trivial only if
info =0, which is the case, for example, for a branching diffusion with
absorbing barriers, or some Bellman—Harris processes.

Obviously we cannot have W, <oo as. without conditions on the
immigration process. The approach to be found in the literature is the
assumption of some specific structure. (See however, K. B. Athreya, P. R.
Parthasaréthy and G. Sankaranarayanan, Supercritical age-dependent branch-
ing processes with immigration, J. Appl. Probability 11 (1974), 695-702). In case
of a Bellman—Harris branching part, which has been extensively studied,
usually only immigration with age zero is admitted, while {,} in some papers
is a Poisson process, in some a renewal process or even a summed ergodic
process slightly more general than a renewal process, [7]. General positively
regular processes have been treated with inhomogeneous Poisson immigration,
[5]. Finally, components of a decomposable branchmg process ([9]) may be
viewed as immigration-branching processes.

We shall not make any assumptions of this form and work instead with the
general conditions

(1.2) Y e vle]l < 0 as.,

v=1

(1.3) f e "h[1] <00 as..

v=1
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More explicit properties are needed only to verify these estimates. Since W,
is a submartingale conditioned upon I=0(1,,1,,. .., y1, J2,- - .) With

supE(W13) = ¥ o “hle] as.,
t =1

Doob’s condition is satisfied for almost all realizations of the immigration
process if and only if (1.2) holds. Hence (1.2) implies that W, exists and is finite
as.. In fact, we shall see that (1.2) is minimal for this result in a large class of
models. However, if inf ¢ =0, this being the only case in which (1.2) and (1.3)
differ, it is not difficult to see that (1.2) does not ensure the well-behaviour of
quantities like Z,[1], the total population size at time ¢. It is here, where (1.3)
comes in.,

We now outline the rest of the paper. In section 2 we give the preliminaries
on the underlying branching processes. In section 3 we study the structure of
{2,} as a superposition. The analysis solves the case inf ¢ >0 completely. The
additional results needed for the case inf ¢ =0 are then obtained in section for
positively regular processes and in section 5 for Bellman—Harris processes.

Throughout this paper c,c,c,,... denote positive real constants.

2. Facts on the underlying branching processes.

Let # be the Banach algebra of all bounded, A-measurable functions with
supremum-norm

€l = suplg(x)l,

xeX
and #, the non-negative cone in 4.

We call {%,, P} positively regular if it satisfies the following condition:

(M) The first moment semigroup {E<’%,[ -1}, . ; exists and can be represented in
the form

@210  EPX[n] = de*nlex)+Q°[n], xeX,teT. neA,

with g € J0,00[, ¢ € 8, and @* a non-negative bounded linear functional
on # such that

22 o*e] =1,
e*Q’[11 =0, QO[] =0,
10(°In]l £ ap*nle(x), xeX,ned,, >0,
Jor some a : T— [0,00[ satisfying ¢~'a¢, — 0, t — 00.

Clearly (M) implies that @* is a measure. For convenience, we take ¢*[1]=1.
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For a finite set of types our definition of positive regularity is the usual one,
in the infinite case its motivation derives from branching diffusions, [1].

In case T=R,, we shall need some additional structure in order to get
beyond the consideration of discrete skeletons:

(C) The set X is a separable metric space, W is the topological Borel c-algebra,
and {X,P*} is rightcontinuous.

As in [1], we assume supercriticality, that is, ¢ > 1. The significance of ¢ and
@* for the limit theory has been indicated in section 1. The following facts on
supercritical positively regular processes are quoted from [1]:

A necessary and sufficient condition for non-degeneracy of W,  is

(xlogx) Q*[E¢°W,logW,] < oo for some t>0.

If this condition is satisfied, E* W, = ¢(x), ¥ x € X, otherwise W, =0 a.s. [P*],
VxeX.

In the following, % will be a class of averaging functions n € # such that
(1.1) holds when 5 € %. If T=N, we can take # =2%. If T=R . and ¢ is lower
semi-continuous a.e. [@*], we can take % as the class of all functions of the
form @¢ with £ € # continuous a.e. [¢*].

To obtain a more satisfactory statement on % if T=R, and infp =0, we
need additional structure:

(C*) There exist random variables H' 20, t>0, such that

%[1] £ H', 0<s<t,  |ECH'|LL, t > 0.

