A NONEXISTENCE TEST FOR BIHARMONIC GREEN'S FUNCTIONS OF CLAMPED BODIES

MITSURU NAKAI and LEO SARIO

The purpose of this paper is to introduce a convenient test for the nonexistence of the biharmonic Green's function β_M on a Riemannian manifold M, with "boundary data" $\beta_M = *d\beta_M = 0$. As an application we exhibit an M whose boundary is harmonically so strong that $M \notin O_{HD}$ but which nevertheless carries no β_M .

1. The class O_{β} .

Let $\Omega = \{\Omega\}$ be the directed net of regular subregions of a noncompact Riemannian manifold M of dimension $\mu \ge 2$. Denote by $G_{\Omega}(x, y)$ the harmonic Green's function on Ω and by $H(\Omega)$ the class of harmonic functions on Ω . The biharmonic Green's function of the clamped body, $\beta_{\Omega}(x, y)$ on Ω is well known to exist and is characterized by the following two conditions:

$$\begin{array}{ll} (\beta.1) \ \beta_{\Omega}(\,\cdot\,,y) \in C^2(\Omega-y) \ \ and \ \ \Delta\beta_{\Omega}(\,\cdot\,,y) - G_{\Omega}(\,\cdot\,,y) \in H(\Omega) \ \ for \ \ every \ \ y \ \ in \ \ \Omega; \\ (\beta.2) \ \beta_{\Omega}(\,\cdot\,,y) \in C^1(\bar{\Omega}-y) \ \ and \ \ \beta_{\Omega}(\,\cdot\,,y) = *d\beta_{\Omega}(\,\cdot\,,y) = 0 \ \ on \ \partial\Omega. \end{array}$$

We know that $\beta_{\Omega} - \beta_{\Omega} \in C(\Omega \times \Omega)$ for $\Omega \subset \Omega'$ (e.g. Nakai-Sario [4]) and thus we can define $\beta_{\Omega'}(y,y) - \beta_{\Omega}(y,y)$ as $\lim_{x \to y} (\beta_{\Omega'}(x,y) - \beta_{\Omega}(x,y))$. If there exists a function $\beta_M(x,y)$ on $M \times M$ with values in $(-\infty,\infty]$, finite on $M \times M$ off the diagonal and such that

(1)
$$\lim_{\Omega \to M} (\beta_M(x, y) - \beta_\Omega(x, y)) = 0$$

on $M \times M$, then we call $\beta_M(x, y)$ the (generalized) biharmonic Green's function of the clamped body on M, with "boundary data" $\beta_M = *d\beta_M = 0$. Here we understand (1) for (y, y) as the existence of a finite $\lim_{\Omega \to M} (\beta_{\Omega}(y, y) - \beta_{\Omega}(y, y))$ for one and hence for every $\Omega \in \Omega$. We denote by O_{β} the class of noncompact

This work was sponsored by the U.S. Army Research Office, Grant DA-ARO-31-124-73-G39, University of California, Los Angeles.

Received January 21, 1976.

Riemannian manifolds M on which there exists no β_M . We observe that $M \notin O_B$ is equivalent to

 $(\beta.3)$ $\lim_{\Omega \to M} (\beta_{\Omega'}(x, y) - \beta_{\Omega}(x, y))$ exists and is finite on $\Omega \times \Omega$ for one and hence for every $\Omega \in \Omega$.

2. The class O_{SH_2} .

We consider the class $H_2(M) = H(M) \cap L_2(M, dV)$ where dV is the volume element of M. The class $H_2(M)$ is known to be a locally bounded Hilbert space and the norm convergence implies the uniform convergence on each compact subset of M (e.g. Nakai-Sario [4]). It is easy to show that $H(\Omega) \cap C(\bar{\Omega})$ is dense in $H_2(\Omega)$ for $\Omega \in \Omega$. We denote by O_{H_2} the class of Riemannian manifolds M with $H_2(M) = \{0\}$ and by O_{SH_2} the class of Riemannian manifolds M such that there exists a subregion $N \neq \emptyset$ of M with $M - \bar{N} \neq \emptyset$ and $N \in O_{H_2}$, that is, $H_2(N) = \{0\}$. We have the strict inclusion relation

$$O_{SH_2} < O_{H_2}.$$

The mere inclusion is trivial and the strictness is seen as follows, by means of the Euclidean space E^{μ} of dimension $\mu \ge 2$. First we prove

$$E^{\mu}\in O_{H_2}$$
.

