SOME OBSERVATIONS ON BESOV AND LIZORKIN-TRIEBEL SPACES

BIÖRN JAWERTH

0. Introduction.

In this note we consider the Besov spaces \dot{B}_p^{sq} and the Lizorkin-Triebel spaces \dot{F}_p^{sq} . In various respects we complete earlier results. In particular, we find the dual spaces when $0 (section 4). For <math>\dot{B}_p^{sq}$ the dual was previously only known when $0 < q \le 1$ (Flett [6]). We also determine the trace of \dot{F}_p^{sq} (section 5), obtaining in this way a result analogous to the one in [7] for \dot{B}_p^{sq} . Finally, we give an extension of Hardy's inequality to \dot{F}_p^{0q} (section 3). In our treatment, based on Szasz' theorem and an imbedding theorem, this becomes almost a triviality even in the special case q=2 corresponding to the Hardy space H_p .

I take this opportunity to express my gratitude to Professor Jaak Peetre for his kind encouragement and experienced advice, and to Professor Hans Triebel for an interesting discussion.

1. Definition of the spaces.

To define the spaces to be studied we choose a sequence $\{\varphi_{\nu}\}_{\nu\in\mathbb{Z}}$ of testfunctions such that

(1.1)
$$\begin{cases} \varphi_{\nu} \in \mathcal{S}_{0} \\ \operatorname{supp} \hat{\varphi}_{\nu} = \{1.5^{-1} \cdot 2^{\nu} \leq |\xi| \leq 1.5^{-2} \} \\ |\hat{\varphi}_{\nu}(\xi)| \geq C_{\varepsilon} > 0 & \text{if } 2^{\nu} (1.5 - \varepsilon)^{-1} \leq |\xi| \leq 2^{\nu} (1.5 - \varepsilon) \\ |D_{\alpha} \hat{\varphi}_{\nu}(\xi)| \leq C_{\alpha} |\xi|^{-|\alpha|} & \text{for every multiindex } \alpha . \end{cases}$$

Here and in what follows \mathscr{S}_0 is the space of rapidly decreasing functions whose Fourier transforms vanish together with all their derivatives at the origin. \mathscr{S}'_0 is its dual space. It is easy to see that \mathscr{S}'_0 in fact can be identified to the space of tempered distributions \mathscr{S}' modulo polynomials.

Received May 20, 1976.

DEFINITION 1.1. Let s be real, $0 < p, q \le \infty$. The Besov space \dot{B}_p^{sq} is the space of all $f \in \mathcal{S}_0'$ such that

$$\|f\|_{\dot{B}^{\mathrm{aq}}_p} \, \equiv \left(\sum_{\mathbf{v}} \, (2^{\mathbf{v}s} \|\varphi_{\mathbf{v}} \! * \! f \|_{L_p})^q \right)^{\!1/q} \, < \, \infty \; .$$

DEFINITION 1.2. Let s be real, $0 , <math>0 < q \le \infty$. The Lizorkin-Triebel space \dot{F}_p^{sq} is the space of all $f \in \mathcal{S}_0'$ such that

$$||f||_{\dot{F}^{sq}_{p}} \equiv \left\| \left(\sum_{v} |2^{vs} \varphi_{v} * f|^{q} \right)^{1/q} \right\|_{L_{2}} < \infty.$$

REMARK 1.1. We emphasize that we in these homogeneous spaces work modulo polynomials.

From the definitions we at once get the imbeddings

(1.2)
$$\dot{B}_{p}^{sq} \to \dot{F}_{p}^{sq} \to \dot{B}_{p}^{sp} \quad \text{if } q \leq p$$
$$\dot{B}_{p}^{sp} \to \dot{F}_{p}^{sq} \to \dot{B}_{p}^{sq} \quad \text{if } q \geq p$$

and especially

$$\dot{B}_p^{sp} = \dot{F}_p^{sp} \quad \text{if } 0$$

Furthermore, using Littlewood-Paley theory it is possible to prove (see [8])

$$\dot{F}_{p}^{02} \approx H_{p}$$

where H_n is the Hardy space on \mathbb{R}^n .

