# ELEMENTARY SPHERICAL FUNCTIONS ON SYMMETRIC SPACES

### LARS VRETARE

#### 1. Introduction.

One of the main results in this paper states that the elementary spherical functions on a symmetric space of compact type, with rank l, may be considered as orthogonal polynomials with respect to a positive weight function defined on a region in  $R^l$ . This is a generalization of the well-known rank one case in which the elementary spherical functions are Jacobi polynomials. Our result also settles the conjecture in [4] to the effect that the orthogonal polynomials of two variables considered there are elementary spherical functions on a symmetric space of rank 2.

Let  $\varphi_{\Lambda}$  be the elementary spherical function corresponding to the highest weight  $\Lambda$ . The second main result of this paper is a recurrence formula for  $\varphi_{\Lambda}$ , expressing the product  $\varphi_{\Lambda_1}\varphi_{\Lambda}$  ( $\Lambda_1$  fixed) as a linear combination of other  $\varphi_{\nu}$  in which the number of terms is independent of  $\Lambda$ . This is also a generalization of well-known facts about Jacobi polynomials and of the recurrence formulas proved in [5] in the case of two variables.

We also obtain recurrence formulas for elementary spherical functions on a symmetric space of non-compact type, by analytic continuation. Some of the coefficients are explicitly computed in terms of Harish-Chandras c-function.

## 2. Preliminaries and recurrence formulas in the compact case.

General references for this section are [1], [3], [7], [9] and [10]. Root systems are especially studied in [9], representations with weights in [10] and the elementary spherical functions on a compact Lie group in [1] and [7].

Let  $g_0$  be a noncompact semisimple Lie algebra over  $\mathbf{R}$ ,  $g_0 = \mathfrak{f}_0 + \mathfrak{p}_0$  a Cartan decomposition of  $g_0$  and  $u = \mathfrak{f}_0 + i\mathfrak{p}_0$  the corresponding compact real form of the complexification g of  $g_0$ . Denote by  $G_c$  a simply connected Lie group with Lie algebra g and by G, U and K the analytic subgroups of  $G_c$  generated by  $g_0$ , u and  $\mathfrak{f}_0$  respectively. Select a maximal abelian subspace  $\mathfrak{h}_{\mathfrak{p}_0}$  of  $\mathfrak{p}_0$  and a maximal abelian subalgebra  $\mathfrak{h}_0$  of  $g_0$  containing  $\mathfrak{h}_{\mathfrak{p}_0}$ . Then  $\mathfrak{h}_0 = \mathfrak{h}_{\mathfrak{t}_0} + \mathfrak{h}_{\mathfrak{p}_0}$  where  $\mathfrak{h}_{\mathfrak{t}_0} = \mathfrak{h}_0 \cap \mathfrak{f}_0$ . Also  $t = \mathfrak{h}_{\mathfrak{t}_0} + i\mathfrak{h}_{\mathfrak{p}_0}$  is maximal abelian in u. Complexify  $\mathfrak{h}_{\mathfrak{t}_0}$ ,  $\mathfrak{h}_{\mathfrak{p}_0}$ ,  $\mathfrak{f}_0$ ,  $\mathfrak{p}_0$ 

and  $\mathfrak{h}_0$  to  $\mathfrak{h}_t$ ,  $\mathfrak{h}_p$ ,  $\mathfrak{k}$ ,  $\mathfrak{p}$  and  $\mathfrak{h}$  respectively. Let  $\Delta$  ( $\Delta_0$ ) be the root system of the pair  $(\mathfrak{g},\mathfrak{h})$  ( $(\mathfrak{g}_0,\mathfrak{h}_{\mathfrak{p}_0})$ ). Introduce compatible orderings in the dual spaces of  $\mathfrak{h}_{\mathfrak{p}_0}$  and it and write  $\Delta^+$  ( $\Delta_0^+$ ) for the set of positive roots with respect to these orderings. By means of the Killing form  $\langle \cdot, \cdot \rangle$  we identify it with the set of linear forms  $\Delta$  on  $\mathfrak{h}$  which are real-valued on it. Let  $\sigma$  be the conjugation of  $\mathfrak{g}$  with respect to  $\mathfrak{g}_0$ . Then  $\widetilde{\Lambda} = \frac{1}{2}(\Lambda + \sigma \Lambda)$  is the restriction of  $\Lambda$  to  $\mathfrak{h}_{\mathfrak{p}_0}$ . Note also that  $\sigma$  is an involutory automorphism of it leaving the scalar product  $\langle \cdot, \cdot \rangle$  invariant. The fundamental system of roots for  $\Delta, \alpha_1, \ldots, \alpha_n$  may be denumerated in such a way that

$$\sigma\alpha_{i} = \begin{cases} \alpha_{i'} + \sum_{j=m+1}^{n} n_{j}^{i} \alpha_{j} & \text{if } 1 \leq i \leq m \\ -\alpha_{i} & \text{if } m+1 \leq i \leq n \end{cases}$$

where

$$i' = \begin{cases} i & \text{if } 1 \le i \le l_1 \\ i + l_2 & \text{if } l_1 + 1 \le i \le l_1 + l_2 = l \\ i - l_2 & \text{if } l_1 + l_2 + 1 \le i \le l_1 + 2l_2 = m \end{cases}$$

Moreover  $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_l$  is a fundamental system of roots for  $\Delta_0$ .

By our assumption G and U are subgroups of the simply connected group  $G_c$ . This permits us to identify the irreducible finite dimensional representations of  $G_c$  with those of G and G. The highest weights of these representations are precisely the dominant integral linear forms on G, that is, the linear forms G for which  $G \subset G$  is a non-negative integer for all  $G \subset G$ . The highest weights can also be characterized by means of the fundamental weights G, G is a non-negative integer for all G is a no

$$\frac{2\langle \pi_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_i \rangle} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Then  $\Lambda$  is a highest weight if and only if  $\Lambda = \sum_{i=1}^{n} m_i \pi_i$  with non-negative integers  $m_i$ .

