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QUASIANALYTIC VECTORS AND
DERIVATIONS OF OPERATOR ALGEBRAS

OLA BRATTELI*, RICHARD H. HERMAN** and DEREK W. ROBINSON

Abstract.

We show that an unbounded derivation 6 of a W*- or C*-algebra
implements a group of automorphisms if there exists a state w on the algebra
(normal in the W*-case) such that w defines a faithful cyclic representation
and w-Jd=0, and ¢ has a dense set of quasianalytic elements. In the W *-case it
is enough to require a dense set of quasi-analytic elements on the Hilbert space.

1. Introduction.

Our concern in this paper is two-fold. We answer in various settings, the
questions as to when a derivation of an operator algebra gives rise to an
automorphism group of the algebra and when the set on which we “know” the
derivation forms a core for the generator of the automorphism group. As the
title of the paper indicates we deal with the case in which quasi-analytic vectors
exist in abundance for the derivation.

Nussbaum [10] introduced the idea of quasi-analytic vectors for a closed
symmetric operator on a Hilbert space, showing that a dense set of such
vectors guarantees self-adjointness. Thus he generalized the analytic vector
theorem. (An excellent discussion of quasi-analytic vectors can be found in
Chernoff’s address [5].) Other results are available (the Stieltjes vector case) if
one assumes the given operator is semi-bounded; see [6] and [11].

Since self-adjointness guarantees a corresponding unitary group, the first
question we raised above asks for analogues of Nussbaum’s result.

The second problem we mentioned may be rephrased, in the case of
symmetric operators, as follows. Suppose the operator has a self-adjoint
extension; when is the closure of the original operator equal to this extension?
One criterion, which seems to have been rediscovered many times in the
literature, is to show that the unitary group generated by the extension leaves

* Address from Sept. 1, 1976: CNRS, CPT, 31 Chemin J. Aiguier, 13274 Marseille Cedex 2.
** On leave from Pennsylvania State University.
Received April 5, 1976.



372 OLA BRATTELI RICHARD H. HERMAN AND DEREK W. ROBINSON

the domain of the original operator invariant. The.earliest reference we know
of for this result is Singer’s thesis [14]. A Banach space version appears in a
paper of de Leeuw [9].

Aided by quasi-analyticity we are able to show a variant of this result
(lemma 1) by working with the graph of the extension and thus obtain our core
results.

In the setting of quasi-analytic vectors the results of this paper give an
affirmative answer to a problem raised in [3]. The problem has already been
resolved in other cases, [3], [4], [8]. We also obtain a C* algebra theorem
under a mild additional assumption. Indeed some such restriction is necessary,
as an example given in [1] shows that even a dense set of analytic vectors is
generally insufficient to ensure that a closed derivation is a generator.

2. Definitions and fundamentals.
We need the following definition:

DerInITION 1. Let X be a Banach space and T a (possibly unbounded) linear
operator on X with domain D(T), dense in X. Let C*(T) denote the set
{xe X:xeD(T); n=1,2,...}. Let M, be a sequence of positive numbers
with M} non-decreasing and normalized so that M,=1'. Define

C{M,} = {xe C*(T): 34>0 with |T"x| < A"M,}

The elements of C{M,} are said to be quasi-analytic vectors if 32, M, '"=o00
and C{M,} is called a quasi-analytic class in this case. In general, a vector x is
said to be quasi-analytic if it lies in some C{M,}. Note that x is analytic if
liminf,_, ,n-M, '/">0.

When referring to a function fin C°(R) (the bounded, continuous, complex
valued function on R) quasi-analyticity is with respect to the operator of
differentiation on C°(R), equipped with the supremum norm.

In Theorems 1 and 3 we obtain some results on cores for unbounded
derivations. These results are based on the following lemma

LeMMA 1. Let X be a Banach-space, F a norm-closed linear subspace of the
dual of X such that either F is the dual of X or X is the dual of F, and let a(X, F)
be the topology on X induced by F. Let t — t, be a one-parameter group of
isometries of X such that

1) t — 1,(x) is 6(X, F) continuous for x € X
2) x — t,(x) is a(X,F) continuous for all t € R.

. ! The non-decreasing nature of M1/ is not an essential restriction. In fact there always exists
M, with C{M,}=C{M,} and (M,)""" non-decreasing [12].
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Define

3(x) =-lim% (t,(x)—x), xeD@®) < X

t—0

where D(0) is the set of x € X such that the limit exists. D(0) is then a o(X, F)-
dense subspace of X, and 9 is a(X, F)-closed. Assume that D < D(0) is a subset of
X such that:
1) D is a(X, F)-dense in X
i) (D) D
iii) All elements in D are quasianalytic for 6.

Then the linear span L of D is a core for § in the o(X, F)-topology.

Proor. Condition 2 and the well known resolvent formula [11]:

1+ad) 1(x) = j e 't_,(x)dt, xeX,aeR

0

implies that (1+ad) ™! is a(X, F)-closed, since the adjoint of (1 +ad)~* exists as
an operator on F by the condition on the pair (X, F). We here make use of the
fact that a weakly continuous group of isometries of a Banach space is strongly
continuous [15], and a straightforward Riemann integral argument.