Take any $h \in H_2(E^{\mu})$. Let $(r, \theta) = (r, \theta^1, \dots, \theta^{\mu-1})$ be the polar coordinates, and $d\theta$ the surface element on $\Theta: |x| = 1$. Then

$$g(x) = g(|x|) = \int_{\Theta} h(|x|, \theta)^2 d\theta \ge 0$$

is subharmonic on E^{μ} and, by the maximum principle, g(r) is an increasing function on $[0,\infty)$. If $g(r) \not\equiv 0$, then there exist constants c>0 and $\sigma>0$ such that $g(r) \ge c$ on $[\sigma,\infty)$. Thus

$$\infty = c \int_{\sigma}^{\infty} r^{\mu-1} dr \le \int_{\sigma}^{\infty} g(r) r^{\mu-1} dr$$

$$= \int_{\sigma}^{\infty} \int_{\Theta} h(r, \theta)^{2} r^{\mu-1} dr d\theta$$

$$= \int_{|x| > \sigma} h(x)^{2} dx^{1} \dots dx^{\mu} < \infty,$$

a contradiction. Therefore, $g \equiv 0$ and a fortiori $h \equiv 0$ on every $|x| = \varrho > 0$, that is, $h \equiv 0$, and we conclude that $H_2(E^{\mu}) = \{0\}$.

Next we show that

$$E^{\mu} \notin O_{SH_2}$$
.

Suppose there exists a subregion $N \neq \emptyset$ of E^{μ} with $E^{\mu} - \bar{N} \neq \emptyset$ and $H_2(N) = \{0\}$. Let $x_0 \in E^{\mu} - \bar{N}$ and $\{|x - x_0| < \varrho\} \subset E^{\mu} - \bar{N}$. By a parallel translation, if necessary, we obtain $N \subset N_{\varrho} = \{|x| > \varrho\}$. Since $H_2(N_{\varrho}) \subset H_2(N) = \{0\}$, we have $H_2(N_{\varrho}) = \{0\}$, but this is impossible because

$$h(x) = r^{-(n+\mu-2)}S_n(\theta) \in H_2(N_o) \quad ((r,\theta)=x, n>2),$$

with $S_n(\theta)$ any nonzero spherical harmonic of degree n.

The main purpose of the present paper is to prove:

THEOREM 1. The following inclusion relation is valid:

$$O_{SH_2} \subset O_{\beta} .$$

This will give a convenient test for $M \in O_{\beta}$. We only have to find a subregion $N \neq \emptyset$ of M with $M - \bar{N} \neq \emptyset$ and $H_2(N) = \{0\}$ to conclude that $M \in O_{\beta}$. Note that this is not a characterization of O_{β} , i.e. (3) is not an equality in general. In fact,

$$\beta_{\Omega_{\varrho}}(x,0) = \begin{cases} |x|^{2} \log \frac{|x|}{\varrho} - \frac{1}{2}(|x|^{2} - \varrho^{2}), & (\mu = 2); \\ -|x| + \varrho + \frac{1}{2}\varrho^{-1}(|x|^{2} - \varrho^{2}), & (\mu = 3); \\ -\log \frac{|x|}{\varrho} + \frac{1}{2}\varrho^{-1}(|x|^{2} - \varrho^{2}), & (\mu = 4); \\ |x|^{-\mu + 4} - \varrho^{-\mu + 4} + \frac{1}{2}(\mu - 4)\varrho^{-\mu + 2}(|x|^{2} - \varrho^{2}), & (\mu \ge 5), \end{cases}$$

on $\Omega_{\varrho} = \{|x| < \varrho\} \ (0 < \varrho < \infty)$, hence

$$E^{\mu} \in O_{\beta} \qquad (\mu = 2, 3, 4) .$$

By this and $E^{\mu} \notin O_{SH_2}$ we see that the equality does not hold in (3) for the dimensions $\mu = 2, 3$, and 4.

The proof of Theorem 1 will be given in section 7 after we have established, in sections 3-6, three *complete characterizations* of O_{β} , instead of merely an inclusion as in (3). The significance of (3) lies in its applicability to concrete cases to show the nonexistence of β .

