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SOME OBSERVATIONS ON
BESOV AND LIZORKIN-TRIEBEL SPACES

BJORN JAWERTH

0. Introduction.

In this note we consider the Besov spaces B;" and the Lizorkin-Triebel
spaces F 7. In various respects we complete earlier results. In particular, we find
the dual spaces when 0 <p <1 (section 4). For Bj," the dual was previously only
known when 0 <g <1 (Flett [6]). We also determine the trace of F;,“ (section 5),
obtaining in this way a result analogous to the one in [7] for BS%. Finally, we
give an extension of Hardy’s inequality to Fg“ (section 3). In our treatment,
based on Szasz’ theorem and an imbedding theorem, this becomes almost a
triviality even in the special case g=2 corresponding to the Hardy space H .

I take this opportunity to express my gratitude to Professor Jaak Peetre for
his kind encouragement and experienced advice, and to Professor Hans Triebel
for an interesting discussion.

1. Definition of the spaces.

To define the spaces to be studied we choose a sequence {@,},.z of
testfunctions such that

@y € yo
suppp, = {1.571-2" < |¢| £ 1.5-2"}
1.1
@ 6,0l 2 C, >0 if 2°(1.5—¢)7" £ |¢ = 2°(1.5—¢)

ID,$,(6) £ C,JE|™™  for every multiindex o .

Here and in what follows & is the space of rapidly decreasing functions whose
Fourier transforms vanish together with all their derivatives at the origin. &
is its dual space. It is easy to see that & in fact can be identified to the space of
tempered distributions &’ modulo polynomials.
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DErFINITION 1.1. Let s be real, 0 < p, g < 0o. The Besov space Bj," is the space of

all fe &, such that

1/q
Ifllge = (Z "o *f Ih,)“) < 0.

DEerFiNITION 1.2, Let 5 be real, 0<p<oo, 0<g< 0. The Lizorkin-Triebel
space F;“ is the space of all fe & such that

1/q
(Z 2%, *f I")

v

< 0.

LP

1S les =

ReEMARK 1.1. We emphasize that we in these homogeneous spaces work
modulo polynomials.
From the definitions we at once get the imbeddings
(1.2) B — F3— B if g<p

B — F31 — B4 if g2p

and especially
(1.3) B? = F¥ if 0<p<oo.
Furthermore, using Littlewood—-Paley theory it is possible to prove (see [8])
(1.4) F}? ~ H,

where H, is the Hardy space on R"
Let us list some other known properties of the spaces (cf. [9], [15]): The
imbeddings from &, and into & are continuous:

(1.5) Fo— B2 P
(1.6) If 0<p,g<oo then ¥, is dense in B and F32.
(1.7) B and F% are complete.

(1.8) The Riesz potential I*=(—4)? is an isomorphism from B? onto
Bio~*4 and from F*? onto Fi~%4.

2. An imbedding theorem.
The following imbedding theorem will later play a decisive rdle:

THEOREM 2.1. Let so>s;, 0<po<p,; <00, 0<q,r<00. If
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So—N/po = $1—n/py
then
0 By By
(ii) Fiot — Fr
(iii) Fig? — Biypo
Proor. We may assume s,=0 (cf. (1.8)).

(i) From the easily verified inequality

@1 loy*flL, < C2™Pllo,*fllL,
we get by Holder’s inequality

loyefllL, < C2"rolrdjg «f|,, .

This readily gives (i).
(ii) It suffices to take g=o00 and | f| F%o:l. By (2.1)

ley*flL, < C2™%0| f|po = C2"P0.

Therefore for any fixed integer N
N 1/r
22 (Z 121, % f l’) < eV gt
if t~C2"V/’1, On the other hand, since s, <0
00 1/r
23 (‘; 21, xf I') < C24Vsuplg,*f]

< Ct'"h/hosupo,+f] .
Combining (2.2) and (2.3) we get

00 1/r
{(£ o) > 4

{sup o, *f] > Ct"l“’O}

(oo

I W = oo | 7
1 Jo

dt’

(foo

py—1
p |
J o

IIA

dt

(*oo
C tPo—1

o

IIA

{SUP lpy*f|> t}

dt = CIf 1%, .

This proves (ii).
(iii) By (2.1) it follows that

000 !, 00
Fy"— By
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if 8 —n/p, =s,—n/p’. Hence by interpolation

Po

(FR™ ™ )op— (B, B,
or by the lemma below

"S000 351P0
—>
FPo BPl

if 1/po=(1—0)/p' +0/p", s,=(1—0)s +6s" (0<O<1).