An irreducible finite dimensional representation R is said to be of class one (with respect to K) if there is a vector in the representation space left fixed by all R(k),  $k \in K$ . For such representations we have the following characterization. A highest weight  $\Lambda$  belongs to a class one representation if and only if  $\tilde{\Lambda} = \Lambda$  and  $\langle \Lambda, \lambda \rangle / \langle \lambda, \lambda \rangle$  is a non-negative integer for all  $\lambda \in \Delta_0^+$ . (See [9, chapter 3.3]). To obtain a characterization in terms of the fundamental weights put

$$\mu_i = \begin{cases} \pi_i & \text{if } 1 \leq i \leq l_1 \text{ and } \sigma \alpha_i \neq \alpha_i \\ 2\pi_i & \text{if } 1 \leq i \leq l_1 \text{ and } \sigma \alpha_i = \alpha_i \\ \pi_i + \pi_i + l_2 & \text{if } l_1 + 1 \leq i \leq l_1 + l_2 = l \end{cases}$$

Theorem 2.1. A highest weight  $\Lambda$  belongs to a class one representation if and only if  $\Lambda = \sum_{i=1}^{l} m_i \mu_i$  with non-negative integers  $m_i$ .

This theorem is stated without proof in Sugiura [6]. A proof is however obtained from the next two lemmas concerning  $\mu_i$ .

LEMMA 2.2. Let  $\mu_i$ ,  $i=1 \dots l$  be defined as above. Then

1) 
$$\mu_{i} = \mu_{i}$$
  
2)  $\frac{\langle \mu_{i}, \tilde{\alpha}_{j} \rangle}{\langle \tilde{\alpha}_{j}, \tilde{\alpha}_{j} \rangle} = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \text{ and } 2\tilde{\alpha}_{j} \notin \Delta_{0} \\ 2 & \text{if } i = j \text{ and } 2\tilde{\alpha}_{j} \in \Delta_{0} \end{cases}$ 

PROOF. The first statement is equivalent to  $\sigma \pi_i = \pi_{i'}$   $1 \le i \le l_1 + 2l_2$ . To prove this we use the definition of  $\pi_{i'}$  and compute the numbers

$$x_{ij} = \frac{2\langle \sigma \pi_i, \alpha_j \rangle}{\langle \alpha_i, \alpha_j \rangle} \qquad 1 \leq i \leq l_1 + 2l_2, \ 1 \leq j \leq n \ .$$

Let us first note that  $\sigma \Delta = \Delta$  and that

$$\langle \pi_i, \sigma \alpha_j \rangle = \begin{cases} \langle \pi_i, \alpha_i \rangle & \text{if } j = i' \\ 0 & \text{if } j \neq i' \end{cases}$$

Thus on one hand

$$x_{ii'} = \frac{2\langle \pi_i, \sigma \alpha_{i'} \rangle}{\langle \sigma \alpha_{i'}, \sigma \alpha_{i'} \rangle}$$

that is, an integer and on the other

$$x_{ii'} = \frac{2\langle \pi_{i}, \sigma \alpha_{i'} \rangle}{\langle \alpha_{i'}, \alpha_{i'} \rangle} = \frac{2\langle \pi_{i}, \alpha_{i} \rangle}{\langle \alpha_{i'}, \alpha_{i'} \rangle} = \frac{\langle \alpha_{i}, \alpha_{i} \rangle}{\langle \alpha_{i'}, \alpha_{i'} \rangle}.$$

By interchanging the role of i and i' we find that this integer has to be 1. Moreover  $j \neq i'$  implies that

$$x_{ij} = \frac{2\langle \pi_i, \sigma \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle} = 0$$

and we conclude that  $\sigma \pi_i = \pi_{i'}$  as desired.

To prove the second statement put

$$y_{ij} = \frac{\langle \mu_i, \tilde{\alpha}_j \rangle}{\langle \tilde{\alpha}_i, \tilde{\alpha}_i \rangle} \quad 1 \leq i, \ j \leq l.$$

Clearly

$$\langle \tilde{\pi}_i, \tilde{\alpha}_i \rangle = \langle \tilde{\pi}_i, \alpha_i \rangle = \frac{1}{2} (\langle \pi_i, \alpha_i \rangle + \langle \pi_{i'}, \alpha_i \rangle)$$

whence  $y_{ij} = 0$  if  $j \neq i$ . The values of  $y_{ii}$  are obtained in the same way by use of the fact that for any  $\alpha \in \Delta$  holds

$$\langle \alpha, \alpha \rangle = n_{\alpha} \langle \tilde{\alpha}, \tilde{\alpha} \rangle$$

with

$$n_{\alpha} = \begin{cases} 1 & \text{if } \sigma\alpha = \alpha \\ 2 & \text{if } \sigma\alpha \neq \alpha \text{ and } 2\tilde{\alpha} \notin \Delta_{0} \\ 4 & \text{if } \sigma\alpha \neq \alpha \text{ and } 2\tilde{\alpha} \in \Delta_{0} \end{cases}$$

Let  $\Lambda$  be the highest weight of a class one representation. In view of the linear independence of the  $\mu_i$ 's we may write  $\Lambda = \sum_{i=1}^{l} c_i \mu_i$  with

$$c_{i} = \frac{\langle \Lambda, \tilde{\alpha}_{i} \rangle}{\langle \mu_{i} \tilde{\alpha}_{i} \rangle} = \begin{cases} \frac{\langle \Lambda, \tilde{\alpha}_{i} \rangle}{\langle \tilde{\alpha}_{i}, \tilde{\alpha}_{i} \rangle} & \text{if } 2\tilde{\alpha}_{i} \notin \Delta_{0} \\ \frac{\langle \Lambda, 2\tilde{\alpha}_{i} \rangle}{\langle 2\tilde{\alpha}_{i}, 2\tilde{\alpha}_{i} \rangle} & \text{if } 2\tilde{\alpha}_{i} \in \Delta_{0} \end{cases}$$

This proves the only if part of the theorem. The converse is an immediate consequence of

LEMMA 2.3. Each  $\mu_i$  belongs to a class one representation.

**PROOF.** We have to prove that  $\langle \hat{\mu_i}, \lambda \rangle / \langle \lambda, \lambda \rangle$  is a non-negative integer for all  $\lambda \in \Delta_0^+$ .