3. The β -density $H_{\Omega}(\cdot, v)$.

As a consequence of $(\beta.1)$ and $(\beta.2)$, $\beta_{\Omega}(\cdot, y)$ is a Green potential with the density $H_{\Omega}(\cdot, y) = \Delta \beta_{\Omega}(\cdot, y)$, which we call the β -density on Ω :

(4)
$$\beta_{\Omega}(\cdot,y) = \int_{\Omega} G_{\Omega}(\cdot,\xi) H_{\Omega}(\xi,y) dV_{\xi}.$$

Since $H_{\Omega}(\cdot, y) \in C(\bar{\Omega} - y)$, a property of the Green kernel (e.g. Miranda [1]) gives

$$*d\beta_{\Omega}(\cdot,y) = \int_{\Omega} *dG_{\Omega}(\cdot,\xi) H_{\Omega}(\xi,y) dV_{\xi}$$

on $\partial \Omega$. Again by $(\beta.2)$,

$$\int_{\Omega} *d_x G_{\Omega}(x,\xi) H_{\Omega}(\xi,y) dV_{\xi} = 0$$

for every $x \in \partial \Omega$. On multiplying both sides by an arbitrary $h \in H(\Omega) \cap C(\overline{\Omega})$ and integrating over $\partial \Omega$, we obtain by Fubini's theorem

$$\int_{\Omega} \left(\int_{\partial \Omega} h(x) * d_x G_{\Omega}(x,\xi) \right) H_{\Omega}(\xi,y) dV_{\xi} = 0.$$

By the reproducing property of G_{Ω} , we conclude that

(5)
$$\int_{\Omega} h(\xi) H_{\Omega}(\xi, y) dV_{\xi} = 0$$

for every $h \in H(\Omega) \cap C(\overline{\Omega})$, and since $H(\Omega) \cap C(\overline{\Omega})$ is dense in $H_2(\Omega)$, for every $h \in H_2(\Omega)$. We have obtained for the β -density the following orthogonality property which plays an important role in the study of O_{β} :

(6)
$$H_{\Omega}(\cdot,y)\perp H_{2}(\Omega).$$

4. The β -span S_{β} .

We denote by (\cdot, \cdot) and $\|\cdot\|$ the inner product and the norm in $L_2(M, dV)$. We consider $\beta_{\Omega}(x, y)$ and $H_{\Omega}(x, y)$ as defined on all of $M \times M$ by giving values zero outside of their original domains of definition. First observe that, by (6) and $H_{\Omega}(\cdot, y) - G_{\Omega}(\cdot, y) \in H_2(\Omega)$,

(7)
$$\beta_{\Omega}(x,y) = \int_{\Omega} H_{\Omega}(\xi,x) H_{\Omega}(\xi,y) dV_{\xi}.$$

Similarly by (6) and $H_{\Omega}(\cdot, y) - H_{\Omega}(\cdot, y) \in H_2(\Omega)$, we have for $\Omega \subset \Omega'$,

$$(8) \ \beta_{\Omega}(x,y) - \beta_{\Omega}(x,y) = \int_{\Omega} \big(H_{\Omega}(\xi,x) - H_{\Omega}(\xi,x) \big) \big(H_{\Omega}(\xi,y) - H_{\Omega}(\xi,y) \big) dV_{\xi}.$$

In particular,

(9)
$$\beta_{O}(v, v) - \beta_{O}(v, v) = \|H_{O}(\cdot, v) - H_{O}(\cdot, v)\|^{2}.$$

Again by (6),

(10)
$$||H_{\Omega'}(\cdot, y) - H_{\Omega'}(\cdot, y)||^2$$

$$= ||H_{\Omega'}(\cdot, y) - H_{\Omega}(\cdot, y)||^2 - ||H_{\Omega'}(\cdot, y) - H_{\Omega}(\cdot, y)||^2$$

for $\Omega \subset \Omega' \subset \Omega''$. From (9) and (10) it follows that $\{\beta_{\Omega'}(y,y) - \beta_{\Omega}(y,y)\}$ $\{\Omega' \supset \Omega, \Omega' \in \Omega\}$ is an increasing net. Therefore, we can define for $y \in M$ and $\Omega \in \Omega$ with $y \in \Omega$.