This is automatic, e.g., for branching diffusions, see § of [1]. If (C*) is satisfied,
we can take % as the class of all £ € # which are continuous a.e. [@*]. This has
not been stated explicitly in [1], but it is the essence of the proof of Theorem 1”
of [1]. A proof can also be obtained by specializing the argument given below
in section 4 to processes without immigration.

Let us now turn to Bellman—Harris processes. The basic facts are to be
found, e.g., in [2] or [4].

Let F be the offspring distribution and G the lifetime distribution, which as
usual is assumed to be non-lattice with G(0)=0. Supercriticality now amounts
to

1<m=J xdF(x) < oo.
0

Standard renewal techniques, see, e.g., Lemma 1 of [3] or the proof of Lemma
7 of [8], lead to a representation of the first moment semigroup as that of (M)
with parameters ¢> 1, ¢, ¢* given by »
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"If e77dG(y) =

0

0™ *(1 = G(x))dx
o*[1 = dA
[ dx] ( ) J'oo "‘)’ l—G(y)dy
V(x) e dG ()
*0 = =yoaag” "™ T Ti—owm

More precisely, (2.1) holds for all  such that ¢~ *n(x) is directly Riemann
integrable, with (2.2) replaced by

23) 19¢°[nlll = o(eh -

In the standard terminology, A is the stable age distribution and V the
reproductive value.
It is well known that the condition for non-degeneracy of W, becomes

(xlogx) f xlogxdF(x) < co.
V]
As % we can take the set of all a.e. continuous ¢ € 4. With the assumption

that (xlog x) is satisfied, this has been proved in [3]. A proof without (xlog x)
can be obtained by adapting the proof of Theorem 1 of [1], using (2.3)
combined with

(2.9 M := supo 'x[1] < 00 as.
t

instead of (2.2). While (2.4) is not immediately available for all models covered
by [1], there exists a simple argument for Bellman-Harris processes due to
Kesten [10]:

Letne N,ngt<n+1. An individual alive at time ¢ was necessarily present
in the population and of age at most 1 at one of the times s=1,2,...,n,t.
Since

) =¢; V() 2 ¢, >0, 0=x=1,

there is a constant ¢, such that

2.5) %[1] = Ca{z ’Es[(Pl[o,u]'*‘fz[(Pl[o,1]]}, nstsn+l.

s=1

In particulér

x[1]

A

03{ PEAL! +ﬁt[¢]}

=1

A

ca{z 0 +Q}supW cy0' sup

and (%4) follows from W, <00 as..



SUPERCRITICAL IMMIGRATION-BRANCHING PROCESSES 333

However, just to eliminate (xlogx), we only have to show

(2.6) lim ¢7'%,[1] = 0 as. if j xlogxdF(x) = 00 .

t— 00 0

For N € N, t=N, we have from (2.5)

N [1]
x[1] £ %{Z Lol+ Y fcs[rp]+£,[<p]}-

s=1 s=N+1
Hence

limsupo™'x,[1] < cssup W,
t— 00 =N
with ¢, independent of N. If (x log x) is not satisfied, the expression on the right
tends to zero a.s. as N — oo, and (2.6) follows.
A similar idea occurs as part of the proof of the following lemma, to which
we return in section 5:

LemMma 1. For a supercritical Bellman—Harris process | E¢’M| <oo if and
only if (xlogx) holds. Otherwise E°M =00 for all x € X.

This fact, which is of interest in itself, was stated in [8] without proof and
under the assumption inf¢>0. For Galton-Watson processes it has been
known for some time, [9]. For an application different from the one in the
present paper see [8].

3. The immigration-branching process as a superposition.

In this section {%,, P*} may be any of the branching processes admitted in the
introduction.

Tueorem 1. If (1.2) is satisfied, then almost surely W, =lim, .., W, exists, is
finite, and equals

W:o = Z Q_rv VVV,OO .

v=1
Conversely, given (xlogx),
(3.1) lim W, = oo as. on I':= {Z Q—t"ﬁv[¢]=°°}
t—=00 v=1

if {%, P%} is (i) positively regular with a finite set of types, or (i) a Bellman-
Harris process.
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For the proof, we need the following lemma.