Let us list some other known properties of the spaces (cf. [9], [15]): The imbeddings from \mathcal{S}_0 and into \mathcal{S}_0' are continuous:

$$(1.5) \mathscr{S}_0 \to \dot{B}_p^{sq}, \, \dot{F}_p^{sq} \to \mathscr{S}_0'.$$

- (1.6) If $0 < p, q < \infty$ then \mathcal{S}_0 is dense in \dot{B}_p^{sq} and \dot{F}_p^{sq} .
- (1.7) \dot{B}_{p}^{sq} and \dot{F}_{p}^{sq} are complete.
- (1.8) The Riesz potential $I^s = (-\Delta)^{s/2}$ is an isomorphism from $\dot{B}_p^{s_0q}$ onto $\dot{B}_p^{s_0-s,q}$ and from $\dot{F}_p^{s_0}$ onto $\dot{F}_p^{s_0-s,q}$.

2. An imbedding theorem.

The following imbedding theorem will later play a decisive rôle:

THEOREM 2.1. Let
$$s_0 > s_1$$
, $0 < p_0 < p_1 < \infty$, $0 < q, r \le \infty$. If

$$s_0 - n/p_0 = s_1 - n/p_1$$

then

(i)
$$\dot{B}_{p_0}^{s_0q} \to \dot{B}_{p_1}^{s_1q}$$

(ii)
$$\dot{F}_{p_0}^{s_0q} \to \dot{F}_{p_1}^{s_1r}$$

(iii)
$$\dot{F}_{p_0}^{s_0q} \rightarrow \dot{B}_{p_1}^{s_1p_0}$$

PROOF. We may assume $s_0 = 0$ (cf. (1.8)).

(i) From the easily verified inequality

$$\|\varphi_{\nu} * f\|_{L_{\infty}} \leq C 2^{\nu n/p} \|\varphi_{\nu} * f\|_{L_{p}}$$

we get by Hölder's inequality

$$\|\varphi_{\nu} * f\|_{L_{p_1}} \le C 2^{\nu n(1/p_0 - 1/p_1)} \|\varphi_{\nu} * f\|_{L_{p_0}}.$$

This readily gives (i).

(ii) It suffices to take $q = \infty$ and $||f||_{\dot{F}_{\infty}^{0\infty}} = 1$. By (2.1)

$$\| \varphi_{\nu} * f \|_{L_{\infty}} \leq C 2^{\nu n/p_0} \| f \|_{\dot{F}_{\infty}^{0_{\infty}}} = C 2^{\nu n/p_0} \; .$$

Therefore for any fixed integer N

(2.2)
$$\left(\sum_{-\infty}^{N} |2^{\nu s_1} \varphi_{\nu} * f|^r\right)^{1/r} \leq C 2^{nN/p_1} \leq t$$

if $t \approx C2^{nN/p_1}$. On the other hand, since $s_1 < 0$

(2.3)
$$\left(\sum_{N}^{\infty} |2^{\nu s_{1}} \varphi_{\nu} * f|^{r}\right)^{1/r} \leq C 2^{s_{1} N} \sup_{\nu} |\varphi_{\nu} * f| \leq C t^{1 - p_{1}/p_{0}} \sup_{\omega} |\varphi_{\nu} * f|.$$

Combining (2.2) and (2.3) we get

$$||f||_{F_{p_1}^{s_1r}}^{p_1} = p_1 \int_0^\infty t^{p_1-1} \left| \left\{ \left(\sum_{-\infty}^\infty |2^{vs_1} \varphi_v * f|^r \right)^{1/r} > t \right\} \right| dt$$

$$\leq p_1 \int_0^\infty t^{p_1-1} \left| \left\{ \sup_v |\varphi_v * f| > C t^{p_1/p_0} \right\} \right| dt$$

$$\leq C \int_0^\infty t^{p_0-1} \left| \left\{ \sup_v |\varphi_v * f| > t \right\} \right| dt = C ||f||_{F_{p_0}^{s_0}}^{p_1}.$$

This proves (ii).