(11)
$$S_{\beta}(y) = S_{\beta}(y; M) = S_{\beta}(y; \Omega, M)$$

$$= \lim_{\Omega \to M} (\beta_{\Omega}(y, y) - \beta_{\Omega}(y, y))$$

$$= \lim_{\Omega \to M} ||H_{\Omega}(\cdot, y) - H_{\Omega}(\cdot, y)||^{2} \in (0, \infty],$$

which we will call the β -span of M at $y \in M$ with respect to Ω . The property $S_{\beta}(y) < \infty$ is clearly independent of the choice of Ω and is thus a property of (M, y). We maintain:

THEOREM 2. The manifold M does not belong to O_{β} if and only if the β -span $S_{\beta}(y)$ of M is finite at every point $y \in M$.

If $M \notin O_{\beta}$, or $(\beta.3)$ is valid, then we trivially have $S_{\beta}(y) < \infty$ for every $y \in M$. Conversely, assume that $S_{\beta}(y) < \infty$ for every $y \in M$. Then, by (8) and (9), the Schwarz inequality implies that

$$(12) |\beta_{\Omega'}(x,y) - \beta_{\Omega'}(x,y)| \le ||H_{\Omega''}(\cdot,x) - H_{\Omega'}(\cdot,x)|| \cdot ||H_{\Omega''}(\cdot,y) - H_{\Omega'}(\cdot,y)||$$

on $\Omega' \times \Omega'$ for $\Omega' \subset \Omega''$. By (10), (11), $S_{\beta}(x) < \infty$, and $S_{\beta}(y) < \infty$, we see that the right-hand side of (12) converges to zero on $\Omega \times \Omega$ as $\Omega' \to M$ for any $\Omega \subset \Omega'$ $\subset \Omega''$, and, since Ω is arbitrary,

$$\lim_{\Omega' \subset \Omega'', \Omega' \to M} (\beta_{\Omega''}(x, y) - \beta_{\Omega'}(x, y)) = 0$$

on $M \times M$.

$$\lim_{\Omega' \to M} |\beta_{\Omega'}(x, y) - \beta_{\Omega}(x, y)| \leq S_{\beta}(x)^{\frac{1}{2}} S_{\beta}(y)^{\frac{1}{2}} ,$$

and

$$S_{\beta}(y) = \lim_{\Omega' \to M} (\beta_{\Omega''}(y, y) - \beta_{\Omega}(y, y)) < \infty.$$

Thus $(\beta.3)$ is fulfilled for every $\Omega \in \Omega$ and, therefore, $M \notin O_{\alpha}$.

5. The β -density $H_M(\cdot, y)$.

Assume $M \notin O_{\beta}$. By Theorem 2 and relations (10) and (11), we conclude that $\{H_{\Omega'}(\cdot,y)-H_{\Omega}(\cdot,y)\}\ (\Omega'\supset\Omega,\ \Omega'\in\Omega)$ is a Cauchy net in $L_2(M,dV)$ and has a limit $H_{M\Omega}(\cdot,y)\in L_2(M,dV)$. Set

$$H_M(\cdot, v) = H_{MO}(\cdot, v) + H_O(\cdot, v)$$

Then since

$$H_{M}(\cdot, y) - H_{O}(\cdot, y) = H_{MO}(\cdot, y) - (H_{O}(\cdot, y) - H_{O}(\cdot, y)),$$

the net $\{H_M(\cdot,y)-H_{\Omega'}(\cdot,y)\}$ is convergent to zero in $L_2(M,dV)$. Fix an arbitrary $\Omega_0 \in \Omega$ with $y \notin \Omega_0$. Then $\{H_{\Omega'}(\cdot,y)\}$ is a Cauchy net in $H_2(\Omega_0)$, $H_M(\cdot,y)$ is its limit, and a fortiori $H_M(\cdot,y) \in H_2(\Omega_0)$. Therefore,

(13)
$$H_M(\cdot, y) \in H(M-y) .$$

Fix an arbitrary $\Omega \in \Omega$ with $y \in \Omega$. Observe that $\{H_{\Omega'}(\cdot, y) - G_{\Omega}(\cdot, y)\}$ $(\Omega' \supset \Omega, \Omega' \in \Omega)$ is also a Cauchy net in $H_2(\Omega)$, convergent to $H_M(\cdot, y) - G_{\Omega}(\cdot, y)$, which is again in $H_2(\Omega)$. Thus we have