Let W be the Weyl group pf  $\Delta_0$ . Choose a  $S \in W$  and a simple root  $\tilde{\alpha}_j \in \Delta_0^+$  such that either  $\lambda = S\tilde{\alpha}_j$  or  $\lambda = 2S\tilde{\alpha}_j$ . In the latter case  $\frac{1}{2}\lambda = S\tilde{\alpha}_j$  is also a root, the restriction to  $\mathfrak{h}_{po}$  of some  $\beta \in \Delta^+$ . Since  $\tilde{\beta}$  as well as  $2\tilde{\beta}$  belongs to  $\Delta_0^+$  we know that  $\langle \beta, \beta \rangle = 4\langle \tilde{\beta}, \tilde{\beta} \rangle$ . Consequently

$$\frac{\langle \mu_{i}, \lambda \rangle}{\langle \lambda, \lambda \rangle} = \frac{1}{2} \frac{\langle \mu_{i}, \widetilde{\beta} \rangle}{\langle \widetilde{\beta}, \widetilde{\beta} \rangle} = \frac{2 \langle \mu_{i}, \beta \rangle}{\langle \beta, \beta \rangle}$$

which is a non-negative integer.

Assume now that  $\lambda = S\tilde{\alpha}_j$  and write  $S^{-1}$  as a product  $S_1 \dots S_p$  of Weyl reflections corresponding to the simple roots. Then

$$\mu_i - S^{-1}\mu_i = (\mu_i - S_1\mu_i) + S_1(\mu_i - S_2\mu_i) + \ldots + S_1 \ldots S_{p-1}(\mu_i - S_p\mu_i).$$

Each of the terms to the right is of the form  $(2\langle \mu_i, \tilde{\alpha}_k \rangle / \langle \tilde{\alpha}_k, \tilde{\alpha}_k \rangle) S'\tilde{\alpha}_k$  for some

 $S' \in W$  and some  $k \le l$ . But this is non-zero only if k = i so we get

$$\mu_i - S^{-1}\mu_i = 2 \frac{\langle \mu_i, \tilde{\alpha}_i \rangle}{\langle \tilde{\alpha}_i, \tilde{\alpha}_i \rangle} \sum_{S' \in W'} S' \tilde{\alpha}_i, \quad W' \subset W.$$

By use of this expression for  $S^{-1}\mu_i$  we obtain

$$\frac{\langle \mu_{i}, \lambda \rangle}{\langle \lambda, \lambda \rangle} = \frac{\langle S^{-1}\mu_{i}, \tilde{\alpha}_{j} \rangle}{\langle \tilde{\alpha}_{j}, \tilde{\alpha}_{j} \rangle} = \frac{\langle \mu_{i}, \tilde{\alpha}_{j} \rangle}{\langle \tilde{\alpha}_{j}, \tilde{\alpha}_{j} \rangle} - \frac{\langle \mu_{i}, \tilde{\alpha}_{i} \rangle}{\langle \tilde{\alpha}_{i}, \tilde{\alpha}_{i} \rangle} \sum_{S \in W'} \frac{2\langle S'\tilde{\alpha}_{i}, \tilde{\alpha}_{j} \rangle}{\langle \tilde{\alpha}_{i}, \tilde{\alpha}_{j} \rangle}$$

which obviously is an integer. This integer is of course non-negative since  $\lambda$  is a linear combination of the simple roots  $\tilde{\alpha}_1 \dots \tilde{\alpha}_l$  with non-negative coefficients.

Let  $R_{\Lambda}$  be a class one representation with highest weight  $\Lambda$ . Choose a unit vector e in the representation space  $V_{\Lambda}$  such that R(k)e=e for all  $k \in K$ . The elementary spherical function corresponding to  $\Lambda$  is defined by

$$\varphi_{\Lambda}(g) = (e \mid R_{\Lambda}(g)e) \quad g \in G_c$$

Here  $(\cdot|\cdot)$  denotes the scalar product in  $V_A$ . Let  $f_0, \ldots, f_q$  be an orthonormal basis of  $V_A$  such that  $f_i$  belongs to the weight  $\Lambda_i$ ,  $\Lambda_0 = \Lambda$ . Then

$$R_A(\exp H)f_i = e^{A_i(H)}f_i, \quad H \in \mathfrak{h}$$

and

$$\overline{\varphi_{\Lambda}}(\exp H) = \sum_{i=0}^{q} |(e \mid f_i)|^2 e^{\Lambda_i(H)}, \quad H \in \mathfrak{h}.$$

As we have seen the highest weight  $\Lambda$  is a linear combination of  $\mu_1, \ldots, \mu_l$  with integral coefficients. This is in general not true for the other weights  $\Lambda_i$  but we have the following result.

THEOREM 2.4. Suppose that

$$\overline{\varphi_{\Lambda}}(\exp H) = \sum_{i=0}^{q} c_i e^{\Lambda_i(H)}, \quad H \in \mathfrak{h}.$$

Then  $c_i \neq 0$  implies that  $\Lambda_i = \sum_{k=1}^l n_k \mu_k, n_k \in \mathbb{Z}$ .

PROOF. Trying to prove that  $\tilde{\Lambda}_i = \Lambda_i$  and that  $\langle \Lambda_i, \lambda \rangle / \langle \lambda, \lambda \rangle$  is an integer for all  $\lambda \in \Delta_0$  we follow the corresponding proof for the highest weight  $\Lambda$  in [9 p. 210].  $P = \int_K R_{\Lambda}(k) dk$  is a projection of  $V_{\Lambda}$  onto the one-dimensional subspace spanned by e. If  $Pf_i \neq 0$  the proof works and we make the desired conclusion about  $\Lambda_i$ . If however  $Pf_i = 0$  we find directly that

$$c_i = |(e | f_i)|^2 = |(e | Pf_i)|^2 = 0$$
.

A weight v for which  $e^v$  appears with non-zero coefficient in some  $\varphi_A$  will be called an appearing weight.

From now on we identify the two points  $(m_1, \ldots m_l) \in \mathbb{Z}^l$  and  $\sum_{i=1}^l m_i \mu_i \in \mathfrak{h}_{po}$ . We also introduce a partial ordering of  $\mathbb{Z}^l$  by putting

$$\Lambda_1 \leq \Lambda_2$$
 if  $\langle \Lambda_1, \mu_i \rangle \leq \langle \Lambda_2, \mu_i \rangle$ 

for all i=1...l. The set of points in  $Z^{l}$  for which all coordinates are non-negative will be denoted by  $Z_{+}^{l}$ .

Let us now collect some properties of this ordering of Z<sup>1</sup>.

LEMMA 2.5. i) Let  $\Lambda_i$  be the weights in theorem 2.4. Then  $\Lambda_i \leq \Lambda$ .

- ii)  $\{v \in \mathbb{Z}_+^l, v \leq \Lambda\}$  is a finite set for any  $\Lambda \in \mathbb{Z}_+^l$ .
- iii) For any  $v \in \mathbb{Z}^{r}$  there is a  $S \in W$  such that  $Sv \in \mathbb{Z}^{l}_{+}$ .
- iv)  $Z_{+}^{l}$  is the set of highest weights of class one.
- v)  $Z^{l}$  is the set of appearing weights.

