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ELEMENTARY SPHERICAL FUNCTIONS
ON SYMMETRIC SPACES

LARS VRETARE

1. Introduction.

One of the main results in this paper states that the elementary spherical
functions on a symmetric space of compact type, with rank I/, may be
considered as orthogonal polynomials with respect to a positive weight
function defined on a region in R'. This is a generalization of the well-known
rank one case in which the elementary spherical functions are Jacobi
polynomials. Our result also settles the conjecture in [4] to the effect that the
orthogonal polynomials of two variables considered there are elementary
spherical functions on a symmetric space of rank 2.

Let ¢, be the elementary spherical function corresponding to the highest
weight A. The second main result of this paper is a recurrence formula for ¢,
expressing the product ¢4, ¢, (4, fixed) as a linear combination of other ¢, in
which the number of terms is independent of A. This is also a generalization of
well-known facts about Jacobi polynomials and of the recurrence formulas
proved in [5] in the case of two variables.

We also obtain recurrence formulas for elementary spherical functions on a
symmetric space of non-compact type, by analytic continuation. Some of the
coefficients are explicitly computed in terms of Harish-Chandras c-function.

2. Preliminaries and recurrence formulas in the compact case.

General references for this section are [1], [3], [7], [9] and [10]. Root
systems are especially studied in [9], representations with weights in [10] and
the elementary spherical functions on a compact Lie group in [1] and [7].

Let g, be a noncompact semisimple Lie algebra over R, go=1,+p, a Cartan
decomposition of g, and u=*F,+ip, the corresponding compact real form of
the complexification g of go. Denote by G, a simply connected Lie group with
Lie algebra g and by G, U and K the analytic subgroups of G, generated by g,
u and f, respectively. Select a maximal abelian subspace b, of p, and a
maximal abelian subalgebra b, of g, containing b, . Then ho=b, +b, whereb,
=bho NT,. Also t=U +ib,, is maximal abelian in u. Complexify b,, b, To, Po
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and b, to by, b,, £, p and b respectively. Let 4 (4,) be the root system of the pair
(8,b) ((80, b,,))- Introduce compatible orderings in the dual spaces of b,, and it
and write 4% (4¢) for the set of positive roots with respect to these orderings.
By means of the Killing form (-, - ) we identify it with the set of linear forms A
on by which are real-valued on it. Let ¢ be the conjugation of g with respect to
go- Then A=4(A+0A) is the restriction of A to b,,- Note also that ¢ is an
involutory automorphism of it leaving the scalar product (-, -> invariant. The
fundamental system of roots for 4,«,,...,a, may be denumerated in such a
way that

a+ Y ma; if 1Sism

j=m+1 -

0% = g, if m+1<i<n

where
i if 1<i<l,

!

1 =

Moreover &,,. . .,d is a fundamental system of roots for 4,.

By our assumption G and U are subgroups of the simply connected group
G,. This permits us to identify the irreducible finite dimensional
representations of G, with those of G and U. The highest aeights of.these
representations are precisely the dominant integral linear forms on b, that is,
the linear forms A for which 2{A,a)/{a,a) is a non-negative integer for all
a € A*. The highest weights can also be characterized by means of the
fundamental weights ;, i=1...n defined by

2<7ti,a]> _ 1 if i=]
(apay |0 if i)

Then A is a highest weight if and only if A=3Y"_, m;z; with non-negative
integers m;.

An irreducible finite dimensional representation R is said to be of class one
(with respect to K) if there is a vector in the representation space left fixed by
all R(k), k € K. For such representations we have the following characteri-
zation. A highest weight A belongs to a class one representation if and only if A
=A and {A4,4)/{A,A) is a non-negative integer for all 1 € 45 . (See [9, chapter
3.3]). To obtain a characterization in terms of the fundamental weights put

; if 15igl, and oo;Fo;
u =1 2m if 15ig! and og;=o;
ni+ng'4,z if 11+1_S_iéll+lz=l



ELEMENTARY SPHERICAL FUNCTIONS ON SYMMETRIC SPACES 345

THEOREM 2.1. A highest weight A belongs to a class one representation if and
only if A=3}_, my; with non-negative integers m;.

