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INTEGRABLE GROUP ACTIONS
ON VON NEUMANN ALGEBRAS

W. L. PASCHKE!

1. Introduction.

In what follows, M will denote a von Neumann algebra with separable
predual, G a separable locally compact abelian group. We shall be concerned
with integrable actions a (recently introduced and studied by A. Connes and
M. Takesaki in [4]) of G as *-automorphisms on M, and in particular with
certain relationships among the fixed-point algebra M,, the crossed product
W*(M,G,a) of M by « [13], and the spectral invariant I'(«) [3] in this setting.
Section 2 below extends the analysis undertaken in [10] for compact-group
actions to integrable actions; the main result in section 2 is, roughly, that if « is
an integrable action of G on M satisfying a certain spectral condition, then
W*(M, G, ) is isomorphic to the algebra of bounded module maps on a self-
dual inner product module over M, (so in particular M, and W*(M, G,«) have
isomorphic centers). In section 3, we use this result to show that if a is any
continuous action of G on M such that M, "M cM,, then I'(0) =T («® p) for
any continuous action f§ of G on a von Neumann algebra. Finally, we consider
in section 4 the canonical implementation {U, : t € G} of a by unitaries on a
Hilbert space on which M acts standardly, and show that if « is integrable, then
the von Neumann algebra generated by M and the U,’s is a homomorphic
image of both W*(M, G,a) and the abovementioned module map algebra.

We now recall some definitions and establish our notation. A continuous
action of G on M is a homomorphism ¢t — o, from G into the group of *-
automorphisms of M such that for each x € M, the map t — «,(x) is continuous
with respect to the ultraweak topology on M (or equivalently, as a one-line
computation shows, with respect to the ultrastrong* topology on M). We let

M,={xeM: o(x)=x Vte G},

a von Neumann subalgebra of M. To define the crossed product W*(M, G, «)
for such an action a, we represent M faithfully and normally on a separable
Hilbert space H, and consider the Hilbert space L?(G, H) of measurable, norm-
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square integrable functions from G into H. For se€ G, x € M, we define
operators L, A(x) on L*(G, H) by

(L@)() = (t—s) (A()P)(1) = a_,(x)(® (1))

(@ € L*(G, H)) and let W*(M, G, «) be the von Neumann algebra on L?(G, H)
generated by these operators. This definition of W*(M, G,a) does not in fact
depend on the particular faithful normal representation of M we use (3.4 of
[13]).

We next define the spectral invariants sp («) and I'(ax) as in [1] and [2],
respectively. For f € L'(G), x € M, there is an element 6,(f)(x) € M such that

?(0,(N)(x) = Lf(t)fp(a,(x))dt VoeM,.

The map 6, is a homomorphism from the convolution algebra L!(G) into the
algebra of ultraweakly continuous linear operators on M (with |0, ()l =1 f1),
so 0;1(0) is a closed ideal of L!(G). Let sp («) be the zero-set in G (the dual
group of G) of this ideal, ie.

sp(@) ={xeG: f() =0Vfeb ' (0)}.

If e is a non-zero projection in M, let ' be the action of G on eMe obtained
by restriction of a. We set

I'(@) = ) {sp(«?) : e a non-zero projection in M,} .

Following [13], we define the dual action of G on W*(M, G, ) by letting w,,
for y € G, be the unitary operator on L?(G, H) given by (W, D))= ()@ (1)
(® € L*(G,H)); the dual action & is defined by &,/(T)=W}TW,
(Te W*(M,G,a)). (One checks easily that each &, maps the generators of
W*(M, G,a) to scalar multiples of themselves).

Because M has separable predual, we may assume that M acts on a
separable Hilbert space H with a cyclic and separating vector. In this situation
(actually in the more general context of arbitrary von Neumann algebras
acting standardly on Hilbert space), U. Haagerup [7] and T. Digernes [5], [6]
construct a “canonical implementation” of the action a by a strongly
continuous group of unitaries {U, : t € G} on H. (See section 4 below). We
quote 3.13 of [6], which identifies generators for the commutant of
W*(M, G,a) under these circumstances.