(iii) By (2.1) it follows that

$$\dot{F}_{p'}^{s_0\infty}\to \dot{B}_{p_1}^{s',\infty}$$

if $s' - n/p_1 = s_0 - n/p'$. Hence by interpolation

$$(\dot{F}_{p'}^{s_0\infty}, \dot{F}_{p''}^{s_0\infty})_{\theta p_0} \rightarrow (\dot{B}_{p_1}^{s',\infty}, \dot{B}_{p_1}^{s'',\infty})_{\theta p_0}$$

or by the lemma below

$$\dot{F}_{p_0}^{s_0\infty}\to\dot{B}_{p_0}^{s_1p_0}$$

if
$$1/p_0 = (1-\theta)/p' + \theta/p''$$
, $s_1 = (1-\theta)s' + \theta s''$ $(0 < \theta < 1)$.

LEMMA 2.1. Let $0 < p, q \le \infty$. Concerning real interpolation we have

(i)
$$(\dot{B}_{p}^{s',q'},\dot{B}_{p}^{s'',q''})_{\theta a} = \dot{B}_{p}^{sq}$$

if
$$s = (1 - \theta)s' + \theta s''$$
 $(0 < \theta < 1; s' \neq s'')$

(ii)
$$(\dot{F}_{p'}^{s\infty}, \dot{F}_{p''}^{s\infty})_{\theta p} = \dot{F}_{p}^{s\infty}$$

if
$$1/p = (1-\theta)/p' + \theta/p''$$
 $(0 < \theta < 1)$.

PROOF. (i) is well-known; see [9, chapter 11]. We do not detail the proof of (ii). Roughly speaking, one first shows that $\dot{F}_p^{s\infty}$ is a retract of $H_p(l_\infty)$. Then it is just to invoke a vector valued version of the Fefferman-Rivière-Sagher theorem [4] on interpolation of Hardy spaces.

REMARK 2.1. If $p \ge 1$ then (i) of theorem 2.1 is of course essentially the classical Besov imbedding theorem. If 0 it is also well-known; see Peetre [9, chapter 11] from where our proof is taken over.

If q=2 and $p_0, p_1>1$ then (ii) is "Sobolev's theorem on fractional integration" (cf. [13, chapter 5]). (ii) also contains results of for example Stein-Weiss [14], Peetre [8] and Triebel [15].

(iii) with q=2 goes back to Hardy-Littlewood. Our proof is based on ideas in [8].

3. An extension of Hardy's inequality.

In this brief section we consider an application of theorem 2.1. Recall the *n*-dimensional version of Szasz' theorem (cf. [9, chapter 6]):

LEMMA 3.1. Let f denote the Fourier transform of f. Then

$$\|\hat{f}\|_{L_{a}} \leq C \|f\|_{\dot{B}^{m(1/p-1/2),p}_{+}} \quad \text{if } 0$$

Now it is a simple matter to verify the following

THEOREM 3.1. Let $0 and <math>0 < q \le \infty$. Then

(3.1)
$$\left(\int |\widehat{f}(\xi)|^p / |\xi|^{n(2-p)} d\xi \right)^{1/p} \leq C \|f\|_{\dot{F}_p^{0q}}.$$

PROOF. Let $g = I^{-n(2-p)/p} f$. By theorem 2.1:(iii) and (1.8) we have

$$||g||_{\dot{B}_{2}^{n(1/p-1/2),p}} \leq C||f||_{\dot{F}_{n}^{0q}}.$$

Hence, using the lemma, we get

$$\|\hat{g}\|_{L_{-}} \leq C \|f\|_{\dot{F}^{0q}}$$

which is the desired inequality.

REMARK 3.1. If p=2 we must take $q \le 2$ in view of (1.4) and Plancherel's theorem.