This theorem is stated without proof in Sugiura [6]. A proof is however
obtained from the next two lemmas concerning p,.

LemMMA 2.2. Let p;, i=1...1 be defined as above. Then

D=
5 0 ifi+j
b e o
2) Eay 1 ifi=j and 24; ¢ 4,

2 ifi=j and 2§;€ 4,

Proor. The first statement is equivalent to on,=n;, 1 Si<I, +2l,. To prove
this we use the definition of 7, and compute the numbers

_ Aom,a)

X = s 1Si<l +2l, 1Sj<n.

Let us first note that 4= A4 and that

_ oy if j=7
(m 095 = {0 if j+i

Thus on one hand

_ Xm,o0)
. (oo, 00;)

that is, an integer and on the other

_ Umy00) 2, o) — oy ;)
i = oty %) T o) )

By interchanging the role of i and i’ we find that this integer has to be 1.
Moreover j#i implies that
2w, 0'“1)
X = —] =
Y Leyap
and we conclude that on;=m; as desired.
To prove the second statement put

W =Sl g
RTI D T
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Clearly
(&) = (R = 3y o) + {mp, ))

whence y;;=0 if j+i. The values of y;; are obtained in the same way by use of
the fact that for any « € 4 holds

(o) = n L&, &)
with

1 if ca=a
n,= {2 if cafa and 24 ¢ 4,
4 if oafa and 2d€ 4,

Let A be the highest weight of a class one representation. In view of the linear
independence of the u;’s we may write A=Y"_, ¢;u; with

A&
Ay g ¢ 4,
Agy |
cl' = = =
iai X
N A28 g e 4,
Q4,24

This proves the only if part of the theorem. The converse is an immediate
consequence of .

LemMA 2.3. Each p; belongs to a class one representation.

Proor. We have to prove that (;[,., A>/{4,A) is a non-negative integer for all
Aedg.

Let W be the Weyl group pf 4,. Choose a S € W and a simple root &; € 4g
such that either A=S4; or A= 284;. In the latter case 11=8a ; is also a root, the
restriction to b, of some f € A*. Since fas well as 2 belongs to 45 we know
that (B, B> =4¢B, B>. Consequently

<I“i"1> — l<“1,3> — 2<un’ﬂ>
Ay 2488 BB

.

which is a non-negative integer.
Assume now that A=S4; and write S™! as a product S, ... S, of Weyl
reflections corresponding to the simple roots. Then

w= ST = (= Syp)+ Sy (= Sap)+ ...+ 8y . S, (= S,m) -
Each of the terms to the right is of the form (2{u;, &,>/{8, &)S &, for some
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S" € W and some k<I. But this is non-zero only if k=i so we get
_siy = 2 S Y S§, WceWw.
<ai’ ai> Sew
By use of this expression for S™!u; we obtain
s A _ Sy, ":ij> <#,,Ot ) <#.»a> 2(8'&, 5‘j>
<A', }'> <&J’ &J> <apa > <au a; > Sew <&p &J>

which obviously is an integer. This integer is of course non-negative since A is a
linear combination of the simple roots 4, . .. &, with non-negative coefficients.

Let R, be a class one representation with highest weight A. Choose a unit
vector e in the representation space V, such that R(k)e=e for all k € K. The
elementary spherical function corresponding to A is defined by

0,(8) = (elRA(g)e) geq,.

Here (-|-) denotes the scalar product in V). Let f,,.. ., f, be an orthonormal
basis of V, such that f; belongs to the weight A;, A;=A. Then

R (expH)f; = ¢"®f, Heb
and

@4(expH) = Z lel f)Pe*™,  Heb.

As we have seen the highest weight A is a linear combination of y,. . . p, with
integral coefficients. This is in general not true for the other weights A; but we

have the following result.

THEOREM 2.4. Suppose that
q

@, (expH) = Z ce™  Heb.

Then c;+0 implies that A;=3Y-1 My, M € Z .