(14)
$$H_{M}(\cdot, y) - G_{\Omega}(\cdot, y) \in H(\Omega)$$

for one and hence for every $\Omega \in \Omega$ with $y \in \Omega$. It is also clear that

$$(15) H_M(\cdot, y) \in H_2(M - \Omega)$$

for any $\Omega \in \Omega$ with $y \in \Omega$. Besides properties (13)–(15) of $H_M(\cdot, y)$, the following orthogonality relation is of fundamental importance:

(16)
$$H_{\mathbf{M}}(\cdot, y) \perp H_{\mathbf{2}}(\mathbf{M}),$$

or, equivalently,

(17)
$$\int_{M} h(\xi) H_{M}(\xi, y) dV_{\xi} = 0$$

for every $h \in H_2(M)$. Here the integral on the right is well defined because of (14) and (15). For the proof, observe that the inequality

$$|(h,H_M(\,\cdot\,,y)-H_\Omega(\,\cdot\,,y))| \leq \|h\|\cdot\|H_M(\,\cdot\,,y)-H_\Omega(\,\cdot\,,y)\|$$

implies

$$\int_{M} h(\xi) H_{M}(\xi, y) dV_{\xi} = \lim_{\Omega \to M} \int_{\Omega} h(\xi) H_{\Omega}(\xi, y) dV_{\xi}.$$

Since $h \in H_2(M) \subset H_2(\Omega)$, (5) yields (17).

We shall call a function $H_M(\cdot, y)$ on M-y with properties (13)–(16) the β -density on M for $y \in M$. It is unique. In fact, if $K(\cdot, y)$ satisfies (13)–(16), then $h=H_M(\cdot,y)-K(\cdot,y)\in H_2(M)$, and by (16) for $H_M(\cdot,y)$ and $K(\cdot,y)$ we obtain $(h,h)=\|h\|^2=0$, that is, $h\equiv 0$ on M.

We claim:

THEOREM 3. The manifold M does not belong to O_{β} if and only if the β -density $H_{M}(\cdot, y)$ exists on M for every $y \in M$.

We only have to show that the existence of the β -density $H_M(\cdot, y)$ on M for every $y \in M$ implies $M \notin O_{\beta}$. Let $\Omega \subset \Omega'$. Since $H_M(\cdot, y) - H_{\Omega'}(\cdot, y) \in H_2(\Omega')$ $\subset H_2(\Omega)$, we have

$$\begin{aligned} \big(\big(H_M(\cdot, y) - H_{\Omega}(\cdot, y) \big) - \big(H_{\Omega}(\cdot, y) - H_{\Omega}(\cdot, y) \big), \ H_{\Omega}(\cdot, y) - H_{\Omega}(\cdot, y) \big) \\ &= \big(H_M(\cdot, y) - H_{\Omega}(\cdot, y), \ H_{\Omega}(\cdot, y) \big) \\ &- \big(H_M(\cdot, y) - H_{\Omega}(\cdot, y), H_{\Omega}(\cdot, y) \big) = 0 \end{aligned}$$

and a fortiori

$$(H_{\mathcal{M}}(\cdot,y)-H_{\mathcal{Q}}(\cdot,y),H_{\mathcal{Q}}(\cdot,y)-H_{\mathcal{Q}}(\cdot,y)) = \|H_{\mathcal{Q}}(\cdot,y)-H_{\mathcal{Q}}(\cdot,y)\|^2.$$

By the Schwarz inequality,

$$||H_{O'}(\cdot, y) - H_{O}(\cdot, y)|| \le ||H_{M}(\cdot, y) - H_{O}(\cdot, y)||$$
.

In view of (11) it follows that $S_n(y) < \infty$ for every $y \in M$, that is, $M \notin O_n$.

COROLLARY. The β -span $S_{\beta}(y)$ is finite if and only if the β -density $H_{M}(\cdot, y)$ exists on M at y, and in this case,

(18)
$$S_{\theta}(y; \Omega, M) = \|H_{M}(\cdot, y) - H_{\Omega}(\cdot, y)\|^{2}.$$

6. An extremal property of $H_M(\cdot, y)$.

Assume the existence of β_M . Then by (1), (8), and $\lim_{\Omega \to M} \|H_M(\cdot, y) - H_{\Omega}(\cdot, y)\| = 0$, we have

$$\beta_{M}(x,y) - \beta_{\Omega}(x,y) = (H_{M}(\cdot,x) - H_{\Omega}(\cdot,x), H_{M}(\cdot,y) - H_{\Omega}(\cdot,y))$$

on $\Omega \times \Omega$. By (6) and (7),

(19)
$$\beta_M(x,y) = \int_M H_M(\xi,x) H_M(\xi,y) \, dV_{\xi}$$

on $\Omega \times \Omega$ for every $\Omega \in \Omega$, and a fortiori on $M \times M$. Instead of (1) we can take (19) as the definition of β_M (cf. Nakai-Sario [4]) starting from β -densities $H_M(\cdot, y)$ for all $y \in M$.