REMARK 3.2. The case q=2, $0 (the Hardy space case) is well-known; (3.1) is then sometimes called Hardy's inequality. For <math>T^1$ it was proved by Paley for 1 , for <math>p=1 by Hardy and for $0 by Hardy-Littlewood. For <math>R^n$ the case p=1 has been obtained by Fefferman [3] and Björk [1] and 0 is due to Peetre [8].

4. The duals of \dot{B}_{p}^{sq} and \dot{F}_{p}^{sq} .

The duals of \dot{B}_{p}^{sq} and \dot{F}_{p}^{sq} may be considered as subspaces of \mathscr{S}'_{0} because of (1.5) and (1.6). It turns out that to characterize them exactly if 0 is to a large extent just another application of theorem 2.1.

We begin by describing the dual of \dot{B}_{p}^{sq} :

THEOREM 4.1. Let s be real and 0 . Then

(i)
$$(\dot{B}_{p}^{sq})' \approx \dot{B}_{\infty}^{-s+n(1/p-1),\infty}$$
 if $0 < q \le 1$

(ii)
$$(\dot{B}_{p}^{sq})' \approx \dot{B}_{\infty}^{-s+n(1/p-1),q'}$$
 if $1 < q < \infty$

where 1/q + 1/q' = 1.

PROOF. For simplicity we take s=0. By theorem 2.1:(i) we have

$$\dot{B}_{p}^{0q} \longrightarrow \dot{B}_{1}^{-n(1/p-1), 1}$$
 if $0 < q \le 1$
 $\dot{B}_{n}^{0q} \longrightarrow \dot{B}_{1}^{-n(1/p-1), q}$ if $1 < q < \infty$.

If we use the well-known fact (cf. [9, chapter 3])

$$(\dot{B}_1^{sq})' \approx \dot{B}_{\infty}^{-s,q} \quad \text{if } 1 \leq q < \infty$$

we therefore find

(i')
$$\dot{B}_{\infty}^{n(1/p-1),\infty} \to (\dot{B}_{n}^{0q})'$$
 if $0 < q \le 1$

(ii')
$$\dot{B}_{\infty}^{n(1/p-1), q} \to (\dot{B}_{n}^{0q})'$$
 if $1 < q < \infty$.

In order to prove the converse inclusions we fix a $f \in (\dot{B}_p^{0q})'$ with $||f||_{(\dot{B}_p^{0q})'} = 1$. (i) is a consequence of (i') and

$$||f||_{\dot{B}^{n(1/p-1),\infty}_{\infty}} = \sup_{\nu} \sup_{h} |\langle f, 2^{\nu n(1/p-1)} \varphi_{\nu}(\cdot - h) \rangle| \leq C \cdot 1.$$

Thus there only remains to verify the second half of (ii). Let $\{\varphi_{\nu}\}$ be a sequence of testfunctions satisfying in addition to (1.1) also $\sum_{\nu} \varphi_{\nu} = \delta$ (which is no restriction). Then we obviously have

$$f = \sum_{\nu} \varphi_{\nu} * f \equiv \sum_{\nu} a_{\nu} .$$

Assume with no loss of generality that supp \hat{a}_{ν} and supp φ_{μ} are disjoint if $\nu \neq \mu$. (Just multiply \hat{f} by a suitable function.) For a fixed integer N > 0 we define the sequence $\{b_{\nu}\}_{\nu=-N}^{N}$ by

$$b_{\nu}(x) = \varepsilon_{\nu} 2^{\nu n(1/p-1)} \|a_{\nu}\|_{\dot{B}^{n(1/p-1),\infty}}^{q'-1} \varphi_{\nu}(x-h_{\nu}), \quad |\varepsilon_{\nu}| = 1$$

where $\{h_{\nu}\}$ and the arguments of $\{\varepsilon_{\nu}\}$ are at our disposal. (That indeed $\|a_{\nu}\|_{\dot{B}_{\infty}^{m(1/p-1),\infty}} < \infty$ can be seen in the same way as for (i)). Clearly, in view of our assumption on the supports,