Proor. Trying to prove that A;= A, and that {A,,A>/{A,A) is an integer for
all 1 € 4, we follow the corresponding proof for the highest weight 4 in [9 p.
210]. P=(y R,(k)dk is a projection of V, onto the one-dimensional subspace
spanned by’e. If Pf, %0 the proof works and we make the desired conclusion

about A,. If however Pf;=0 we find directly that
¢ = el )P = Il PHI* =0

A weight v for which ¢* appears with non-zero coefficient in some ¢, will be
called an appearing weight.
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From now on we identify the two points (m,,...m)eZ' and
i=ymy; € b,.. We also introduce a partial ordering of Z' by putting

Ay <4, i ALy £ Ay

for all i=1...l The set of points in Z' for which all coordinates are non-

negative will be denoted by Z',.
Let us now collect some properties of this ordering of Z'.

LEmMMA 2.5. i) Let A; be the weights in theorem 2.4. Then A;<A.
ii) {veZ',v<A} is a finite set for any A € Z',.

iii) For any v € Z" there is a S € W such that Sv e Z',.

iv) Z', is the set of highest weights of class one.

v) Z' is the set of appearing weights.

Proor. i) Follows from the fact that
A" = A‘al",az...akeAg .

ii) Obvious. :

iii) Consequence of general weight theory and the observation that Z' is
invariant under the Weyl group.

iv) Reformulation of theorem 2.1.

v) Follows from iii) and theorem 2.4.

In view of this lemma the following corollary is obvious.

COROLLARY 2.6. Given any two ele;nentary spherical functions ¢4, and @,,.
Then there are complex numbers c,(A,, A,) such that

(pA,(pA, = Z cv(Al$A2)(pv .

v<A,+4,

The restriction to U of the functions ¢, are called elementary spherical
functions on U (or U/K). They satisfy the functional equation

_fx @ auikuz)dk = @ ,(u;)p,(u;)

which can also be used to define them. By taking complex conjugate we see
that ¢, is an elementary spherical function too. It will be denoted by ¢,. We
also have the Schur orthogonality relations

(@4, 94) = f @04,W)P,,Wdu =0 if A, F4,.



ELEMENTARY SPHERICAL FUNCTIONS ON SYMMETRIC SPACES 349

Specializing A, to be one of the y;’s and dropping the indices corollary 2.6 may
be restated as follows:
(9.06,0) £ 0 onlyif v<A+p.
But
(2u040) = (0,0, 04)

which by the same corollary is non-zero only if A<y’ +v. Thus, the coefficient
c,(u, 4) in the expansion of ¢,¢, is non-zero only if — ' <v—A < pu. Note that
{x € Z!; —W' <x<p} is a finite set contained in the parallel-epiped

{Heb,, ; =<, £ <Hp) S, i=1...1}.

We have proved

THEOREM 2.7. Let p be a fixed unit vector in Z',. There exist complex-valued
functions c,(A) defined on Z', such that

0,@0,8) = Y  cMDosi.(8), geG..
“HxZu -
A+xeZ',

The number of terms in the sum is independent of A.

3. Spherical functions as orthogonal polynomials.
In this section we consider polynomials of ! variables X,... X;. In view of

the identification made in section 2 of an appedting weight A=3{. my; and
the point (m,,...m,) € Z' let us denote the monomial X7t ... X" by X*. A

polynomial P(X) is said to have degree A if
P(X) = Y a,X’, a,*0.

v<A
It follows from corollary 2.6 that

P(@) = P(@yy- - ®u) = ZA b,o, bs¥0.
v

Hence if P is a polynomial such that P(@()=0 for allue I'J, then P 'is the
zero-polynomial. This allows us to talk about polynomials in the variables

Oy -+ Py . . ' -
Besides the partial ordering < we will use a total ordering< of Z', having

the two properties
A, <Ay if A4, <4

and {v € Z!, ; v< A} is finite for any 4 € zZ,.



350 LARS VRETARE

An example of such an ordering is the lexicographic ordering with respect to
an orthogonal basis in b,, with a first element v satisfying
o,y >0, (ody >0, i=1,...1.
We may e.g. take
=§ =

Y .

aed*

N

By use of induction with respect to this ordering we can now prove.
THEOREM 3.1. @, is a polynomial of degree A in the variables ¢, ... ¢,

Proor. This is obvious if A=0. Suppose it is true for all v<A. Choose an
index i such that A—y; € Z',. By corollary 2.6

Op = COUPs-wt Y. C,0,, ¢FO

v<A

which clearly is a polynomial of degree A.