In this connection, we consider the family F(M, y) of functions $K(\cdot, y)$ on M-y satisfying (13)–(15), with K replacing H_M . If $H_M(\cdot, y)$ exists, then it is in the class F(M, y) and thus

$$(20) F(M, y) \neq \emptyset.$$

Since $H_M(\cdot, y) - K(\cdot, y) \in H_2(M)$, we have

$$(H_{M}(\cdot, y) - K(\cdot, y), H_{M}(\cdot, y) - H_{\Omega}(\cdot, y)) = 0$$

for every $\Omega \in \Omega$. By the Schwarz inequality applied to

$$\|H_M(\cdot,y)-H_\Omega(\cdot,y)\|^2=\big(K(\cdot,y)-H_\Omega(\cdot,y),H_M(\cdot,y)-H_\Omega(\cdot,y)\big)$$

we obtain the following extremal property of $H_M(\cdot, y)$:

(21)
$$||H_{M}(\cdot, y) - H_{\Omega}(\cdot, y)|| = \lim_{K \in F(M, y)} ||K(\cdot, y) - H_{\Omega}(\cdot, y)||$$

for any $\Omega \in \Omega$ with $y \in \Omega$.

This property actually characterizes $H_M(\cdot, y)$ in the class F(M, y) if (20) is valid. In fact, suppose $F(M, y) \neq 0$. Fix an arbitrary $\Omega \in \Omega$. Then the family

$$X_{\Omega} = \{K(\cdot, y) - H_{\Omega}(\cdot, y) ; K(\cdot, y) \in F(M, y)\}$$

is clearly a nonempty convex set in $L_2(M, dV)$. It is also closed. To see this, let $\{K_n(\cdot, y) - H_{\Omega}(\cdot, y)\}$ (n = 1, 2, ...) be a sequence in X_{Ω} converging to a $\overline{K} \in L^2(M, dV)$. Set $K = \overline{K} + H_{\Omega}(\cdot, y)$. Then $\{K_n - K\}$ is a Cauchy sequence in $L^2(M, dV)$, and therefore, $\{K_n\}$ is Cauchy in $H_2(\Omega)$ for every $\Omega \in \Omega$ with $y \notin \Omega$, and $\{K_n - G_{\Omega}(\cdot, y)\}$ is Cauchy in $H_2(\Omega)$ for every $\Omega \in \Omega$ with $y \in \Omega$. Thus K enjoys properties (13)–(15), i.e.,

$$K - H_{\Omega}(\cdot, y) = \lim_{n \to \infty} (K_n(\cdot, y) - H_{\Omega}(\cdot, y)) \in X_{\Omega},$$

and X_{Ω} is closed.

Since any nonempty closed convex subset of a Hilbert space contains a unique element of minimum norm, there exists a unique element $K_0 - H_{\Omega}(\cdot, y) \in X_{\Omega}$ such that

$$||K_0 - H_{\Omega}(\cdot, y)|| = \min_{K \in F(M, y)} ||K(\cdot, y) - H_{\Omega}(\cdot, y)||.$$

Let h be any element in $H_2(\Omega)$, and t>0. In view of $K_0+th\in F(M,y)$, we have

$$||K_0 - H_O(\cdot, v) + th||^2 \ge ||K_0 - H_O(\cdot, v)||^2$$

or

$$2t(K_0 - H_0(\cdot, v), h) + t^2 ||h||^2 \ge 0$$
.

Since this is true for every t > 0,

$$(K_0 - H_0(\cdot, v), h) = 0$$

for every $h \in H_2(M)$. From this and (5) we deduce the validity of (16) or (17) with K_0 replacing $H_M(\cdot, y)$. Thus K_0 satisfies (13)–(16), i.e., K_0 is the β -density $H_M(\cdot, y)$ on M for y. We have shown:

The β -density $H_M(\cdot, y)$ on M for $y \in M$ exists if and only if $F(y, M) \neq \emptyset$.

