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A NONEXISTENCE TEST
FOR BIHARMONIC GREEN’S FUNCTIONS
OF CLAMPED BODIES

MITSURU NAKAI and LEO SARIO

The purpose of this paper is to introduce a convenient test for the
nonexistence of the biharmonic Green’s function f,; on a Riemannian
manifold M, with “boundary data” fiy;=*dfy=0. As an application we
exhibit an M whose boundary is harmonically so strong that M ¢ Oyp but
which nevertheless carries no .

1. The class O,.

Let 2={Q} be the directed net of regular subregions of a noncompact
Riemannian manifold M of dimension p=2. Denote by Gy(x, y) the harmonic
Green’s function on Q and by H(Q) the class of harmonic functions on Q. The
biharmonic Green’s function of the clamped body, o (x, y) on Q is well known to
exist and is characterized by the following two conditions:

(B.1) Ba(*,y) € C*(Q—y) and 4Bo(-,y)—Ga(",y) € H(Q) for every y in Q;
(B-2) Ba(:,y) € C'(2~y) and Bo(-,y)==dBq(,y)=0 on 0Q.

We know that S —f, € C(Qx Q) for Q= Q' (e.g. Nakai-Sario [4]) and thus
we can define B (¥, y)—Ba(y, ) as lim ., (Ba (x,y) — Bo(x, y)). If there exists a
function Bs(x,y) on M x M with values in (— 00, 0c], finite on M x M off the
diagonal and such that

(1) lim (By(x,y)—Ba(x,y) = 0
N-M

on M x M, then we call ,,(x, y) the (generalized) biharmonic Green’s function of
the clamped body on M, with “boundary data” By = *dfy=0. Here we
understand (1) for (y, y) as the existence of a finite limg _, 5 (B (v, ¥) = Ba (3, ¥))
for one and hence for every Q € 2. We denote by O the class of noncompact
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Riemannian manifolds M on which there exists no fj,. We observe that
M ¢ Oy is equivalent to

(8.3) limg_, pr (Bar (x, ¥) — Ba(x,y)) exists and is finite on Qx Q for one and
hence for every Q € 2.

2. The class OSHz’

We consider the class H,(M)=H(M)N L,(M,dV) where dV is the volume
element of M. The class H,(M) is known to be a locally bounded Hilbert space
and the norm convergence implies the uniform convergence on each compact
subset of M (e.g. Nakai-Sario [4]). It is easy to show that H(Q) N C(Q) is dense
in H,(Q) for Q € 2. We denote by Oy, the class of Riemannian manifolds M
with H,(M)={0} and by Ogy, the class of Riemannian manifolds M such that
there exists a subregion N+ @S of M with M— N+ and N € Oy,, that is,
H,(N)={0}. We have the strict inclusion relation

@) Osn, < On, -
The mere inclusion is trivial and the strictness is seen as follows, by means
of the Euclidean space E* of dimension u=2. First we prove
E* € Oy, .

Take any h € H,(E"). Let (r,0)= (r,6",. . .,0;‘._ l') be the polar coordinates, and
d6 the surface element on @: |x|=1. Then

glx) = g(x)) = L h(lx|,6)*d6 = 0

is subharmonic on E* and, by the maximum principle, g(r) is an increasing
function on [0, 00). If g(r)£0, then there exist constants ¢>0 and ¢>0 such
that g(r)=c on [0, 00). Thus

A

00 (*o0
00 = cj rldr < g(r*~tdr
= I h(r,0)*r*~* drdf

Jeo JO

= h(x)?dx!...dx" < o0,

J x>0

a contradiction. Therefore, g=0 and a fortiori h=0 on every |x|=¢>0, that is,
h=0, and we conclude that H,(E*)={0}.
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Next we show that

E* ¢ Ogy, -

Suppose there exists a subregion N+ ¥ of E* with E*— N+ ¢ and H,(N)
={0}. Let x, € E*—N and {|x —x,| <@} = E*—N. By a parallel translation, if
necessary, we obtain N<N,={|x|>p}. Since H,(N,) = H,(N)={0}, we have
H,(N,)={0}, but this is impossible because

h(x) = r~®*»=25 (0) € Hy,(N,) ((r,0)=x, n>2),

with S,(0) any nonzero spherical harmonic of degree n.
The main purpose of the present paper is to prove:

THEOREM 1. The following inclusion relation is valid:
(3) OSH: < 0’; .