CoroLLARY 3.2. Complex conjugation permutes @,,,,. . .,9,, that is, for any p,
there is a p; such that ¢, =¢,.

ProoF. Recall the notation ¢, =¢,. Let P(p) be the polynomial ¢,.
Then

(pﬂk = P((P)_ = p((P,",,- . w(ou;) .
If the degree of P is 3i_, n;u; we see that ¢, is a polynomial of degree
3j=1n;u;. This is possible only if p, = for some j.
Let Q be the image in C' of ib,, under the mapping
F:iH r~ (@, (expiH),... ¢, (expiH)), Heh, .

By transformation of the Schur orthogonality relations for the elementary
spherical functions on U/K we will prove that these functions are orthogonal
polynomials on Q with respect to a positive weight function.

Let us first compute det F, the Jacobian of the mapping F.

LemMMA 3.3. Put
E={aedy; 2a¢ 45} .
Then .
detF = ¢ [] sina .

ael
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Proor. By theorem 2.4 detF is a linear combination of exponentials e,
veZ, v<A4, where

Ay = iZ,:l M.
Moreover since F is W-invaFiant, det F is skew, that is,
det F(SH) = detS det F(H) .
It follows that
detF = ¢ detSe’ .
Put

A1=Zot

ael
and let S; be the Weyl reflection corresponding to the simple root & i=1,.. .,!.
S; permutes the roots of X except for 4, if 24; ¢ 45 and 24, if 2&; € A . Hence
SiA,=A,—n-d;, n=2 or 4. But
2 up &)
-

SiAO = A, (&d-) i

This shows that A; — A, is invariant under S;, i=1,...,] and we conclude that
Ay =A,. Since [],.5sina is also a skew linear combination of €', v € Z, v< 4,
the lemma follows.
Put
D = {H eib,, ; a(H) e niZ for some a € 4,}
E = {Heib, ; a(SH—H) e niZ for all a« € 4, and some S € W}
A

expib,,
and let A’ be the complement of exp DUexp E in A. Consider the mapping

F:anr (9,@),...,0,@), aecd.

LemMMA 3.4. Let p and q be the number of elements of W and J=KNA
respectively. F' is a regular pg-to-one mapping of A’ onto a subset Q' of Q.

Proor. The regularity follows from lemma 3.3. Let us determine the inverse
image of F'(a), a € A'. It follows from theorem 3.1 that

if F'(b) = F'(a), then @,(b) = @ (a) for all A€ Z', .
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Owing to the compjeteness of the elementary spherical functions on U/K we
conclude that b=k, ak, for some k, and k, in K. Then we can find S € W and
j € J such that b=a’j (see [3, p. 384)).

It remains to prove that the elements a°; are different and belong to A’. A’ is
obviously W-invariant. The irvariance under multiplication by elements j € J
follows from the fact that j>=e, or in other words, a(H) € niZ for all a € 4,
and all H € ib, such that exp H € J. Suppose now that a®1j, =a%j,. Then we
cand find S € W such that a’a~! € J that is, a € exp E. This contradicts the
assumption that a € A’ and the proof is finished.

Let us assume in view of corollary 3.2 that

ar i j=1,.. .k
ﬂ; = #j"k if]=k+1,..,2k
woif j=2k+1,...0

The mapping

Ve (24, . 2) v (Xg,. . 45X)

where
%(zj+k+2j) ifj=1,...,k
x = @) g le—z) i j=k+1,...,2%
z if j=2k+1,...,1

maps Q into R’
LEMMA 3.5. Let w be defined on y{Q) by

w(y(F(H)) =

1 sin&H) [] (sin&(H))™?

aed* aeZ

, Heb, .

Then
J SY T )wx)dx = ¢ j‘ (@ @), . . 0, ) du
_Jv@ u
Jor all continuous functions f on K.
PrROOF. Follows from lemma 3.4 by noting that the complements of A’ in 4

and of Y () in Y(£2) are sets of measure zero. The following well-known
integral formula is also used

f fu)du = ‘[ f(a)Dada
U A
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where

D(expiH) = |[] sin&g(H), He by, -

aed*

As a corollary we obtain.