Proof. i) Follows from the fact that

$$\Lambda_i = \Lambda - \alpha_1 - \alpha_2 \dots \alpha_k \in \Delta_0^+.$$

- ii) Obvious.
- iii) Consequence of general weight theory and the observation that  $Z^1$  is invariant under the Weyl group.
- iv) Reformulation of theorem 2.1.
- v) Follows from iii) and theorem 2.4.

In view of this lemma the following corollary is obvious.

Corollary 2.6. Given any two elementary spherical functions  $\varphi_{\Lambda_1}$  and  $\varphi_{\Lambda_2}$ . Then there are complex numbers  $c_v(\Lambda_1, \Lambda_2)$  such that

$$\varphi_{\Lambda_1}\varphi_{\Lambda_2} = \sum_{\nu \prec \Lambda_1 + \Lambda_2} c_{\nu}(\Lambda_1, \Lambda_2)\varphi_{\nu} .$$

The restriction to U of the functions  $\varphi_A$  are called elementary spherical functions on U (or U/K). They satisfy the functional equation

$$\int_{K} \varphi_{\Lambda}(u_1 k u_2) dk = \varphi_{\Lambda}(u_1) \varphi_{\Lambda}(u_2)$$

which can also be used to define them. By taking complex conjugate we see that  $\varphi_A$  is an elementary spherical function too. It will be denoted by  $\varphi_{A'}$ . We also have the Schur orthogonality relations

$$(\varphi_{\Lambda_1},\varphi_{\Lambda_2}) = \int \varphi_{\Lambda_1}(u)\bar{\varphi}_{\Lambda_2}(u) du = 0 \quad \text{if } \Lambda_1 \neq \Lambda_2.$$

Specializing  $\Lambda_1$  to be one of the  $\mu_i$ 's and dropping the indices corollary 2.6 may be restated as follows:

$$(\varphi_{\mu}\varphi_{\Lambda},\varphi_{\nu}) \neq 0$$
 only if  $\nu \leq \Lambda + \mu$ .

But

$$(\varphi_{\mu}\varphi_{\Lambda},\varphi_{\nu}) = (\overline{\varphi_{\mu'}\varphi_{\nu},\varphi_{\Lambda}})$$

which by the same corollary is non-zero only if  $\Lambda \leq \mu' + \nu$ . Thus, the coefficient  $c_{\nu}(\mu, \Lambda)$  in the expansion of  $\varphi_{\mu}\varphi_{\Lambda}$  is non-zero only if  $-\mu' \leq \nu - \Lambda \leq \mu$ . Note that  $\{x \in \mathbf{Z}^1; -\mu' \leq x \leq \mu\}$  is a finite set contained in the parallel-epiped

$$\{H \in \mathfrak{h}_{\mathfrak{p}_0} \; ; \; -\langle \mu', \mu_i \rangle \leq \langle H, \mu_i \rangle \leq \langle \mu, \mu_i \rangle, \; i = 1 \dots l \} \; .$$

We have proved

Theorem 2.7. Let  $\mu$  be a fixed unit vector in  $\mathbf{Z}_{+}^{l}$ . There exist complex-valued functions  $c_{\mathbf{x}}(\Lambda)$  defined on  $\mathbf{Z}_{+}^{l}$  such that

$$\varphi_{\mu}(g)\varphi_{\Lambda}(g) = \sum_{\substack{-\mu' \leq x \leq \mu \\ \Lambda + x \in \mathbb{Z}^{1}.}} c_{x}(\Lambda)\varphi_{\Lambda + x}(g), \quad g \in G_{c}.$$

The number of terms in the sum is independent of  $\Lambda$ .

## 3. Spherical functions as orthogonal polynomials.

In this section we consider polynomials of l variables  $X_1, \ldots X_l$ . In view of the identification made in section 2 of an appearing weight  $A = \sum_{i=1}^{l} m_i \mu_i$  and the point  $(m_1, \ldots, m_l) \in \mathbb{Z}^l$  let us denote the monomial  $X_1^{m_1} \ldots X_l^{m_l}$  by  $X^A$ . A polynomial P(X) is said to have degree A if

$$P(X) = \sum_{\nu \prec \Lambda} a_{\nu} X^{\nu}, \quad a_{\Lambda} \neq 0.$$

It follows from corollary 2.6 that

$$P(\varphi) = P(\varphi_{\mu_1}, \ldots, \varphi_{\mu_l}) = \sum_{\nu \prec \Lambda} b_{\nu} \varphi_{\nu}, \quad b_{\Lambda} \neq 0.$$

Hence if P is a polynomial such that  $P(\varphi(u)) = 0$  for all  $u \in U$ , then P is the zero-polynomial. This allows us to talk about polynomials in the variables  $\varphi_{\mu_1} \dots \varphi_{\mu_l}$ .

Besides the partial ordering  $\prec$  we will use a total ordering < of  $Z_+^I$  having the two properties

$$\Lambda_1 < \Lambda_2$$
 if  $\Lambda_1 < \Lambda_2$ 

and  $\{v \in \mathbb{Z}_+^l : v \leq \Lambda\}$  is finite for any  $\Lambda \in \mathbb{Z}_+^l$ .

An example of such an ordering is the lexicographic ordering with respect to an orthogonal basis in  $h_{\nu_0}$  with a first element v satisfying

$$\langle v, \mu_i \rangle > 0, \quad \langle v, \tilde{\alpha}_i \rangle > 0, \quad i = 1, \dots l.$$

We may e.g. take

$$v = \tilde{\varrho} = \frac{1}{2} \sum_{\alpha \in \Delta^+} \tilde{\alpha}$$
.

By use of induction with respect to this ordering we can now prove.

Theorem 3.1.  $\varphi_{\Lambda}$  is a polynomial of degree  $\Lambda$  in the variables  $\varphi_{\mu_1} \dots \varphi_{\mu_l}$ 

PROOF. This is obvious if  $\Lambda = 0$ . Suppose it is true for all  $\nu < \Lambda$ . Choose an index *i* such that  $\Lambda - \mu_i \in \mathbb{Z}^{l}_+$ . By corollary 2.6

$$\varphi_{\Lambda} = c\varphi_{\mu_i}\varphi_{\Lambda-\mu_i} + \sum_{\nu<\Lambda} c_{\nu}\varphi_{\nu}, \quad c \neq 0$$

which clearly is a polynomial of degree  $\Lambda$ .