Hence é is (X, F)-closed. Let 8, be the (X, F) closure of the restriction of §
to L. We have to show d,=0.

Consider the subset of the graph of J, given by

Gy = {(x,é(x))| x € D}

and the map of G, into X x X (with the product o(X, F)-topology) given by 1,
X T,:

(x’é(x)) - (T,(X), r,(&(x))) .
Let G, be the graph of 4, ie.
Go = {(x,6(x)| x € D(8o)}

CLamm L
(t,x1)(Go) € Go, tER.
To prove this, pick a Y € G§ which is continuous in the o(X,F)xo(X,F)
topology, i.e. ¥ = (,¥,) where ¥,¥, € F [7, V.3.11] and

V() +y,(0(x)) =0, xeD.
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For a fixed x € D, define

g(t) = WI(T:(X))‘}"#Z(TKS(X)) .
Then g € C*(R) and

gn(t) = ¥y (x,(8"(x) + Y2 (z,(6"** (x)) .
From this we have
18”10 = CUI8") + 16" () -

Two remarks are now necessary. First Chernoff, [5], notes that Carleman’s
inequality
00

aa "<y a+2
v=2

1
, a,=20

v=

[ agk:

00
2 a4
v=0

implies that £ (M,,,)”"" and T M, " both diverge or converge simul-
taneously. This yields that d(x) is a quasi-analytic element. Secondly M, itself is
nongdecreasing (since M, =1), and so d(x) and x are in a common quasianalytic
class. As a result g(t) is quasi-analytic.

But

v

g”0) = ¢, (") + ¥, (8" (x)) = 0
since 6: D — D and y € Gj. Hence by the Denjoy—Carleman theorem g(t)=0
for all t [5]. Hence, by the bipolar theorem [7, V.3.12],
(Tr X Tl)(GOO) = GO, teR.

By taking linear combinations and closures, claim 1 follows.
Now, if G is the graph of J, then clearly G, = G. To prove the lemma, we
must show -

CrLamm 2. D(d,)=D(9); that is G,=G. By claim 1, t,(D(d,))=D(d,) for all .
By using the technique in [2, Theorem 3] one shows that this implies:

D@,) < (1+20)(D(3,), aeR

where the closure is in the ¢ (X, F) topology. Thus the range of 1 +ad, is dense
for all « € R, Hence, as (1 +ad)~! exists as a a(X, F)-continuous operator, it
follows that D(d,) is a core for 4. Since J, is closed, claim 2 follows.

3. Quasi-analytic elements in a von Neumann-algebra.
Given a self-adjoint operator H, we write 1,(4) for ¢”’Ae~™" when 4 is any
fixed operator. If B is a subset of a vector space we write B" for its linear span.
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THEOREM 1. Let .# be a von Neumann algebra acting on a Hilbert space #
and 6(-)=[iH, -] a derivation of .# implemented by a self-adjoint operator H.
Assume further that there exists a subset 8 < D(0) such that & is weakly dense in
M and all elements in # are quasi-analytic (in operator norm) for 8. Then

et e ™M = 4 .

Furthermore if 6(#)< %, then #B" is a core (in the o-weak topology) for
6=L[iH, -] defined on the set {A € M :[iH,A] € M},

ReMARK. Before entering the proof we note that § is the generator of t — 1,
by [3; theorem 5].

ProoF. Define U,=e"™™. Let Ae B, A € #', ¢,y € # and consider the
function

g(t) = (l/l,[U,AU_,,A’JQJ) .
Then g € C*(R) and

d"g

W(t) = (,[U"(AU_,A]0).
Since
‘(% < il el 1471 16" (A

we have that g is quasi-analytic (4 € #).
Moreover

P8 0 = 4[5 (4 4T0) = 0

Hence, by the Denjoy-Carleman theorem, g(f)=0. Since A'e M was
arbitrary, we conclude that

UAUre #, teR.

By the density of # we see that
UHUY = M

To complete the theorem, let 5 be as in the statement of the theorem and note
that by [3, theorem 5], § is the generator of the group 1,(4)=U,AU}*. We can
now apply lemma 1 with X=4, F= 4, to get the last statement of the

theorem.
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4. Quasi-analytic elements in the representation Hilbert space of a von
Neumann algebra.

THEOREM 2. Assume that # is a von Neumann algebra on a Hilbert space #
with a cyclic unit vector Q, and 8(-)=[iH, -] is a derivation of .# implemented
by a self-adjoint operator H, such that HQ=0. Further suppose there exists a
subset % < D(d) such that

(i) & is strongly dense in #
(ii) & is closed under multiplication and the *-operation
(iii) 6(B)=2B
(iv) 2R consists of quasi-analytic elements for H and any four such elements
lie in a common quasi-analytic class.

Then
eitH '/’{e—itH = ﬂ.

Proor. Define U,=¢e". Then it clearly suffices to show

UMU* = 4, teR.