LemMA 2.1. Let 0<p,q=<o00. Concerning real interpolation we have
0 BBy, = B
if s=(1-0)s+0s" 0<f<1;s+s")
(i) (5, F5)p, = F©
if 1/p=01-0)/p'+0/p" (0<bO<1)

Proor. (i) is well-known; see [9, chapter 11]. We do not detail the proof of
(i). Roughly speaking, one first shows that F5® is a retract of H,(l,,). Then it is
just to invoke a vector valued version of the Fefferman—Riviére-Sagher
theorem [4] on interpolation of Hardy spaces.

ReEMARK 2.1. If p=1 then (i) of theorem 2.1 is of course essentially the
classical Besov imbedding theorem. If 0 <p <1 it is also well-known; see Peetre
[9, chapter 11] from where our proof is taken over.

If g=2 and pyp;>1 then (ii) is “Sobolev’s theorem on fractional
integration” (cf. [13, chapter 5]). (ii) also contains results of for example Stein—
Weiss [14], Peetre [8] and Triebel [15].

(ili) with g=2 goes back to Hardy-Littlewood. Our proof is based on ideas
in [8].

3. An extension of Hardy’s inequality.

In this brief section we consider an application of theorem 2.1. Recall the n-
dimensional version of Szasz’ theorem (cf. [9, chapter 6]):

LEMMA 3.1. Let f denote the Fourier transform of f. Then

I1fl, £ Cliflggm-mr  if 0<p=2.

Now it is a simple matter to verify the following

Math. Scand. 40 - 7
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THeorReEM 3.1. Let 0<p<?2 and 0<q=<o00. Then

1/p
(3.1) (fli(«:)up/lcn"”-” d«:) < Clf lpes -

ProoF. Let g=1""2"P/»f By theorem 2.1:(iii) and (1.8) we have
gllggum-re < Cllf Nl pos - ‘
Hence, using the lemma, we get
18, < Cllflleoe

which is the desired inequality.

Remark 3.1. If p=2 we must take g<2 in view of (1.4) and Plancherel’s
theorem.

ReEMARK 3.2. The case g =2, 0<p<2 (the Hardy space case) is well-known;
(3.1) is then sometimes called Hardy’s inequality. For T! it was proved by
Paley for 1 <p<2, for p=1 by Hardy and for 0 <p<1 by Hardy-Littlewood.
For R" the case p=1 has been obtained by Fefferman [3] and Bjérk [1] and
0<p<1 is due to Peetre [8].

4. The duals of B';," and F o
The duals of Bj’," and F° 2 may be considered as subspaces of & because of
(1.5) and (1.6). It turns out that to characterize them exactly if O<p<1listo a
large extent just another application of theorem 2.1.
We begin by describing the dual of B::
THEOREM 4.1. Let s be real and 0<p<1. Then
() (Byy ~ Bystma-be if0<g<l

() (Byy ~ Bstmalem0d i {<g<oo

where 1/q+1/4 = 1.

Proor. For simplicity we take s=0. By theorem 2.1:(i) we have
B — B{mUp-D1 i 0<gs1
B — B;™!r~1a if 1<g<00.
If we use the well-known fact (cf. [9, chapter 3])

(B9 ~ B»* if 1<q<o0
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we therefore find
() Bue-be (B%y if 0<g=1
(i) Birma  (BYy  if 1<g<oo.

In order to prove the converse inclusions we fix a f e (Bg")’ with || f Il osy = 1. (i)
is a consequence of (i) and

1S I gie-v.o = supsup [Kf,2m0P=Dg (- ~h)d| < C-1.

Thus there only remains to verify the second half of (ii). Let {¢,} be a sequence
of testfunctions satisfying in addition to (1.1) also },¢,=4J (which is no
restriction). Then we obviously have

f=Yonf=Ya.