COROLLARY 3.2. Complex conjugation permutes  $\varphi_{\mu_1}, \ldots, \varphi_{\mu_l}$ , that is, for any  $\mu_k$  there is a  $\mu_i$  such that  $\overline{\varphi_{\mu_k}} = \varphi_{\mu_i}$ .

PROOF. Recall the notation  $\varphi_{A'} = \overline{\varphi_A}$ . Let  $P(\varphi)$  be the polynomial  $\varphi_{\mu'_k}$ . Then

$$\varphi_{\mu_k} = \overline{P(\varphi)} = \overline{P}(\varphi_{\mu_1}, \ldots, \varphi_{\mu_k})$$

If the degree of P is  $\sum_{j=1}^{l} n_j \mu_j$  we see that  $\varphi_{\mu_k}$  is a polynomial of degree  $\sum_{j=1}^{l} n_j \mu_j'$ . This is possible only if  $\mu_k = \mu_j'$  for some j.

Let  $\Omega$  be the image in  $C^l$  of  $ih_{po}$  under the mapping

$$F: iH \curvearrowright (\varphi_{\mu_1}(\exp iH), \ldots \varphi_{\mu_l}(\exp iH)), \quad H \in \mathfrak{h}_{\mathfrak{p}_0}$$

By transformation of the Schur orthogonality relations for the elementary spherical functions on U/K we will prove that these functions are orthogonal polynomials on  $\Omega$  with respect to a positive weight function.

Let us first compute  $\det F$ , the Jacobian of the mapping F.

LEMMA 3.3. Put

$$\Sigma = \left\{\alpha \in \Delta_0^+ \; ; \; \; 2\alpha \notin \Delta_0^+ \right\} \; .$$

Then

$$\det F = c \prod_{\alpha \in \Sigma} \sin \alpha .$$

PROOF. By theorem 2.4 det F is a linear combination of exponentials  $e^{\nu}$ ,  $\nu \in \mathbb{Z}^{l}$ ,  $\nu \leq \Lambda_{0}$  where

$$\Lambda_0 = \sum_{i=1}^l \mu_i.$$

Moreover since F is W-invariant,  $\det F$  is skew, that is,

$$\det F(SH) = \det S \det F(H).$$

It follows that

$$\det F = c \sum \det Se^{SA_0}.$$

Put

$$\Lambda_1 = \sum_{\alpha \in \Sigma} \alpha$$

and let  $S_i$  be the Weyl reflection corresponding to the simple root  $\tilde{\alpha}_i$   $i=1,\ldots,l$ .  $S_i$  permutes the roots of  $\Sigma$  except for  $\tilde{\alpha}_i$  if  $2\tilde{\alpha}_i \notin \Delta_0^+$  and  $2\tilde{\alpha}_i$  if  $2\tilde{\alpha}_i \in \Delta_0^+$ . Hence  $S_i\Lambda_1 = \Lambda_1 - n \cdot \tilde{\alpha}_i$ , n=2 or 4. But

$$S_i \Lambda_0 = \Lambda_0 - \frac{2\langle \mu_i, \tilde{\alpha}_i \rangle}{\langle \tilde{\alpha}_i \tilde{\alpha}_i \rangle} \tilde{\alpha}_i$$
.

This shows that  $\Lambda_1 - \Lambda_0$  is invariant under  $S_i$ , i = 1, ..., l and we conclude that  $\Lambda_1 = \Lambda_0$ . Since  $\prod_{\alpha \in \Sigma} \sin \alpha$  is also a skew linear combination of  $e^{\nu}$ ,  $\nu \in \mathbb{Z}^l$ ,  $\nu \leq \Lambda_0$  the lemma follows.

Put

$$D = \{ H \in i\mathfrak{h}_{\mathfrak{p}_0} \; ; \; \alpha(H) \in \pi i \mathbf{Z} \text{ for some } \alpha \in \Delta_0 \}$$
 
$$E = \{ H \in i\mathfrak{h}_{\mathfrak{p}_0} \; ; \; \alpha(SH - H) \in \pi i \mathbf{Z} \text{ for all } \alpha \in \Delta_0 \text{ and some } S \in W \}$$
 
$$A = \exp i\mathfrak{h}_{\mathfrak{p}_0}$$

and let A' be the complement of  $\exp D \cup \exp E$  in A. Consider the mapping

$$F': a \curvearrowright (\varphi_{\mu_1}(a)), \ldots, \varphi_{\mu_l}(a)), \quad a \in A'$$
.

LEMMA 3.4. Let p and q be the number of elements of W and  $J = K \cap A$  respectively. F' is a regular pq-to-one mapping of A' onto a subset  $\Omega'$  of  $\Omega$ .

PROOF. The regularity follows from lemma 3.3. Let us determine the inverse image of F'(a),  $a \in A'$ . It follows from theorem 3.1 that

if 
$$F'(b) = F'(a)$$
, then  $\varphi_{\Lambda}(b) = \varphi_{\Lambda}(a)$  for all  $\Lambda \in \mathbb{Z}_{+}^{1}$ .

Owing to the completeness of the elementary spherical functions on U/K we conclude that  $b = k_1 a k_2$  for some  $k_1$  and  $k_2$  in K. Then we can find  $S \in W$  and  $j \in J$  such that  $b = a^S j$  (see [3, p. 384]).

It remains to prove that the elements  $a^S j$  are different and belong to A'. A' is obviously W-invariant. The invariance under multiplication by elements  $j \in J$  follows from the fact that  $j^2 = e$ , or in other words,  $\alpha(H) \in \pi i \mathbb{Z}$  for all  $\alpha \in A_0$  and all  $H \in i\mathfrak{h}_{p_0}$  such that  $\exp H \in J$ . Suppose now that  $a^S i j_1 = a^S i j_2$ . Then we cand find  $S \in W$  such that  $a^S a^{-1} \in J$  that is,  $a \in \exp E$ . This contradicts the assumption that  $a \in A'$  and the proof is finished.