LEMMA 2. Let y,,7,,. .. be areal constants, y,|0, and U,,U,,. .. independent
non-negative random variables which are either

(a) identically distributed with finite mean, or
(b) uniformly bounded, 0S U, < c < o0.

Then

00

3.2) yU, < 00 as.
=1

v

if and only if

(3.3) Y »EU, < o0,
=1

v

P( yvUv=oo) =1.
v=1

Proor. By the zero-one law it suffices to prove the equivalence of (3.2) and
(3.3). Clearly (3.3) implies (3.2), and by Kolmogorov’s three series criterion it is
necessary for (3.2) that

while otherwise

Y WEU <1y < 00

v=1,

To get (3.3), note that for v large
= EU,/2 for (a)

EU,1
PN EU,  for (b).
Proor oF THEOREM 1. That (1.2) implies the a.s. existence and finiteness of
W, has already been noticed in section 1.
Given (1.2), W* is finite a.s. For 0<s<t < oo write W, — W in the form

W—W% = Wo—W+ Y 0 ™(W,,— W, )+

tySS

+ Z Q—tvm,l—ZQ—’vmw_

s<tySt v2S

First let t — oo. Then almost surely the first and the second term tend to zero
and the third term to a finite limit U,20. Now let s —» oco. Since U, is
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nonincreasing in s, U=lim,_, U,=0 as. exists, and as
'S 00 s

EU|3)

IIA

liminfliminfE( Y e Wv,,13>

s 00 t—=o00 s<tySt

liminf ) ¢~ %) [@] =0 as.,
U=0 as.. The remaining term tends to zero as., since W* <oo as..

To verify (3.1), we may assume that j,[1]=1, v=1,2,.... This is simply a
matter of labelling. Obviously liminf,_, W,> W* as., and it suffices to show
that W* =00 as. on I.

For case (i), define

I, := {; g"vlmzm}:oo}, xeX.

Then '=U, I, and from part (a) of Lemma 2,

o
Z Q_t"l{);v=<x>}m’oo = 0 on Fx,

v=1

from which (3.1) follows. For case (ii) we may write W, ,=¢ *U,, where 4, is
the residual lifetime of vth individual immigrating and U,, U,,... satisfy the
assumptions of part (a) of Lemma 2 conditioned upon 3. From the definition of
V,o we have E(o~*|3)=csp,[@] as., and thus

00
g"vg“*v:oo} =TI as.,
=1

v=

{(We=o00} = {2 Q"'”Wv,oo=00} = {

where we have used part (a) of Lemma 2 (conditioning upon 3 and {4,}) for
the second equality and part (b) for the last (conditioning upon 3J).

v

Let us briefly examine the conditions (1.2) and (1.3) in some examples.

PROPOSITION. Let ,,7,,. .. be the epochs of a renewal process, and let the j,
be i.i.d. and independent of {t,}. Then for any n € %, the condition

(34) Elog* §,[n] < o0

is sufficient for
2 o "yIn] < oo as.
v=1

It is necessary if the mean interarrival time A is finite.
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ProOF. Let

B>1 K@y =P@m=y, A4, = {1}
Then

Y PA, =} f dK (y) = Y 15 dK(y) =J O(log™* y)dK (y)
v=1 v=1 ,J g¥ 0 v=1 Jo

and similarly

o)

S EFSiml, = ﬁ 0(1)dK (3} ,

v=1
Y E@79n,)* = j 0(1)dK(y) .
v=1 0

Thus it follows by Kolmogorov’s three series criterion, that (3.4) is equivalent
to

Y BNl < oo as..
v=1

Now condition upon {z,} and note that t,/v — 4, that is,
0™™ £ B forsome B,>1, v2v, if 0<i=Zoo,

e ™ = B, forsome B,>1, if 0O<i<oo.

In general, (1.2) holds at least if

(3.5) EY o o] < oo.

v=1

If {z,} is an inhomogeneous Poisson process with density p(t), and the y, are
independent conditioned upon {z,}, with the distribution of y, depending only
on 71,, then (3.5) reduces to

J " o P OMTeldt < oo,

0

where M‘t-] =E@,[-]|t,=t), cf. [5]. For a decomposable branching process
with two components (3.5) is automatic if g=g, > g, in the notation of [9].
We now return to the general theory. Assuming (1.2), define

q = {r] e : limo~'s2[n]=¢*[n] Woo a.s.}
. t=00

U, :=UNB,, - U, =UNRB, .
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Lemma 3. Forne .,

(3.6) liminfe™'2[n] 2 @*[(n]1W, as..
t—+ 00 ,

Furthermore

3.7 if €U, and Y€ U, then Eedl, .