To this end, pick A" € .#'. By the cyclicity of Q and the density of & in ./ it is
enough to show

(BQ,[4,UrA'U]JCQ) =0
for A,B,C € # and t € R. Thus define
g() = (BQ,[A,UrA'U]ICQ)
(U,A*BQ,A'U,CQ)— (U,BQ,AU,ACQ)
8:1(0—g:(0"

By the assumptions, A*BQ, CQ, BQ and ACQ all lie in a cominon quasi-
analytic class C{M,}, i.e. if y is any of the above four vectors,

i

IHW| = M, with ¥ (M,)™"" = o0.
We claim that

d
o 8i

< 24 =
o s 24IM,,  i=1,2,

00

from which we conclude that g is in the quasi-analytic class C{M,}.
Consider

g:() = (UA*BQ,AUCQ)
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Clearly g, € C*(R). In fact by Leibnitz’ rule

a n
it Z D(U(H}A*BQ, A'U(iH)"~*CQ)

Thus

n

Z (MIH*A*BQ| | 4’| |H**CQ|

d'l
dr" ar 81

I\

4TS OMM,_, < 14 5 QMM -t
k=0 s

IA

141 Y QYMEM* = j4'|2"M,,

The next to last step employed the non-decreasing nature of (M,)!/".
Having the quasi-analyticity of g(t) we claim g(¢)=0. For this we need only
show that g‘”’(0)=0 for all n. But

a

s " (@)(GH}A*B, A'GHY ~*CQ)—

0) =

=
1]
(=]
Il

-3 i (6" (B)2, A3 (A (C)0)
=0 1=0

1% n! *) 5! n-— k -
(A 0 3 3 B )

k=0 1=0

(A’*Q Y z ma"‘*(a*)a'm)&k-'(cm)

=0 1=0
= (A'*Q,8"(B*AC)Q)
—(A"*Q,8"(B*AC)R)
=0.
This completes the proof of the theorem.
Remark. Theorem 2 partially generalizes [3, theorem 7]. The authors

understand that H. Araki has obtained a generalization of that theorem which
also removes the separating condition on € (private communication).
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5. Quasi-analytic elements in a C*-algebra.

THEOREM 3. Let o/ be a C*-algebra, and w a state of o defining a faithful
cyclic representation. Let 8 be a derivation of o/ such that w-d=0. Assume that
there exists a subset B< of such that

i) # is norm-dense in .
ii) 6(B)c=4A.
iti) The elements in # are quasi-analytic for 8.

Then 6 is closeable, its closure is equal to the closure of its restriction to the
linear span of 8, and & is the generator of a strongly continuous one-parameter
group of automorphisms of .

Proor. We may view & as represented on the Hilbert space defined by the
couple {&/,w}, and that

w(d) = (Q,AQ), Ae o
for a cyclic unit vector Q. The invariance wo-d =0 implies that ¢ is closeable and
there exists a symmetric operator H on D(d)Q2 such that by [1]:
HQ =0
0(Ayy = [iH,Aly, AeD(), ¥y eD©)Q,

From the assumptions it follows that #Q is a dense, invariant set of quasi-
analytic vectors for H, and so by Nussbaum’s theorem, [10], H is essentially
self-adjoint on the linear span of £9Q. Hence, by theorem 1 applied to .# =o/":

el e ™= # teR
Define

1,(A) = efAe™™, AeH
teR

We will first show that
() = o, teR

and that ¢t — 1,|, is a strongly continuous one-parameter group of *-
automorphisms of &/ whose infinitesimal generator o is an extension of é. This
follows from the following two remarks.

OBSERVATION 1. If A € B, then t — 1,(A) is norm-continuous.
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Proor. If n € #, (=the predual of .#, [13]), then:

(e ()= n(d) = f dsn(e(56a)
whence
In(z,(A)—=A) < |tlnll 16(A)] .
Thus we have
[z, (A)— Al < ltllI6(A)

and observation 1 follows.

OBSERVATION 2. If A € &, then
1(Ad)e L, teR

Proor. Pick a linear functional n € #* which annihilates ./, that is,
ne #*NofL, and define

f@© = n(z(4).
We show by induction that

a "
10 = (6" ().

Assume that this has been shown for n and consider

dn

dll
AR A

dr"

n (tt + p.(CWA)) -7 (5n(A)))

n( J " dsz,+,(6"+*(A>))
1]

where the last integral exists as a Riemann integral by observation 1. Hence, by
observation 1:

n

im (2 feem =5 50) = a7 40).

h—=0 h \
Thus
< il o™ (Al ,

00

4"
il
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so f is quasi-analytic. Also

&

T /0 = (") = 0

since n € o/*. Again the Denjoy Carleman theorem gives
S =n(z(4) =0, teR.
By the Hahn-Banach theorem this implies
1(A)e o, teR.
From observation 1 and 2 and the density of # in o/ it follows readily that
1() = o

and t — 7|7 is strongly continuous.

Our theorem is completed by the preceding remark and another application
of lemma 1. Here we take X =/ and F=o/*

We remark that Chernoff obtains the core part of theorem 3 by different
means, [6].
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