Let us assume in view of corollary 3.2 that

$$\mu'_{j} = \begin{cases} \mu_{j+k} & \text{if } j = 1, \dots, k \\ \mu_{j-k} & \text{if } j = k+1, \dots, 2k \\ \mu_{j} & \text{if } j = 2k+1, \dots, l \end{cases}$$

The mapping

$$\psi: (z_1,\ldots,z_l) \curvearrowright (x_1,\ldots,x_l)$$

where

$$x_{j} = \begin{cases} \frac{1}{2}(z_{j+k} + z_{j}) & \text{if } j = 1, \dots, k \\ (2i)^{-1}(z_{j-k} - z_{j}) & \text{if } j = k+1, \dots, 2k \\ z_{j} & \text{if } j = 2k+1, \dots, l \end{cases}$$

maps  $\Omega$  into  $\mathbb{R}^l$ .

LEMMA 3.5. Let w be defined on  $\psi(\Omega)$  by

$$w(\psi(F(iH))) = \left| \prod_{\alpha \in \Delta^+} \sin \tilde{\alpha}(H) \prod_{\tilde{\alpha} \in \Sigma} (\sin \tilde{\alpha}(H))^{-1} \right|, \quad H \in \mathfrak{h}_{\mathfrak{p}_0}.$$

Then

$$\int_{\psi(\Omega)} f(\psi^{-1}(x))w(x) dx = c \int_{U} f(\varphi_{\mu_1}(u), \ldots, \varphi_{\mu_l}(u)) du$$

for all continuous functions f on  $\Omega$ .

PROOF. Follows from lemma 3.4 by noting that the complements of A' in A and of  $\psi(\Omega')$  in  $\psi(\Omega)$  are sets of measure zero. The following well-known integral formula is also used

$$\int_{U} f(u) du = \int_{A} f(a) Da da$$

where

$$D(\exp iH) = \left| \prod_{\alpha \in A^+} \sin \tilde{\alpha}(H) \right|, \quad H \in \mathfrak{h}_{\mathfrak{p}_0}.$$

As a corollary we obtain.

Theorem 3.6. The elementary spherical functions on U/K may be considered as orthogonal polynomials with respect to the positive weight function w, see lemma 3.5, defined on a region in  $\mathbb{R}^1$ .

PROOF.  $\varphi_A$  is a polynomial of  $\varphi = (\varphi_{\mu_1}, \dots \varphi_{\mu_l})$ , hence also of  $\psi(\varphi)$ . Denote this polynomial by  $P_A$  that is,  $P_A(\psi(\varphi(u)) = \varphi_A(u))$ . The orthogonality relations follow from lemma 3.5.

$$\int_{\psi(\Omega)} P_{\Lambda_1}(x) \overline{P_{\Lambda_2}(x)} w(x) dx = c \int_U \varphi_{\Lambda_1}(\mu) \overline{\varphi_{\Lambda_2}(u)} du.$$

## 4. Closer study of the recurrence formula and the non-compact case.

General references for this section are [2] and [9].

Let G = KAN be an Iwasawa decomposition of G and define H(g),  $g \in G$  by  $g = k \exp H(g)n$ . The functions

$$\Phi_{\lambda}(g) = \int_{K} e^{(i\lambda - \varrho)(H(gk))} dk, \quad \lambda \in \mathfrak{h}_{\mathfrak{p}}$$

where  $\varrho = \frac{1}{2} \sum_{\alpha \in A^+} \tilde{\alpha}$  are called elementary spherical functions on G (or G/K). For certain values of  $\lambda$  they coincide with  $\varphi_A$ , namely

$$\varphi_{\Lambda}(g) = \Phi_{-i(\Lambda+\varrho)}(g), \quad g \in G$$

This fact will be used to get more information about the coefficients  $c_x(\Lambda)$  in the recurrence formula, theorem 2.7, and to extend the formula by analytic continuation.

For any  $M \ge 0$  let  $\mathfrak{h}_{p_0}(M)$  be the set of  $H \in \mathfrak{h}_{p_0}$  such that  $\tilde{\alpha}_i(H) > M$  for all  $i = 1, \ldots, l$ . Denote the points Sx,  $S \in W, -\mu' \le x \le \mu$  by  $x_0, \ldots, x_p$  and chose M so large that  $\Lambda + x_i \in \mathbb{Z}_+^l$  for all  $\Lambda \in \mathfrak{h}_{p_0}(M) \cap \mathbb{Z}_+^l$  and all  $i = 0, \ldots, p$ .

Let D be the Casimir operator of G. Then

$$D\Phi_{\lambda} = -(\langle \lambda, \lambda \rangle + \langle \varrho, \varrho \rangle)\Phi_{\lambda}$$

and

$$D\varphi_{\Lambda}(g) = \chi(\Lambda)\varphi_{\Lambda}(g), \quad g \in G, \ \chi(\Lambda) = \langle \Lambda, \Lambda + 2\varrho \rangle.$$

It is clear that  $\chi(\Lambda + x_i) = \chi(\Lambda + x_j)$ ,  $i \neq j$ , if and only if  $\Lambda$  belongs to an affine hyperplane  $\tau_{ij}$  in  $\mathfrak{h}_{\mathfrak{p}_0}$ . Denote the complement in  $\mathbf{Z}^l_+$  of the hyperplanes  $\tau_{ij}$ ,  $i \neq j$ ,  $i, j = 0, \ldots, p$  by  $\mathbf{\bar{Z}}^l_+$  and put

$$\bar{\mathsf{Z}}^{l}_{+}(M) = \mathfrak{h}_{p_{0}}(M) \cap \bar{\mathsf{Z}}^{l}_{+}.$$

For  $\Lambda \in \overline{Z}_{+}^{l}(M)$  we write the recurrence formula in theorem 2.7 as

$$\varphi_{\mu}\varphi_{\Lambda} = \sum_{i=0}^{p} c_{x_{i}}(\Lambda)\varphi_{\Lambda+x_{i}}$$

where  $c_{x_i}(\Lambda) \neq 0$  only if  $-\mu' \leq x_i \leq \mu$ .

LEMMA 4.1. There exist rational functions  $d_{x_i}(\lambda)$ ,  $\lambda \in \mathfrak{h}_p$ ,  $i=0,\ldots,p$  such that

$$c_{x_i}(\Lambda) = d_{x_i}(\Lambda + \varrho)$$
 if  $\Lambda \in \bar{Z}^l_+(M)$ .

Moreover  $d_{x_i}(S\lambda) = d_{S^{-1}x_i}(\lambda), S \in W$ .