$$\begin{split} f\bigg(\sum_{-N}^{N} b_{\nu}\bigg) &= \sum_{-N}^{N} f(b_{\nu}) \\ &\geq \sum_{-N}^{N} \|a_{\nu}\|_{\dot{B}_{\infty}^{n(1/p-1),\infty}}^{q'-1} \langle a_{\nu}, \varepsilon_{\nu} 2^{\nu n(1/p-1)} \varphi_{\nu}(\cdot -h_{\nu}) \rangle \\ &\geq C \sum_{-N}^{N} \|a_{\nu}\|_{\dot{B}_{\infty}^{n(1/p-1),\infty}}^{q'} = C \sum_{-N}^{N} (2^{\nu n(1/p-1)} \|a_{\nu}\|_{L_{\infty}})^{q'} \end{split}$$

if $\{h_{\nu}\}$ and the arguments of $\{\varepsilon_{\nu}\}$ are chosen properly. But on the other hand

$$f\left(\sum_{-N}^{N} b_{\nu}\right) \leq 1 \cdot \left\| \sum_{-N}^{N} b_{\nu} \right\|_{\dot{B}_{pq}^{0q}} \leq \left(\sum_{-N}^{N} \left(2^{\nu n(1/p-1)} \|a_{\nu}\|_{L_{\infty}}\right)^{q'}\right)^{1/q}.$$

Hence,

$$\left(\sum_{-N}^{N} (2^{\nu n(1/p-1)} ||a_{\nu}||_{L_{\infty}})^{q'}\right)^{1/q'} \leq C$$

and the proof is complete if we let $N \to \infty$.

We turn our attention to \dot{F}_p^{sq} . To determine its dual almost becomes a triviality when knowing both theorem 2.1 and theorem 4.1:

THEOREM 4.2. Let s be real and 0 . Then

$$(\dot{F}_{p}^{sq})' \approx \dot{B}_{\infty}^{-s+n(1/p-1),\infty} \quad \text{if } 0 < q < \infty.$$

PROOF. From (1.2) we deduce that

$$(\dot{F}_p^{sq})' \to (\dot{B}_p^{sq})'$$
 if $q \leq p$
 $(\dot{F}_p^{sq})' \to (\dot{B}_p^{sp})'$ if $q \geq p$.

Conversely, theorem 2.1:(ii) or (iii) yields

$$(\dot{B}_{1}^{s-n(1/p-1),1})' \rightarrow (\dot{F}_{p}^{sq})'$$

Invoking theorem 4.1 we see that the Besov spaces have the same dual and thus also \dot{F}_{n}^{sq} :

$$(\dot{F}_p^{sq})' \approx \dot{B}_{\infty}^{-s+n(1/p-1),\infty}$$
.

REMARK 4.1. Part (i) of theorem 4.1 for T^1 is due to Flett [6]. It was extended to R^n by Peetre [11].

By (1.4) theorem 4.2 includes the fact

$$(H_p)' \approx \dot{B}_{\infty}^{n(1/p-1),\infty}$$
 if $0 .$

For T¹ this is a famous result of Duren-Romberg-Shields [2]. The extension to Rⁿ is by Walsh [16] (cf. also Fefferman-Stein [5], Peetre [11], Rivière [13]).

5. The trace of \dot{F}_{p}^{sq} .

Let us denote a point $x \in \mathbb{R}^n$ by $x = (x', x_n)$, where $x' \in \mathbb{R}^{n-1}$ and $x_n \in \mathbb{R}^1$. Identify \mathbb{R}^{n-1} with the hyperplane $x_n = 0$ in \mathbb{R}^n and consider the trace operator

Tr:
$$\mathscr{S}_0(\mathsf{R}^n) \to \mathscr{S}(\mathsf{R}^{n-1})$$

defined by

$$\operatorname{Tr} f(x') = f(x', 0) .$$

THEOREM 5.1. Let $0 , <math>0 < q \le \infty$ and $s > 1/p + \max(0, (n-1)(1/p-1))$. Then the trace operator can be extended so that

(5.1) Tr:
$$\dot{F}_{p}^{sq}(\mathbb{R}^{n}) \to \dot{B}_{p}^{s-1/p, p}(\mathbb{R}^{n-1})$$
.