THEOREM 3.6. The elementary spherical functions on U /K may be considered
as orthogonal polynomials with respect to the positive weight function w, see
lemma 3.5, defined on a region in R

PRrOOF. ¢, is a polynomial of ¢ = (©u-- &), hence also of y(¢p). Denote
this polynomial by P, that is, P,(y(p(u)= o, (u). The-orthogonality relations
follow from lemma 3.5.

J Py (x)Py(x) w(x)dx = CI @4, (1) @4, (u) du .
[70)] U

4. Closer study of the recurrence formula and the non-compact case.

General references for this section are [2] and [9].
Let G=KAN be an Iwasawa decomposition of G and define H(g), g € G by
g=kexp H(g)n. The functions

?,(g) = J elid—aH(gh) dk, le [)p
K

where ¢=3%3,_,+ & are called elementary spherical functions on G (or G/K).
For certain values of A they coincide with ¢,, namely

048 = P_iu+9(8), 8€G.

This fact will be used to get more information about the coefficients c,(A) in
the recurrence formula, theorem 2.7, and to extend the formula by analytic
continuation.

For any M 20 let b, (M) be the set of H € b, such that &(H)>M for all i
=1,...,l. Denote the points Sx, S € W,—py'<x<pu by x,,...,x, and chose M
so0 large that A +x; € Z', for all A € b, (M)NZ, and all i=0,...,p.

Let D be the Casimir operator of G. Then

Do, = — (K4 +<(e,e))®;

and

Do,(g) = x(A)p,e), g€G, 1(4) = {AA+20).

Math. Scand. 39 — 23
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It is clear that y(A+x)=yx(A+x)), i+j, if and only if A belongs to an affine
hyperplane 7;;in b, . Denote the complement in Z', of the hyperplanes t;;, i % j,
i,j=0,...,p by Z', and put

Z(M) = b, (M)NZ, .
For A € Z', (M) we_write the recurrence formula in theorem 2.7 as

4
(pu(pA = z cxi(A)(PA+xi

i=0

where c,,(4)#0 only if — ' <x;<p.

LEMMA 4.1. There exist rational functions d,(3), A € b,, i=0,. .., p such that
cx.-(A) = dx.'(A +Q) l:f A € Zl+ (M) .
Moreover d, (SA)=ds-,,,(A), S € W.

Proor. Applying succesively the operators DY, j=0,...,p to the recurrence
formula and putting g=e, we obtain since ®,(e)=1 an equation system for
¢,,(A) with the non-zero determinant

[T (A+x)—x(A+x)).

Osk<isp

The solution of this system is

cu(d) = 3 aN(D'e,0,)(e)

=0

where aj(A) is the coefficient of z/ in the polynomial

14
IT -3+ x)A+x)—x(A+x)".
k=0
k+i

It follows from lemma 46 in [2] that (D/p,®;)(e) is analytic on b, and bounded
by a polynomial. Hence it must be a polynomial itself. Extending the rational
functions 4 to b, in the natural way we see that the functions

4,3 = Y d(i-o0)(D'e,®_)(@)

i=o0

have the desired properties. Note that &5, =®,, S € W.
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CoroOLLARY 4.2. Let W, be the isotropy group of x in W and let I' be the set
of all x € Z', satisfying —u'<x<p. Then
Pula = Y d(S(A+Q)Paiss

SeW/w,
xel

for all A € Z', (M).

Let us write ¢, instead of ®_,; ., for all A € b, and put for a fixed H € b,,(0)

f' (D) = o,expH)p;(expH)— Y d (S(A+0)p;+s-1x(exp H) .

xel
SeW/W,

By analytic continuation we will show that f’(4)=0 not only on Z', (M) but for
all 4 e b, for which the rational functions d,(S(4+¢)) are defined. To avoid
singularities we multiply f'(1) by a polynomial A(4) such that A(1)f'(4) is
analytic on b,. Let B(4) be a polynomial which is zero on the hyperplanes 7,
i,j=0,...,l, used in the definition of Z',. Then

f) = e *®BRAD) S (A)
is analytic function on b, which is zero on Z',(M)=Z' N, (M). The
behaviour of f(4) at infinity follows from.