Proor. Relation (3.6) is obvious from the structure of the process as a
superposition. To prove (3.7) suppose 0<9#<1. Then the way % has been
chosen in section 2 ensures that & £(1—9) € %. Thus

lim ¢~*£,[ 9] —lim inf o ~*,[9(1 — &)]
t—00 t—= 00

lim sup ¢ ™'z, [{ ]
t— 00

< {o*[HA-o* -} W,,
= o*[t1 W, as..
The inequality for liminf follows from (3.6) with n=¢9.

Specializing Theorem I~to positively regular processes with a finite number
of types, we are lead to the following important example.

CoOROLLARY. Let {X,P*} be positively regular with a finite set of types,
X={1,...,k}, and suppose (1.2) is satisfied. Then W,,=lim,_, ,, W, exists and is
finite a.s., and for any k-vector n

(3.8) lim o '8 [n] = @*[n1W, as..
t— 00
Conversely, if (xlogx) is satisfied, but (1.2) fails, then P(lim,_,, W,=00)>0.

(For (3.8), use (3.7) with £ =n/¢p, 3= ¢). This result is not only substantially
sharper and more general than those of [6], [11], its proof is also much
simpler. In fact, the case inf @ >0 is settled by (3.7) with =¢. If infp =0, it
remains essentially to prove 1 € %, since then (3.7) with $=1 applies.

4. Limit results for general positively regular processes with immigration.
It is assumed throughout this section that (M) is satisfied with ¢>1.

THEOREM 2. Suppose either (a) T=N, or (b) T=R, with (C) and (C*). If
(1.3) is satisfied, then 1 € 4 , and thus
lim o 3[n] = o*MI W, as.

t— 00

for n € # in casé (a) and for n € # continuous a.e. [p*] in case (b).

Math. Scand. 39 — 22
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LEMMA 4. Let T=N, or T=R,, and let 6,m e T\{0}. Let Y, ; ,; nd<1,<
(n+m)é; i=1,...,9,[1] be non-negative random variables with E(Y, ; ,|3)<
y<oo as.. Then (1.3) implies that

701
limo™ Y > Y., =0 as..

n=oo né<t,S(n+mp i=1

PRrOOF.

N 701
E<Q_"6 )IEED) Y,.,;,vlif)

né<t,S(n+mod =1

[l agk:

< ymg™ Y, o "H[1] < 00 as..
v=1
LemMAa 5. Let T=N, and let Y, ;; n=0,1,2,...; i=1,...,5,[1] be non-
negative random variables, independent conditioned upon §,=a(%,,; m<n), and
such that the distribution function K., of Y, ; depends only on the type x; of

particle i. Suppose

u():= _[o ydK ,(y) e % .

Then (1.3) implies that

z,[1]
limsupe™ ) Y,; < limsupg™"Z,[pu] as..
n— oo

n— o0 i=1

Proor. Write 2, =2} +Z**, where

N,-
2% .= Zl Row Z¥*:= Y .

v=1 Nn-1<vSNyp
By (M) and (1.3)
Ezxn] < cig"o*n] Vn 2 0.
Therefore the proof of Lemma 2 of [1] goes through verbatim to yield

. 1] (1]
limsupe™ Y Y,; = limsupo™" Y E(Y,:liy, 5|8
i=1 n—oo i=1

n—o00

< limsupo ™ "Z¥[u] £ limsupo™"Z,[u] as..
n-—*oo n—oo

Finally, by Lemma 4

(1]
limge™ Y Y,;,=0 as..

n- 00 i=1
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ProoF oF THEOREM 2. Appealing to (3.6) and (3.7) with % =1, it remains to
prove

limsupe™'2[1]1 £ W, as..
t—=00

First take T=N. Let m be fixed, Y, ; the number of descendants at time n+ m of
the ith particle alive at time n, and Y, ;, the number of descendants at time
n+m of the ith of the particles that immigrated at time ,, n<t,<n+m.
From (M),

ux) £ o™cto(x) with ¢f -1, m— oo,

so that u e %, by (3.7) with =g, {=p/p. Using Lemmata 4 and 5

4[1]
limsupg~®*mZ,, 1] < limsupe~"*™ ¥ Y, +
n=oo n— o0 i=1
J1]
+limsupo~®*™ Y Y Y.,
n-o00

n<tysn+m i=1

fIA

limsup @~ "*™Z,[u]

n-—00

=0 " MWy £ cn Wy as..