Conversely, there is an operator Sr

(5.2) Sr:
$$\dot{B}_{p}^{s-1/p, p}(\mathbb{R}^{n-1}) \to \dot{F}_{p}^{sq}(\mathbb{R}^{n})$$

so that $Tr \circ Sr = Id$.

PROOF. In proving (5.1) we shall for convenience assume 0 (with minor modifications the same proof also works for <math>p > 1). It also suffices to take $q = \infty$.

Let $f \in \dot{F}_p^{sq}(\mathbb{R}^n)$. If $q < \infty$ we can extend Tr by continuity, since \mathscr{S}_0 is then dense in $\dot{F}_p^{sq}(\mathbb{R}^n)$. For $q = \infty$ this is no longer applicable. However, for all q we can define Tr by

Tr
$$f(x') = \sum_{v \in \mathbf{7}} \varphi_v * f(x', 0) \equiv \sum_{v \in \mathbf{7}} a_v$$

where $\{\varphi_v\}_{v\in Z}$ is a sequence of testfunctions on \mathbb{R}^n satisfying (1.1) and $\sum_v \varphi_v = \delta$. Obviously, it is an extension of our original Tr (in fact, as is easily seen, the unique one). That the sum has a limit and thus that Tr is well-defined follows from the completeness of \dot{B}_n^{sq} and (5.3) below.

We need two lemmata; the first is for $p \ge 1$ just Minkowski:

Lemma 5.1. If
$$f,g \in \mathscr{S}_0'$$
 and $\operatorname{supp} \widehat{f}, \operatorname{supp} \widehat{g} \subset \{|\xi| \le r\}$ then
$$\|f * g\|_{L_p} \le C r^{n(1/p-1)} \|f\|_{L_p} \|g\|_{L_p} \quad \text{if } 0
$$\|f * g\|_{L_p} \le \|f\|_{L_1} \|g\|_{L_p} \quad \text{if } 1 \le p \le \infty \ .$$$$

For a proof we refer the reader to [9, chapter 11]. The second lemma is also a result by Peetre [10] (we shall only need it for $q = \infty$ when it is easiest to prove):

Set

$$\varphi_{\nu}^{a}f(x) = \sup_{|x-\nu| \le 2^{-\nu}a} |\varphi_{\nu} * f(y)|$$

for a fixed $a \ge 0$.

LEMMA 5.2. Let s be real and $0 , <math>0 < q \le \infty$. Then

$$||f||_{\dot{F}^{sq}_{p}} \approx \left\| \left(\sum_{\nu} |2^{\nu s} \varphi^{a}_{\nu} f|^{q} \right)^{1/q} \right\|_{L_{p}}.$$

Now the proof of (5.1) is easily accomplished. If $\{\varphi'_{\nu}\}_{\nu\in\mathbb{Z}}$ is a sequence of testfunctions on \mathbb{R}^{n-1} satisfying (1.1), then

$$\operatorname{Tr} f * \varphi'_{\nu} = \sum_{\mu \geq \nu - 1} a_{\mu} * \varphi'_{\nu}.$$

Consequently,

$$\|\operatorname{Tr} f * \varphi'_{\nu}\|_{L_{p}(\mathbb{R}^{n-1})}^{p} \leq \sum_{\mu \geq \nu - 1} \|a_{\mu} * \varphi'_{\nu}\|_{L_{p}(\mathbb{R}^{n-1})}^{p}$$

since

$$(x+y)^p \le x^p + y^p$$

when $x, y \ge 0$ and 0 . By lemma 5.1 we have

$$||a_{\mu}*\varphi'_{\nu}||_{L_{p}(\mathbb{R}^{n-1})} \leq C2^{\mu(t-1/p)}||a_{\mu}||_{L_{p}(\mathbb{R}^{n-1})}||\varphi'_{\nu}||_{L_{p}(\mathbb{R}^{n-1})}$$

with t = 1/p + (n-1)(1/p-1). But

$$\|\varphi_{\nu}'\|_{L_{\nu}(\mathbb{R}^{n-1})} \approx 2^{-\nu(t-1/p)}$$
.