- AH)

LemMa 4.3. For any H € b, (0) and any n € b, the function e @4+,(exp H)

is bounded if Re 4 € b, (0).

Proor. Immediate consequence of the definition of @, and the fact that
'(H(exp Hk)) <v(H) for all v,H € b, (0) and all k € K, (see [2, lemma 35]).

COROLLARY 4.4. f(4) is bounded by a polynomial if Re 4 € b, (0).

To see that f(4) is identically zero we use

Carlson’s THEOREM (see [8, p. 186]). Assume that g(z) is an analytic function of
one complex variable z such that

0™ O<a<mn if Rez20
8@ =10 if 2=0,1,2,... .
Then g(z) is identically zero.

THEOREM 4.5. The following recurrence formula holds for all g € G anid all
A € b, which are not singularities of the coefficients.
¢i—(u+¢)(g)-¢z(g) = Zr d(iISA)P; - i5-1x(8) -

X€
SeW/W,
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~ Proor. We have to verify that f(1) is identically zero on b,. Put g,(z,)
=f(z,u; +A4). By corollary 4.4, g, fulfills the assumptions in Carlson’s
theorem. Hence f(z,u, + A)=0 for all complex numbers z, and all 4 € Z', (M).
Next putting g,(z;)=f(z,¢, +2,u,+A) another application of Carlson’s
theorem yields that f(z,u, +z,u,+ A)=0 for all complex numbers z, and z,
and all A € Z', (M). After | steps we arrive to the desired conclusion.

It is possible to express some of the coefficients in the recurrence formula in
terms of Harish—Chandra’s c-function. More precisely we have

LeEMMA 4.6.

c(—i(u+0)c(—id)

W0 = i w)

Proor. Fix a H €}, (0). Then

lim e~ (exptH) = c(A)

t—o00
for all € b, with —Im A € b, (0) except for certain affine hyperplanes (see [2,
p. 291]). It is however an easy consequence of Vitali’s convergence theorem
‘(see [8 p. 168]) and corollary 1 to lemma 28 in [2] that this holds on the
hyperplanes as well, that is, for all 1 € b, with —Im 4 € b, (0). Applying this to
the recurrence formula multiplied by e #*¢~* the lemma follows.

COROLLARY 4.7. For any « € A; let m(a) be the number of roots in A *. whose
restriction to b, is a. Then

b(4
4,0 = 23

where
Im() +im(0/2) + (A, a)/Ca, o) +k
Im(0/2) + <A, a)/{a,a) +k

b = 1 1

aeds 0sks(uad/{aa)—1

Proor. Follows from the explicit expression for c(4)

il

where
13) = [T BGm(@),im(2/2) + {4, a)/<a, 2))
aedy

and B denotes the Beta function.
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Let < be a total ordering of b,, such that x<y implies that x < y and let Ho
be the lowest one of u,,...,pu, w1th respect to this ordering. In this case I'
consists of the two points 0 and y, only, so the only non-zero coefficient in the
recurrence formula except for d, .00 S € W is dy. Moreover d, is determined by
putting g=e.

THEOREM 4.8. Let u, be as above. Then

@ —i(uo + q)( )¢). g) Z dpo(lsj')¢). 1S 'uo (g) + dO (M')¢A

Sew/w,,
where

c(—iluo+o))c(—id)

) = = )

and

do() = 1= Y d,(iS4).

SeW/W,,

RemARk. Let U be a compact connected semisimple Lie group and U’ the
universal covering group of U. Then U = U’/T for some subgroup T of U’ (see
[3, p. 274]), and it is easy to see that the elementary spherical functions on U
coincide with those on U’ for which ¢,(u't)=¢, W), v € U',t € T Assume that
¢4, and @, are such functions. By corollary 2.6 we have

(94,04,*0,) W) = c,(41, 43)0,W)(0,, 0,)

from which is seen that ¢,(u't)=¢, ) if ¢,(4,,4,)+0. We conclude that the
elementary spherical functions on U also satisfies recurrence formulas with
uniformly bounded number of terms.

When we replace a non-compact connected semisimple Lie group G with
finite center by the universal covering group of G we don’t change the set of
elementary spherical functions. Hence the recurrence formulas hold also in this

case.
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