1.1. TueoreM. W*(M, G, a) is generated by the operators A'(w) (w € M’) and
R, (s € G) defined on L*(G,H) by

(AWP)(1) = w(@@®) RP)() = Uy(Ps+1) (P € L*G,H).
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2. Integrable actions.

Let o be a continuous action of G on M. For x € M and K a compact subset
of G, the integral (taken in the ultraweak sense)

{x,x)g = J o, (x*x) dt
K

defines an element of M. Let X, denote the set of those x € M such that

J o, (x*x)dt
G

exists, ie. such that the increasing net {(x,x)g : K™ <G} is norm-
bounded. Clearly, X, is a left ideal of M and a right M ,-module. Following [4],
we say that a is integrable if X, is ultraweakly dense in M. It is immediate that
if G is compact, then any continuous action of G is integrable; our goal in this
section is to generalize much of the analysis in [10] on compact groups of
automorphisms to the setting of integrable actions of locally compact abelian
groups.

One elementary but useful example of an integrable action arises from the
left regular representation of G on L*(G). For t € G, let V, be the unitary
operator on L?(G) defined by (V;)(s)=&(s—t). The action A of G on B(L*(G))
defined by 4,(S)=V,SV}* is easily seen to be integrable. (Indeed, one checks that
X, contains an ultraweakly dense subalgebra of the algebra L*(G) of
multiplication operators on L*(G).) If « is any continuous action of G on M,
and f is an integrable action of G on another von Neumann algebra N, then
the tensor product action a®pf of G on M®N defined by (x®f),=a,®p, is
integrable because X,g, contains all operators of the form x®y (x € M,
y € X;). By passing from a to a®4, then, we have a convenient way of
converting continuous actions into integrable ones.

If « is an integrable action of G on M, we define (-, ->: X, x X, = M, by

{x,y) = J o (y*x)dt  (x,ye X,).
G

(One checks that the integral in question exists as the ultraweak limit of
corresponding integrals over compact subsets of G.) This makes X, into an
inner product module over M, (see [9] or, for a summary discussion, [10]), i.e.
{x,x)20, {x,x)=0 implies x=0, {x,y>*={y,x), and {xa,y)=<{x,y)a
(x,y € X,, a € M,). Let X, be the inner product module “completion” of X, to
a self-dual module over M, in the sense of section 3 of [9], A(X,) the (von
Neumann) algebra of bounded module maps of X, into itself. Our immediate
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aim is to obtain an isomorphism of 4(X,) with a reduced subalgebra of
W*(M, G,a) by a central projection as was done in [10] in the compact case.
For x € X,, ¢ € H, define x(O&: G — H by (xO&)(s)=a_,(x)¢. We have

L 1(xO)B)*ds = L (a- (x*x)¢,&)ds < o0,

so xO¢& € L*(G, H). Let X,OH denote the closed linear span in L*(G, H) of
{xO¢&: x € X, £ € H}, and let P, be the projection of L*(G, H) on X,OH. As
in [10], but for less transparent reasons, we have

2.1. PrOPOSITION. P, € center (W*(M, G, a)).

Prooor. We assume that M acts on H with a cyclic and separating vector, so
1.1 above is applicable. For x € X,, we M’, ¢ € H, and t € G, one verifies
immediately that

AWxOE = xOw¢, R,(x0O¢) = xOQUL,
so X,OH is invariant under W*(M, G,«)'. But also
AW)xOE) = yxO&  (ye M)
L(x©%) = a,(x)O¢,

so X,OH is invariant under W*(M, G,a) as well.

We let {X,, X,> denote the linear span of {{x,y) : x,y € X,}, s0 {X,, X,) is
a two-sided ideal of M,. Further, X *X, will denote the subspace of M spanned
by {y*x:x,y € X,}, and for x € G, we set

M(y) = {yeM: o())=x@)y VteG}.
Define E,: XfX, —» M(a,x) by
E,() = L 1) de
Finally, for a subset S of M, L(S) will denote the left annihilator of S in M.