This will give a convenient test for M € Oz We only have to find a subregion
N+ @ of M with M— N+ & and H,(N)={0} to conclude that M e O,. Note

that this is not a characterization of Oy, i.e. (3) is not an equality in general. In
fact,

x|

x| IOg —3(x? - 2%, (n=2);
—lxl+e+%e“(lx|2-ez), (u=3);

Ba,(x,0) = ]
—10g3+%e“(lxlz—ez), (n=49);
x| 7#*4—p Bt L (u—do T A (IXP —0%),  (u29),

on Q,={|x|<e} (0<g<o0), hence
E*e0, (1=2,34).

By this and E* ¢ Ogy, we see that the equality does not hold in (3) for the
dimensions u=2,3, and 4.

The proof of Theorem 1 will be given in section 7 after we have established,
in sections 3-6, three complete characterizations of Oy, instead of merely an
inclusion as in (3). The significance of (3) lies in its applicability to concrete
cases to show the nonexistence of f.
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3. The p-density Hy(-, y).

As a consequence of (f.1) and (B.2), Bo(-, ) is a Green potential with the
density Hy(, y)=A4Bg(-,y), which we call the B-density on Q:

@) Bal-,y) = L Ga(+,OHq(S, y)dV .

Since Hg(",y) € C(Q—y), a property of the Green kernel (e.g. Miranda [1])
gives

*dBqo(-,y) = J;) *dGo(-,OHq(, y)dV,

on 0Q. Again by (8.2),

L *d,Go(x,)Hq (G, y)dV, = 0

for every x € 6Q2. On multiplying both sides by an arbitrary h € H(Q)N C()
and integrating over 0Q, we obtain by Fubini’s theorem

J q h(X)*deg(x,§)>H9(€,y)dV¢ =0.
Q o

By the reproducing property of Gg, we conclude that
&) L h(QHqo(&, y)dVe = 0

for every h € H(Q)N C(Q), and since H(Q) N C(£) is dense in H,(Q), for every
h e H,(€). We have obtained for the f-density the following orthogonality
property which plays an important role in the study of Og:

6 Hg(-,y) 1L H,(9) .

4. The p-span S,.

We denote by (-, *) and | - || the inner product and the norm in L,(M,dV).
We consider f(x, y) and Hg(x, y) as defined on all of M x M by giving values
zero outside of their original domains of definition. First observe that, by (6)
and Hg(",y)—Gql(",y) € H,(9),

() Ba(x,y) = L Hgo(&, x)Hq(&, y)dV, .
Similarly by (6) and Hg (-, y)—Hg(:,y) € H,(£), we have for Qc (2,

(®) Ba(x,y)—Balx,y) = Jﬂ (Hg (§,x)—Ho(&, x))(Hg (5, y)— Hq (£, y)) 4V .
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In particular,

Again by (6),
(10) IHg (-, y)—Ha (-, 912

= |Hg(",y)—Ho(:, )I* = |Ha (-, y) = Ho (-, y)I*

for QcQ'<Q’. From (9) and (10) it follows that {8y (y,y)—Bo(y,))}
(2>, € Q) is an increasing net. Therefore, we can define for ye M
and Q € 2 with y e Q,

(11) Sp(y) = Sp(y; M) = Sp(y; Q, M)

= lim (ﬂﬂ'(% y)_ﬁﬂ(y’})))

Q->M

= lim |Hg(:,y)—Hq(-,y)I* € (0,00] ,
Q-M

which we will call the B-span of M at y € M with respect to Q. The property
Ss(y) <0 is clearly independent of the choice of 2 and is thus a property of
(M, y). We maintain:

THEOREM 2. The manifold M does not belong to Oy if and only if the B-span
S;(y) of M is finite at every point y € M.

If M & Oy, or (B.3) is valid, then we trivially have Sz(y)<oo for every y € M.
Conversely, assume that Sz(y)<oo for every y € M. Then, by (8) and (9), the
Schwarz inequality implies that

(12) 1Bar(x,y) = Ba(x, )| = |Hg(-,x)—Hqg(-,%)|-|Hg(:,y)—Hg (-, )

on ' x Q for Q' =Q". By (10), (11), S4(x) <00, and S4(y) < 0o, we see that the
right-hand side of (12) converges to zero on Q@ x Q as & — M for any Q<&
<Q", and, since Q is arbitrary,

lim (ﬂa'(x,)’)—ﬂa(x,}’)) =0
Q' —-M
on MxM,

lim By (x,y)—Ba(x, M S Sp(x)*S,(0)*,
@'-M

and
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Ss(») = Lim (B (y,y)—Ba(y,y) < oo
Q' ->M

Thus (B.3) is fulfilled for every Q € 2 and, therefore, M ¢ 0.