We restate this in the following form:

THEOREM 4. The manifold M does not belong to O_{β} if and only if there exists a harmonic function $K(\cdot, y)$ on M-y which has the harmonic fundamental singularity at y and is square integrable on M off any neighborhood of y.

7. Proof of Theorem 1.

Inclusion (3) can now be established using Theorem 3 or 4. For example, let $M \in O_{SH_2}$. Then there exists a subregion $N \neq \emptyset$ of M with $M - \bar{N} \neq \emptyset$ and $H_2(N) = \{0\}$. If $M \notin O_\beta$, choose a point $y \in M - \bar{N}$. By Theorem 3, the β -density $H_M(\cdot, y)$ exists on M for y, and by taking $\Omega \in \Omega$ with $y \in \Omega$ and $\bar{\Omega} \subset M - \bar{N}$, we infer by (15) that $H_M(\cdot, y) \mid N \in H_2(N) = \{0\}$. Thus $H_M(\cdot, y) \equiv 0$ on N. By the unique continuation property of harmonic functions, $H_{\Omega}(\cdot, y) \equiv 0$ on M - y, which contradicts (14). Therefore, $M \in O_\beta$, and we have proved Theorem 1.

8. An application.

As an illustration of the use of our test (3), we exhibit a manifold M which shows that

$$(22) O_{\beta} - O_{HD} \neq \emptyset.$$

Let E_{λ}^2 be the plane with the metric

$$ds = \sqrt{\lambda(x)} |dx|, \quad \lambda(x) = \exp(|x|^2).$$

Choose $M = \{|x| > 1\}$ in E_{λ}^2 . Since HD(M, ds) = HD(M, |dx|), we clearly have $(M, ds) \notin O_{HD}$. Let $N_{\varrho} = \{|x| > \varrho\}$ $(1 < \varrho < \infty)$. We assert that $H_2(N_{\varrho}, ds) = \{0\}$. It suffices to show that if h is harmonic on $|x| > \varrho$ and

$$A = \int_{N_a} h(r,\theta)^2 \lambda(r) r \, dr \, d\theta < \infty ,$$

then $h \equiv 0$. The expansion

$$h(r,\theta) = a \log r + \sum_{n=-\infty}^{\infty} r^n (a_n \cos n\theta + b_n \sin n\theta)$$

on N_o gives

$$L(r) = \int_0^{2\pi} h(r,\theta)^2 d\theta$$

= $2\pi (a_0 + a \log r)^2 + \pi \sum_{n=-\infty}^{\infty} \sum_{n=0}^{\infty} (a_n^2 + b_n^2) r^{2n}$,

and we have

$$A = \int_{\varrho}^{\infty} L(r)\lambda(r)r \, dr$$

$$= 2\pi \int_{\varrho}^{\infty} (a_0 + a\log r)^2 e^{r^2} r \, dr + \pi \sum_{n = -\infty, n \neq 0}^{\infty} (a_n^2 + b_n^2) \int_{\varrho}^{\infty} r^{2n+1} e^{r^2} \, dr \, .$$

From $A < \infty$ we infer that $a = a_n = b_n = 0$ for $n = 0, \pm 1, \ldots$, that is, $h \equiv 0$ on N_q . Therefore,

$$(M, ds) \in O_{SH_2}$$

and (3) yields $(M, ds) \in O_{\theta}$.

BIBLIOGRAPHY

- C. Miranda, Partial Differential Equations of Elliptic Type, 2nd ed. (Ergebnisse Math. 2) Springer-Verlag, New York · Heidelberg · Berlin, 1970.
- M. Nakai and L. Sario, Parabolic Riemannian planes carrying biharmonic Green's functions of the clamped plate, J. Analyse Math. 30 (1976), 372-389.
- 3. M. Nakai and L. Sario, A strict inclusion related to biharmonic Green's functions of clamped and simply supported bodies, Ann. Acad. Sci. Fenn. (to appear).
- M. Nakai and L. Sario, Existence of biharmonic Green's functions, Proc. London Math. Soc. (to appear).
- 5. J. Ralston and L. Sario, A relation between biharmonic Green's functions of simply supported and clamped bodies, Nagoya Math. J. 61 (1976), 59-71.

NAGOYA INSTITUTE OF TECHNOLOGY, NAGOYA, JAPAN

AND

UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA, U.S.A.