PROOF. Applying succesively the operators  $D^j$ ,  $j=0,\ldots,p$  to the recurrence formula and putting g=e, we obtain since  $\Phi_{\lambda}(e)=1$  an equation system for  $c_{x_i}(\Lambda)$  with the non-zero determinant

$$\prod_{0 \le k < l \le p} \left( \chi(\Lambda + x_l) - \chi(\Lambda + x_k) \right).$$

The solution of this system is

$$c_{x_i}(\Lambda) = \sum_{j=0}^{p} a_j^i(\Lambda) (D^j \varphi_\mu \varphi_\Lambda)(e)$$

where  $a_j^i(\Lambda)$  is the coefficient of  $z^j$  in the polynomial

$$\prod_{\substack{k=0\\k+i}}^{p} (z-\chi(\Lambda+x_k))(\chi(\Lambda+x_i)-\chi(\Lambda+x_k))^{-1}.$$

It follows from lemma 46 in [2] that  $(D^j \varphi_\mu \Phi_\lambda)(e)$  is analytic on  $\mathfrak{h}_p$  and bounded by a polynomial. Hence it must be a polynomial itself. Extending the rational functions  $a_i^i$  to  $\mathfrak{h}_p$  in the natural way we see that the functions

$$d_{x_i}(\lambda) = \sum_{i=0}^{p} a_j^i(\lambda - \varrho)(D^j \varphi_{\mu} \Phi_{-i\lambda})(e)$$

have the desired properties. Note that  $\Phi_{S\lambda} = \Phi_{\lambda}$ ,  $S \in W$ .

COROLLARY 4.2. Let  $W_x$  be the isotropy group of x in W and let  $\Gamma$  be the set of all  $x \in \mathbb{Z}_+^1$  satisfying  $-\mu' \leq x \leq \mu$ . Then

$$\varphi_{\mu}\varphi_{\Lambda} = \sum_{\substack{S \in W/W_x \\ x \in \Gamma}} d_x(S(\Lambda + \varrho))\varphi_{\Lambda + S^{-1}x}$$

for all  $\Lambda \in \overline{\mathbf{Z}}_{+}^{l}(M)$ .

Let us write  $\varphi_{\lambda}$  instead of  $\Phi_{-i(\lambda+\varrho)}$  for all  $\lambda \in \mathfrak{h}_{p}$  and put for a fixed  $H \in \mathfrak{h}_{p_{0}}(0)$ 

$$f'(\lambda) = \varphi_{\mu}(\bar{\exp} H)\varphi_{\lambda}(\exp H) - \sum_{\substack{x \in \Gamma \\ S \in W/W.}} d_{x}(S(\lambda + \varrho))\varphi_{\lambda + S^{-1}x}(\exp H) .$$

By analytic continuation we will show that  $f'(\lambda) = 0$  not only on  $\overline{Z}_+^l(M)$  but for all  $\lambda \in \mathfrak{h}_p$  for which the rational functions  $d_x(S(\lambda + \varrho))$  are defined. To avoid singularities we multiply  $f'(\lambda)$  by a polynomial  $A(\lambda)$  such that  $A(\lambda)f'(\lambda)$  is analytic on  $\mathfrak{h}_p$ . Let  $B(\lambda)$  be a polynomial which is zero on the hyperplanes  $\tau_{ij}$ ,  $i, j = 0, \ldots, l$ , used in the definition of  $\overline{Z}_+^l$ . Then

$$f(\lambda) = e^{-\lambda(H)}B(\lambda)A(\lambda)f'(\lambda)$$

is analytic function on  $\mathfrak{h}_{\mathfrak{p}}$  which is zero on  $\mathsf{Z}^{l}_{+}(M) = \mathsf{Z}^{l}_{+} \cap \mathfrak{h}_{\mathfrak{p}_{0}}(M)$ . The behaviour of  $f(\lambda)$  at infinity follows from.

LEMMA 4.3. For any  $H \in \mathfrak{h}_{\mathfrak{p}_0}(0)$  and any  $\eta \in \mathfrak{h}_{\mathfrak{p}}$  the function  $e^{-\lambda(H)}\varphi_{\lambda+\eta}(\exp H)$  is bounded if  $\operatorname{Re} \lambda \in \mathfrak{h}_{\mathfrak{p}_0}(0)$ .

PROOF. Immediate consequence of the definition of  $\Phi_{\lambda}$  and the fact that  $(H(\exp Hk)) \le v(H)$  for all  $v, H \in \mathfrak{h}_{p_0}(0)$  and all  $k \in K$ , (see [2, lemma 35]).

COROLLARY 4.4.  $f(\lambda)$  is bounded by a polynomial if  $\operatorname{Re} \lambda \in \mathfrak{h}_{\mathfrak{p}_0}(0)$ .

To see that  $f(\lambda)$  is identically zero we use

Carlson's THEOREM (see [8, p. 186]). Assume that g(z) is an analytic function of one complex variable z such that

$$g(z) = \begin{cases} O(e^{a|z|}) & 0 < a < \pi & \text{if } \text{Re } z \ge 0 \\ 0 & \text{if } z = 0, 1, 2, \dots \end{cases}$$

Then g(z) is identically zero.

THEOREM 4.5. The following recurrence formula holds for all  $g \in G$  and all  $\lambda \in \mathfrak{h}_p$  which are not singularities of the coefficients.

$$\Phi_{i-(\mu+\varrho)}(g) \cdot \Phi_{\lambda}(g) = \sum_{\substack{x \in \Gamma \\ S \in W/W_x}} d_x(iS\lambda) \Phi_{\lambda-iS^{-1}x}(g) \cdot$$

PROOF. We have to verify that  $f(\lambda)$  is identically zero on  $\mathfrak{h}_{\mathfrak{p}}$ . Put  $g_1(z_1) = f(z_1\mu_1 + \Lambda)$ . By corollary 4.4,  $g_1$  fulfills the assumptions in Carlson's theorem. Hence  $f(z_1\mu_1 + \Lambda) = 0$  for all complex numbers  $z_1$  and all  $\Lambda \in \mathbb{Z}^l_+(M)$ . Next putting  $g_2(z_2) = f(z_1\mu_1 + z_2\mu_2 + \Lambda)$  another application of Carlson's theorem yields that  $f(z_1\mu_1 + z_2\mu_2 + \Lambda) = 0$  for all complex numbers  $z_1$  and  $z_2$  and all  $\Lambda \in \mathbb{Z}^l_+(M)$ . After l steps we arrive to the desired conclusion.