Assume with no loss of generality that supp a, and supp ¢,, are disjoint if v+ pu.
(Just multiply f by a suitable function.) For a fixed integer N >0 we define the
sequence {b,})__y by

- !
bv(X) = SV2V"(”" l)"av"%:‘a‘/l" 1,00 (pv(x - hv)’ Isvl =1

where {h,} and the arguments of {¢,} are at our disposal. (That indeed
lla, || grare- 1. < 00 can be seen in the same way as for (i)). Clearly, in view of our
assumption on the supports,

(%)

I

N
Y f®)
—N

1\

N

1 _
z “avllggxn—x).w(av, g, 2"mP=Dg (. —h)>
—-N

N N
= C Z "a\,"%»u/p—n,m =C Z (2""(”"_”||av||1,m)"'
~N = -N
if {h,} and the arguments of {¢,} are chosen properly. But on the other hand

N N N 1/q
f (Z bv> sy b = <Z (2""‘”"”’llavlh.w)"'> .
—N -N ~N

IB(;«

Hence,

-~N

N 1g'
(Z (2‘"‘””"’Ilav||1,w)"'> =C

and the proof is complete if we let N — oo.
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We turn our attention to Fj,". To determine its dual almost becomes a
triviality when knowing both theorem 2.1 and theorem 4.1:
THEOREM 4.2. Let s be real and O<p<1. Then

(F39y ~ B st~ jf 0<g<oo.

Proor. From (1.2) we deduce that
(Fy — (Byy if g<p
(Fyy — (BYY if q2p.
Conversely, theorem 2.1:(ii) or (iii) yields

(By ey — (B3
Invoking theorem 4.1 we see that the Besov spaces have the same dual and
thus also Fs2:

(F;q)' ~ Bo—os+n(l/p—~1),oo .
REMARK 4.1. Part (i) of theorem 4.1 for T! is due to Flett [6]. It was extended

to R” by Peetre [11].
By (1.4) theorem 4.2 includes the fact

(H)y ~ Be-bo  if 0<p<l.

For T! this is a famous result of Duren-Romberg-Shields [2]. The extension to
R" is by Walsh [16] (cf. also Fefferman-Stein [5], Peetre [11], Riviére [13]).

5. The trace of F3.

Let us denote a point x € R" by x=(x, x,), where x' € R""! and x, € R..
Identify R"~! with the hyperplane x,=0 in R" and consider the trace operator

Tr: Fo(R"N — L(R"™Y)
defined by
Tr f(x) = f(x,0).

THEOREM 5.1. Let 0<p<o0, 0<q=00 and s>1/p+max (0, (n—1)(1/p—1)).
Then the trace operator can be extended so that

(5.1) Tr: F39(R" — By 1Pp(R™1)
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Conversely, there is an operator Sr
(5.2) St: By UPP(R"1) — F%(RY)
so that TroSr=1Id.

Proor. In proving (5.1) we shall for convenience assume O0<p<1 (with
minor modifications the same proof also works for p>1). It also suffices to
take g=o00.

Let fe F54(R"). If g<oo we can extend Tr by continuity, since ¥, is then
dense in F° 7 (R"). For g=o00 this is no longer applicable. However, for all g we
can define Tr by

Trf(x) = ) of(x,0 = } a,
veZ veZ
where {@,},.z is a sequence of testfunctions on R” satisfying (1.1)and 3, @, =4.
Obviously, it is an extension of our original Tr (in fact, as is easily seen, the
unique one). That the sum has a limit and thus that Tr is well-defined follows
from the completeness of B3 and (5.3) below.
We need two lemmata; the first is for p=1 just Minkowski:

LemMma 5.1, If f,g € &, and supp f, supp g = {|é|<r} then
If*gl, = Cr®=Y) fi, llgly, if 0<p<1
If*gl, < 10, lgh, if 1<p<oo.

For a proof we refer the reader to [9, chapter 11]. The second lemma is also
a result by Peetre [10] (we shall only need it for g=00 when it is easiest

to prove):
Set
o5f(x) = sup lo,xf(y)
jx—yl£27%a

for a fixed a=0.

LEMMA 5.2. Let s be real and 0<p<oo, 0<q=<00. Then

1/q
(Z I2“’¢‘:fl"> i

P

If ey =

Now the proof of (5.1) is easily accomplished. If {¢.},cz is a sequence of
testfunctions on R"~! satisfying (1.1), then
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Trf*¢, = Y a,*¢,.

u2v—1
Consequently,
ITr f*@llE r-yy S Y lla*@llE, ey
since nzv-1

(x+y)P < xP+y?