Now let m — oo.
In case (b), we first remark that for any 6>0 we can consider Z¥=2,; as
a discrete time immigration-branching process, with immigration times
= ([t,/0]+1)d and y¥=x, ... From (C*)

E(r1113) £ IECHp,[1]  as..

Therefore (1.3) holds with {t,,,} replaced by {t¥ j¥}. Defining H}; for
i=1,...,z,; according to (C*), we conclude from Lemma 5 and the ﬁrst half
of this proof that
Zl1]
limsupo'Z[1] < llmsupg"‘" Z H,

t—00 =1

IIA

lim sup ¢ ~"2,,[E¢’H?]

< |ECHY W, as..
Now let /0.

5. Limit theorems for Bellman-Harris processes with immigrat.ion.
In this last section {2,,15’2} is a supercritical Bellman-Harris process. We
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first state and prove the main result, assuming Lemma 1, and then prove
Lemma 1.

TueoRreM 3. If (1.3) is satisfied, and if either (xlog x) holds, or §,[1]1=7,[1,,],
v=1,2,... (that is, all particles immigrating are of age zero), then 1 € %, and
thus

lim ¢ ™*2[n] = o*[n] W,

t— 00

for all bounded a.e. continuous 1.

Proor. If 3,[1]1=§,[1;4], v=1,2,. .., the argument of section 2 shows that

limsupg~'Z[1] < cysup W,
t2N

t—oo

for any integer N. If (x log x) fails to hold, then by Theorem 1 the expression on
the right tends to zero a.s. as N — oo, and 1€ % ,.

Assuming that (xlogx) does hold and recalling (3.6), (3.7), it suffices to
prove .

(5.1 limsupp~*z[1] < W, as..
t—00

Setting
M, := supe™“"¥%, [1],
tty
Lemma 1 implies -
EM,|3) £ cgp,[1] as..
Hence, using (1.3),
e""M, < oo as..
v=1
Obviously
N =]
limsupe™'2[11 £ ¥ 0 "W, o+ Y ¢ M,
=00

v=1 v=N+1

for all N. Now let N — oo to obtain (5.1).

Proor oF LEMMA 1. Assume (xlogx) and define
y:= inf{p(x): 0sx<1} > 0,
xyi= sup P*(|Wo—32[e]l > 2[11y/2).
12N
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Fix N such that %y < 1. This is possible by the branching property and the law
of large number in the form of Lemma 1 of [8], the problem being the
uniformity with respect to the types. From (2.5), as in section 2,

(52) M < ¢ sllzlge"'i,[fplw, ul -
Define 4 by ¢?=N, and let
te:=inf{t=4: ¢ "% [olyp, 120y},
Saa:= 0, ; AStsty)

for « € R, with the usual convention for t,=oc0. If @(x)<c,, then
0 "% [oly, )] >acyo implies that %[1;5 ;]2 [%e]+1 and if £ is chosen such
that X[1]=2%[1;o, ;] =[] +1, it follows that

PO (Wo>ay/2| 0" % [@lio, 1] >0c10) Z PH@™ Weo>0ty/2)
> P(W,,>%[113/2) 2 PH( Wy —3[0]1> —$[11y/2) 2 1y,

PP (Wo>ay/2) Z EXP (W >ay/2, t,<00| §y,0)

(1 —xy) P (t, < 00)

I\

2 (1-xy)P® (fgga"ft[(pllo. ] ;av)

for a=1. Integration with respect to du yields

E@supo™'%[@li, 1)) £ cyy+¢EPW, < 00,
t24
and ||[E¢°M| < oo now follows from (5.2), as

E® sup o "% [l ]| <

0sts4

is immediate. For the converse, note that EM <oo implies the uniform
integrability of {W,} and thus (xlogXx).
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