Hence,

$$2^{\nu(s-1/p)p} \| \varphi_{\nu}' * \operatorname{Tr} f \|_{L_{p}(\mathbb{R}^{n-1})}^{p}$$

$$\leq C \sum_{\mu \geq \nu-1} 2^{(\nu-\mu)(s-t)p} 2^{-\mu} \| 2^{\mu s} a_{\mu} \|_{L_{p}(\mathbb{R}^{n-1})}^{p}$$

Inserting this into the definition of Besov spaces (definition 1.1) and using Minkowski's inequality for sums we find

$$\begin{split} & \|f\|_{\dot{B}_{p}^{\mu^{-1/p,p}(\mathbb{R}^{n-1})}}^{p} \leq C \sum_{\nu \leq 1} 2^{\nu(s-t)p} \sum_{\mu} 2^{-\mu} \|2^{\mu s} a_{\mu}\|_{L_{p}(\mathbb{R}^{n-1})}^{p} \\ & \leq C \sum_{\mu} 2^{-\mu} \|2^{\mu s} a_{\mu}\|_{L_{p}(\mathbb{R}^{n-1})}^{p} \end{split}$$

since s > t. However,

$$\sum_{\mu} 2^{-\mu} \| 2^{\mu s} a_{\mu} \|_{L_{p}(\mathbb{R}^{n-1})}^{p} \leq \sum_{\mu} \int_{2^{-\mu}}^{2^{-\mu+1}} \| 2^{\mu s} \varphi_{\mu}^{2} f(\cdot, x_{n}) \|_{L_{p}(\mathbb{R}^{n-1})}^{p} dx_{n}$$

$$\leq C \left\| \sup_{\mu} |2^{\mu s} \varphi_{\mu}^{2} f| \right\|_{L_{p}(\mathbb{R}^{n})}^{p}.$$

Thus by lemma 5.2

$$||f||_{\dot{B}_{n}^{a-1/p,p}(\mathbb{R}^{n-1})} \leq C||f||_{\dot{F}_{n}^{a\infty}(\mathbb{R}^{n})}.$$

This concludes the proof of (5.1).

We turn to (5.2). Now we can take q very small, at least $q \le p$. Let $\{\varphi'_v\}_{v \in \mathbb{Z}}$ and $\{\psi_v\}_{v \in \mathbb{Z}}$ be testfunctions on \mathbb{R}^{n-1} and \mathbb{R}^1 respectively, satisfying (1.1) as well as

$$\sum_{\nu} \varphi'_{\nu} = \delta; \quad \psi_{\nu}(x_{n}) = 2^{\nu} \psi_{0}(2^{\nu} x_{n}), \quad \psi_{0}(0) = 1.$$

Again in order to avoid some trivial technical nuisances we assume that

(5.4)
$$\varphi'_{\nu} * \varphi'_{\mu} * f = 0 \quad \text{if } \nu \neq \mu$$
$$\psi_{\nu} * \psi_{\mu} = 0 \quad \text{if } \nu \neq \mu$$

However, without any loss of generality we may assume that the testfunctions $\{\varphi_n\}_{n\in\mathbb{Z}}$ on \mathbb{R}^n are of the form

(5.5)
$$\varphi_{\nu} = \varphi'_{\nu} \otimes \sum_{\mu \leq \nu} \psi_{\mu} + \sum_{\mu \leq \nu} \varphi'_{\mu} \otimes \psi_{\nu}.$$

Put

$$\operatorname{Sr} f(x', x_n) = \sum_{\mu} 2^{-\mu} \varphi'_{\mu} * f(x') \otimes \psi_{\mu}(x_n) .$$

Clearly,

$$Sr f(x',0) = f(x')$$

that is, $Tr \circ Sr = Id$. Because of (5.4) and (5.5) we see that

$$\operatorname{Sr} f * \varphi_{\nu} = 2^{-\nu+1} \varphi_{\nu}' * \varphi_{\nu}' * f \otimes \psi_{\nu} * \psi_{\nu}.$$