when x,y=0 and 0<p=1. By lemma 5.1 we have

la,* @l w1y S C2XT 1P la | wo-nll @yl ety
with t=1/p+ (n—1)(1/p—1). But

94l @y = 277¢71P

Hence,
27~ 1PP| o' «Tr £} je-y

<cC Z 2“'"“)("')PZ‘"||2"’a,,||£’(w“)
puzv—1
Inserting this into the definition of Besov spaces (definition 1.1) and using
Minkowski’s inequality for sums we find

"f"f;t;llr-r(gu—l) § C Z 2"(’_‘)', Z 2—“"2‘“a”"i'(kn—l)

vs1 §
S C Y 27%12%a, |2 ey
M
since s>t. However,
a1
2 27H12%a,|E -y S X J: }||2ns<pﬁf (> x)IE, @e-1)dx,
n u “

p

s=C

sup [2*¢% f|
p L,(R"

Thus by lemma 5.2

(5.3) 1/ Npg-vmauey S ClLS lpsoque -

This concludes the proof of (5.1).

" We turn to (5.2). Now we can take g very small, at least g<p. Let {¢,},.7
and {y,},.z be testfunctions on R"~! and R! respectively, satisfying (1.1) as
well as

Zv: @, =0, Y,(x) = 2%(2'x),  ¥o(0) = 1.
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Again in order to avoid some trivial technical nuisances we assume that
(54) o x@xf =0 if vEpu
Yxg, =0 if vEpu

However, without any loss of generality we may assume that the testfunctions
{®,},ez on R" are of the form

(5.5) ?, =0, Y+ ¢.®V,.
sy psvy
Put

St f(x,x,) = X 27, xf (X)® Y, (x,) -

U
Clearly,

St f(x,0) = f(x)

that is, TroSr=1Id. Because of (5.4) and (5.5) we see that

St fxp, = 27" 0\ x@\* fRY ¥y, .

Hence,
1/q||p
ISt S Ipwuy < € (Z 12“““’<p;*¢;*f®wv*wvr*> .
0 pla

<c j T (207 Vi )| dx,
with

a, = 27| x @ xfllL ey -
Inserting the trivial estimate

W, * ¥, (x| £ C2'min (1, (2'x,) )
for an arbitrarily large j, gives with r=p/q

piq

Y (2*%a, min (1, (2']x,)) )

v

dx,

o0

IS £ SC J

(o]

<cy (Z (22 #aZ min (1, (2“'")-""))"')'
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If

we use Minkowski again, we see that

Hsrf”;';omn) é C Z ae é C“f"g;'l/pvp(kn—l) .

This is the desired inequality and thus the proof of the theorem is complete.

N W

—
- O O o =

—

14.

15.

16.

REMARK 5.1. Our proof of theorem 5.1 is essentially the same as in [7].

REFERENCES

. J.-E. Bjork, Some conditions which imply that a translation invariant operator is continuous in

the Hardy space H'(R"), Pre-print.

. P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on H? spaces with 0<p<1,

J. Reine Angew. Math. 238 (1969), 32-60.

. C. Fefferman, talk delivered at the University of Maryland.
. C. Fefferman, N. Riviére and Y. Sagher, Interpolation between HP spaces, the real method,

Trans. Amer. Math. Soc. 191 (1974), 75-81.

. C. Fefferman and E. M. Stein, H? spaces of several variables, Acta Math. 129 (1972), 137-193.
. T. M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39

(1972), 125-158.

. B. Jawerth, The trace of Sobolev and Besov spaces if 0<p<1. To appear in Studia Math.

. J. Peetre, H? spaces, Technical report, Lund, 1974.

. J. Peetre, New thoughts on Besov spaces, Duke University Press, Durham, to appear.

. J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130.

. J. Peetre, Remarques sur les espaces de Besov. Le cas 0<p <1, C. R. Acad. Sci. Paris Sér. A 277

(1973), 947-949.

. N. M. Riviére, Classes of smoothness, Lecture notes, 1972/73.
13.

E. M. Stein, Singular integrals and differentiability properties of functions (Princeton
Mathematical Series 30), Princeton University Press, Princeton, 1970.

E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables 1: the theory
of H? spaces, Acta Math. 103 (1960), 25-62.

H. Triebel, Spaces of distributions of Besov type in Euclidean n-space, Duality, interpolation,
Ark. Mat. 11 (1973), 13-64.

T. Walsh, The dual of H?(R%!) for p<1, Canad. J. Math. 25 (1973), 567-577.

LUND UNIVERSITY
LUND
SWEDEN