It is possible to express some of the coefficients in the recurrence formula in terms of Harish-Chandra's c-function. More precisely we have

**LEMMA 4.6.** 

$$d_{\mu}(\lambda) = \frac{c(-i(\mu+\varrho))c(-i\lambda)}{c(-i(\lambda+\mu))}.$$

PROOF. Fix a  $H \in \mathfrak{h}_{p_0}(0)$ . Then

$$\lim_{t\to\infty}e^{(\varrho-i\lambda)(tH)}\Phi_{\lambda}(\exp tH)=c(\lambda)$$

for all  $\lambda \in \mathfrak{h}_p$  with  $-\operatorname{Im} \lambda \in \mathfrak{h}_{\mathfrak{p}_0}(0)$  except for certain affine hyperplanes (see [2, p. 291]). It is however an easy consequence of Vitali's convergence theorem (see [8 p. 168]) and corollary 1 to lemma 28 in [2] that this holds on the hyperplanes as well, that is, for all  $\lambda \in \mathfrak{h}_p$  with  $-\operatorname{Im} \lambda \in \mathfrak{h}_{\mathfrak{p}_0}(0)$ . Applying this to the recurrence formula multiplied by  $e^{-\mu + \varrho - i\lambda}$  the lemma follows.

COROLLARY 4.7. For any  $\alpha \in \Delta_0^+$  let  $m(\alpha)$  be the number of roots in  $\Delta^+$ , whose restriction to  $\mathfrak{h}_{p_0}$  is  $\alpha$ . Then

$$d_{\mu}(\lambda) = \frac{b(\lambda)}{b(\varrho)}$$

where

$$b(\lambda) = \prod_{\alpha \in \mathcal{A}_0^+} \prod_{0 \le k \le \langle \mu, \alpha \rangle / \langle \alpha, \alpha \rangle - 1} \frac{\frac{1}{2} m(\alpha) + \frac{1}{4} m(\alpha/2) + \langle \lambda, \alpha \rangle / \langle \alpha, \alpha \rangle + k}{\frac{1}{4} m(\alpha/2) + \langle \lambda, \alpha \rangle / \langle \alpha, \alpha \rangle + k} .$$

**PROOF.** Follows from the explicit expression for  $c(\lambda)$ 

$$c(\lambda) = \frac{I(i\lambda)}{I(\varrho)}$$

where

$$I(\lambda) = \prod_{\alpha \in \Delta_0^+} \beta(\frac{1}{2}m(\alpha), \frac{1}{4}m(\alpha/2) + \langle \lambda, \alpha \rangle / \langle \alpha, \alpha \rangle),$$

and  $\beta$  denotes the Beta function.

Let < be a total ordering of  $\mathfrak{h}_{\mathfrak{p}_0}$  such that x < y implies that x < y and let  $\mu_0$  be the lowest one of  $\mu_1, \ldots, \mu_l$  with respect to this ordering. In this case  $\Gamma$  consists of the two points 0 and  $\mu_0$  only, so the only non-zero coefficient in the recurrence formula except for  $d_{s_{\mu_0}}$ ,  $s \in w$  is  $d_0$ . Moreover  $d_0$  is determined by putting g = e.

THEOREM 4.8. Let  $\mu_0$  be as above. Then

$$\Phi_{-i(\mu_0+\varrho)}(g)\Phi_{\lambda}(g) = \sum_{S \in W/W_{\varrho_0}} d_{\mu_0}(iS\lambda)\Phi_{\lambda-iS^{-1}\mu_0}(g) + d_0(i\lambda)\Phi_{\lambda}$$

where

$$d_{\mu_0}(\lambda) = \frac{c(-i(\mu_0 + \varrho))c(-i\lambda)}{c(-i(\lambda + \mu_0))}$$

and

$$d_0(\lambda) \; = \; 1 - \sum_{S \, \in \, W/W_{\rm Min}} d_{\mu_0}(iS\lambda) \; . \label{eq:d0}$$

REMARK. Let U be a compact connected semisimple Lie group and U' the universal covering group of U. Then U=U'/T for some subgroup T of U' (see [3, p. 274]), and it is easy to see that the elementary spherical functions on U coincide with those on U' for which  $\varphi_{\Lambda}(u't) = \varphi_{\Lambda}(u')$ ,  $u' \in U'$ ,  $t \in T$ . Assume that  $\varphi_{\Lambda_1}$  and  $\varphi_{\Lambda_2}$  are such functions. By corollary 2.6 we have

$$(\varphi_{\Lambda_1}\varphi_{\Lambda_2}*\varphi_{\nu})(u') = c_{\nu}(\Lambda_1,\Lambda_2)\varphi_{\nu}(u')(\varphi_{\nu},\varphi_{\nu})$$

from which is seen that  $\varphi_{\nu}(u't) = \varphi_{\nu}(u')$  if  $c_{\nu}(\Lambda_1, \Lambda_2) \neq 0$ . We conclude that the elementary spherical functions on U also satisfies recurrence formulas with uniformly bounded number of terms.

When we replace a non-compact connected semisimple Lie group G with finite center by the universal covering group of G we don't change the set of elementary spherical functions. Hence the recurrence formulas hold also in this case.

#### REFERENCES

- 1. E. Cartan, Sur la détermination d'un système orthogonal complet dans un espace de Riemann symmetrique clos, Rend. Circ. Mat. Palermo 53 (1929), 217-252.
- Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math. 80 (1958), 241-310.
- 3. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- 4. T. H. Koornwinder, Orthogonal polynomials in two variables which are eigenfunctions of two independent partial differential operators I-IV, Indag. Math. 36 (1974), 48-66 and 357-381.

- I. G. Sprinkhuizen, Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal on a region bounded by two lines and a parabola, Math. Centrum Amsterdam Rep TW 144, 1974.
- 6. M. Sugiura, Representations of compact groups realized by spherical functions on symmetric spaces, Proc. Japan Acad. 38 (1962), 111-113.
- M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441–475.
- 8. E. C. Titchmarsh, The theory of functions, Oxford University Press, London, second ed., 1939.
- 9. G. Warner, Harmonic analysis on semisimple Lie groups I and II (Grundlehren Math. Wissensch. 188 and 189), Springer-Verlag, Berlin · Heidelberg · New York, 1972.
- H. Weyl, Theorie der Darstellung kontinuierlicher halbeinfacher Gruppen durch lineare Transformationen, Math. Z. 23 (1925), 271-309; 24 (1926), 328-395, 789-791.

UNIVERSITY OF LUND, SWEDEN