Hence,

$$\|\operatorname{Sr} f\|_{F_{p}^{q}(\mathbb{R}^{n})}^{p} \leq C \left\| \left(\sum_{v} |2^{v(s-1)} \varphi_{v}' * \varphi_{v}' * f \otimes \psi_{v} * \psi_{v}|^{q} \right)^{1/q} \right\|_{L_{p}(\mathbb{R}^{n})}^{p}$$

$$\leq C \int_{-\infty}^{\infty} \left| \sum_{v} \left(2^{v(1p-1)} a_{v} \psi_{v} * \psi_{v}(x_{n}) \right)^{q} \right|^{p/q} dx_{n}$$

with

$$a_{\nu} = 2^{\nu(s-1/p)} \| \varphi'_{\nu} * \varphi'_{\nu} * f \|_{L_{p}(\mathbb{R}^{n-1})}$$

Inserting the trivial estimate

$$|\psi_{\nu} * \psi_{\nu}(x_n)| \leq C2^{\nu} \min (1, (2^{\nu}|x_n|)^{-j})$$

for an arbitrarily large j, gives with r = p/q

$$\begin{aligned} \|\operatorname{Sr} f\|_{\dot{F}_{p}^{u}(\mathbb{R}^{n})}^{p} &\leq C \int_{-\infty}^{\infty} \left| \sum_{v} \left(2^{v/p} a_{v} \min \left(1, \left(2^{v} | x_{n} | \right)^{-j} \right) \right)^{q} \right|^{p/q} dx_{n} \\ &\leq C \sum_{\mu} \left(\sum_{v} \left(2^{v-\mu} a_{v}^{p} \min \left(1, \left(2^{v-\mu} \right)^{-jp} \right) \right)^{1/r} \right)^{r} \end{aligned}$$

If we use Minkowski again, we see that

$$\|\operatorname{Sr} f\|_{\dot{F}^{s_{\mathbf{q}}}_{p}(\mathbb{R}^{n})}^{p} \leq C \sum_{\nu} a^{p}_{\nu} \leq C \|f\|_{\dot{B}^{s-1/p,p}_{p}(\mathbb{R}^{n-1})}^{p}.$$

This is the desired inequality and thus the proof of the theorem is complete.

REMARK 5.1. Our proof of theorem 5.1 is essentially the same as in [7].

REFERENCES

- J.-E. Björk, Some conditions which imply that a translation invariant operator is continuous in the Hardy space H¹(Rⁿ), Pre-print.
- P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on H^p spaces with 0
 J. Reine Angew. Math. 238 (1969), 32-60.
- 3. C. Fefferman, talk delivered at the University of Maryland.
- C. Fefferman, N. Rivière and Y. Sagher, Interpolation between H^p spaces, the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81.
- 5. C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), 137-193.
- T. M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.
- 7. B. Jawerth, The trace of Sobolev and Besov spaces if 0 . To appear in Studia Math.
- 8. J. Peetre, H^p spaces, Technical report, Lund, 1974.
- 9. J. Peetre, New thoughts on Besov spaces, Duke University Press, Durham, to appear.
- 10. J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.
- J. Peetre, Remarques sur les espaces de Besov. Le cas 0 (1973), 947-949.
- 12. N. M. Rivière, Classes of smoothness, Lecture notes, 1972/73.
- E. M. Stein, Singular integrals and differentiability properties of functions (Princeton Mathematical Series 30), Princeton University Press, Princeton, 1970.
- E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables 1: the theory of H^p spaces, Acta Math. 103 (1960), 25-62.
- H. Triebel, Spaces of distributions of Besov type in Euclidean n-space, Duality, interpolation, Ark. Mat. 11 (1973), 13-64.
- 16. T. Walsh, The dual of $H^p(\mathbb{R}^{n+1}_+)$ for p < 1, Canad. J. Math. 25 (1973), 567-577.

LUND UNIVERSITY LUND SWEDEN