5. The B-density Hy, (-, y).

Assume M ¢ O;. By Theorem 2 and relations (10) and (11), we conclude that
{Ho(-,y)—Hga(-,y)} (29, € Q) is a Cauchy net in L,(M,dV) and has
a limit Hyg(-,y) € L,(M,dV). Set

\
Hy(-,y) = Hyo(-,y)+Hq(",y) .

Then since
Hy(-,y)—Hg(:,y) = Hyo(-,y)—(Hg(:,y)—Hg(",y),

the net {Hp(',y)—Hg(*,y)} is convergent to zero in L,(M,dV). Fix an
arbitrary Q, € 2 with y ¢ Q,. Then {Hy(-,y)} is a Cauchy net in H, (),
Hy(-,y) is its limit, and a fortiori Hy(,y) € H,(2,). Therefore,

(13) Hy(-,y)e HM —y) .

Fix an arbitrary Q € 2 with y € Q. Observe that {Hg(,y)—Gq(",y)} (2
oQ, @ € Q) is also a Cauchy net in H,(£), convergent to Hy(+,y)—Gg(*,),
which is again in H,(Q). Thus we have

(14) Hy(+,y)—Gol",y) € H(Q)
for one and hence for every Q € 2 with y € Q. It is also clear that
(15 Hy(:,y) € H(M—Q)

for any Q € 2 with y € Q. Besides properties (13)-(15) of Hy (", y), the follow-
ing orthogonality relation is of fundamental importance:

(16) Hy(:,y) LH;(M),

or, equivalently,

an JM h(QHy(E,y)dV, = 0

for every h € H,(M). Here the integral on the right is well defined because of
(14) and (15). For the proof, observe that the inequality

|(h, Hy (", y)—Ho(, ) £ llhll- 1Hp (-, y) = Ho(:, )

implies
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j h(&)Hpy (&, y)dV, = lim J h(QHq(&,y)dV .
M Q-M

Q

Since h € H,(M)= H,(Q), (5) yields (17).

We shall call a function Hy(-,y) on M —y with properties (13)-(16) the f-
density on M for y € M. 1t is unique. In fact, if K(-, y) satisfies (13)—(16), then
h=Hpy(',y)—K(:,y) € H,(M), and by (16) for Hy(-,y) and K(-,y) we ob-
tain (h,h)=|/h||>*=0, that is, h=0 on M.

We claim:

THEOREM 3. The manifold M does not belong to O if and only if the B-density
Hpy(-,y) exists on M for every y € M.

We only have to show that the existence of the f-density Hy,(-,y) on M for
every y € M implies M ¢ Op. Let QcQ'. Since Hy(-,y)—Hg(",y) € H,(Q)
< H, (), we have

((Hu(,y)—Ho(-, )= (Ho (-, y)—Hq(-, ), Ho(-,y)~Hq(",y))
= (Hy(,)—Hg(:,y), Ho(",y))
—(Hy(-,y)—Hqg(-,y),Hg(-,y)) = 0
and a fortiori
(Hu(',y)—Hq(",y), Ho(-,y)—Hq(",y)) = Hg(-,y)=Ha(, D)I* .
By the Schwarz inequality,
[Hg (-, y)—Ho(, ) = IHp (-, y)—Ho(-, Yl .
In view of (11) it follows that S;(y)<oo for every y € M, that is, M ¢ O,.
CoRrOLLARY. The B-span Sy(y) is finite if and only if the B-density Hp(-,y)
exists on M at y, and in this case,

(18) Sp(r; M) = [|Hy(,y)—Ha(:, ).

6. An extremal property of Hy(-,y).

Assume the existence of B,. Then by (1), (8), and limg ,p [Hp(",)
—Hg(-, )| =0, we have

ﬁM(X,,V)—ﬂn(x,}’) = (HM(.sx)—HQ("x)>HM("y)-HQ("y))
on 2 x Q. By (6) and (7),
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(19) Bu(x,y) = f o Hp (8, x)Hp (L, y)dV,

on 2 x Q for every 2 € £, and a fortiori on M x M. Instead of (1) we can take
(19) as the definition of By, (cf. Nakai-Sario [4]) starting from p-densities
Hy(-,y) for all ye M.

In this connection, we consider the family F(M,y) of functions K(-,y) on
M — y satisfying (13)-(15), with K replacing Hy. If Hy (-, y) exists, then it is in
the class F(M,y) and thus

(20) FM,y) + & .
Since Hy(*,y)—K(*,y) € Hy,(M), we have

(Hu(,y)—K(,y), Hy(-,y)—Hq(-,y)) = 0
for every Qe£2. By the Schwarz inequality applied to

“HM(9y)—Hfl(ay)"2 = (K(,Y)"Hﬂ(,}’),HM(,)’)“HQ(,Y))

we obtain the following extremal property of Hy(-,y):

(1) IHy(,)—Ho(, )l = lim  |K(-,y)—Hga(", y)l
KeF(M,y)
for any Q € 2 with y € Q.

This property actually characterizes Hy(+,y) in the class F(M,y) if (20) is
valid. In fact, suppose F(M, y)#+0. Fix an arbitrary Q € Q. Then the family

is clearly a nonempty convex set in L,(M,dV). It is also closed. To see this, let
{K,(",y)—Hg(-,y)} (n=1,2,...) be a sequence in X, converging to a
K € L*(M,dV). Set K=K +Hg(",y). Then {K,— K} is a Cauchy sequence in
L*(M,dV), and therefore, {K,} is Cauchy in H, () for every Q € 2 with y ¢ Q,
and {K,—Gq(",y)} is Cauchy in H,(Q) for every Q € 2 with y € Q. Thus K
enjoys properties (13)-(15), i.e.,

K—Hﬂ(,y) = JLI?O (Kn(’.V)_HQ(’y)) € Xﬂ s

and Xj is closed.

Since any nonempty closed convex subset of a Hilbert space contains
a unique element of minimum norm, there exists a unique element
Ko—Hg(",y) € Xg such that

Ko—Hg(;y)I = min |K(-,y)—Ha(, Yl .
KeF(M,y)

Let h be any element in H,(R2), and t>0. In view of K,+th € F(M, y), we have
IKo=Hq(-,y)+thl* 2 |Ko—Hq(:,y)II?
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or
2t(Ko—Hgo(-,y), )+ *|h|* z 0
Since this is true for every t>0,
(Ko—Hgq(",y)h) =0

for every h € H,(M). From this and (5) we deduce the validity of (16) or (17)
with K, replacing H (-, y). Thus K, satisfies (13)—(16), i.e., K, is the p-density
Hy(:,y) on M for y. We have shown:

The B-density Hy(-,y) on M for y € M exists if and only if F(y, M)+ .
We restate this in the following form:

THEOREM 4. The manifold M does not belong to Oy if and only if there exists a
harmonic function K(-,y) on M —y which has the harmonic fundamental
singularity at y and is square integrable on M off any neighborhood of y.

7. Proof of Theorem 1.

Inclusion (3) can now be established using Theorem 3 or 4. For example, let
M € Ogy,. Then there exists a subregion N+ of M with M ~N+@ and
H,(N)={0}. If M ¢ Oy, choose a point y € M—N. By Theorem 3, the f-
density H) (-, y) exists on M for y, and by taking Q ¢ Q with y e Q and Q<=M
— N, we infer by (15) that Hy(-,y)| N € H,(N)={0}. Thus Hy(-,y)=0 on N.
By the unique continuation property of harmonic functions, Hp(-,y)=0 on M

—y, which contradicts (14). Therefore, M € O, and we have proved Theorem
1.

8. An application.

As an illustration of the use of our test (3), we exhibit a manifold M which
shows that

(22) 0;—Oyp + & .
Let E2 be the plane with the metric

ds = /A(x)ldx], A(x) = exp (x?).
Choose M ={|x|>1} in E2. Since HD(M,ds)=HD(M, |dx|), we clearly have

(M, ds) & Oyp. Let N,={lx|>g} (1 <@ <oc). We assert that H,(N,,ds)= {0} It
suffices to show that 1f h is harmonic on |x|>¢ and
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A= J‘ h(r, 02 A(r)rdrdd < oo,
NO
then h=0. The expansion

h(r,0) = alogr+ Y r"(a,cosn6+b,sinnb)

on N, gives
2n
L(r) = j h(r,0)2d0
0
= 2n(ap+alogry+n Y (a2+b2r*",
n=-o0,n%0
and we have
A= J L(r)A@r)rdr
']
= 21IJ‘ (ap+alogre rdr+n Y (a§+b5)j r2ntigt gy
e n=-oo,n*0 ']

From A <oo we infer that a=a,=b,=0for n=0, +1,.. ., thatis, k=0 on N,.
Therefore,
(M, ds) € Ogy, ,

and (3) yields (M, ds) € Og.
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