2.2. ProposITION. If o is an integrable action of G on M, then (X, X, is
ultraweakly dense in M, and

L(M(x 1) = L(E(X*X)) VxeG.

ProoF. Let g be a central projection of M, annihilating (X, X,>. For x € X,,,
we have
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0= qq a,(x*x)dt)q = J a,(gx*xq)dt ,
G G

forcing xq=0. Since X, is ultraweakly dense in M, we must have ¢=0, so
(X, X,) is ultraweakly dense in M,.

Take x € G and suppose a € L(E,(X*X,)). For x € M(a, ) and y, € X,, we
have

a((r1X)*(1x) = x*o,(yfy)x VteG,

so y,x € X,. If y, € X,, then a{y,,y,>x=aE,(y3y;x)=0. Since {(X,, X,> is
ultraweakly dense in M, this implies that ax=0, hence a € L(M(, 3)).

Arguing now exactly as in section 3 of [10], we construct a faithful normal
*_representation of 4(X,) on X,OH such that o(T)(x®&)=TxO¢ for every
Te A(X,) such that TX, = X,.

2.3. ProrosITION. If o is an integrable action of G on M, then o(A(X),))
=W*(M,G,%)|x oHn-

Proor. To see that W*(M, G, o) |x onSe(4 (X,)), proceed exactly as in the
first part of the proof of 3.1 of [10], replacing M by X, throughout. For the
reverse inclusion, we may assume that M has a cyclic and separating vector, so
that 1.1 above is applicable. The operators T e 4 (X,) such that T(X,) < X, are
ultraweakly dense in A(X,) by 2.5 of [10]. For such a T (and for w e M’,
x € X,, s € G, and ¢ € H) we have

(M)A (W)(xOE)

2(T)(xOwé)
= TxOw¢ = A'(w)e(T)(xO&)

and

e(TR(xO¢) = TxOUL = Re(T)(xO?),
so ¢(T) commutes with W*(M, G, a)' |x on, Which gives the desired inclusion.

If y € center M,, it is immediate that Ty(t)=1y (t € X,) defines a bounded
module map in the center of 4(X,). Using the ultraweak density of (X, X,) in
M,, a routine argument shows that the center of A(X,) consists precisely of
maps of this form. Notice that for such y we have

e(T)(xO&) = xyO& = xOy¢ (xeX, £ H).
By 2.3, then, we have
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2.4. REMARK. Let a be an integrable action of G on M. If T e center
(W*(M, G, a)), there is a y € center M, such that

T(xO¢) = xyO¢f = xOy¢ (xe X,, (€ H).
It is of interest to know when X,OH =L*(G,H), so that g is a *-
isomorphism of A(X,) with W*(M,G,a). The necessary and sufficient

condition given for this in the compact case given in 4.6 of [10] generalizes to
integrable actions.

2.5. PROPOSITION. Let o be an integrable action of G on M. Then X,OH
=I12*(G,H) if and only if L(M(x,%))=0 ¥y € G.

Proor. We need only make certain modifications in the proof of 4.6 of [10].
Suppose first that X,OH=L2(G,H), and take y € G. Let n e (M(a, x)H)".
Given y,,y, € X,, define ® € L*(G, H) by

o(t) = 2O (yn
(that is @=W,(y,On)). For any ¢ € H, we have

This shows that @ =0, and hence 1 =0 because of the ultraweak density of X,
in M. Since (M («, x)H)* =0, we must have L(M(a,x)=0.

Conversely, suppose that L(M(a,))=0V x € G. Let & € (X,OH)* and take
¢ € H. We will show that

(AP, &) = 0 ae. Vye X},

which forces ®=0. Given y € X*, define f on G by f ()= ((A(»)®)(t), £). We
have fe L'(G) because y*©O¢ € L*(G, H) and

f |f(5)l dt =I (- )(@(), &)l dt
G G

= J . [(@(1), (Y*O ) dt

= l2ly*oLl

Given y € G and 6>0, we can find &,,. . .,5” e Hand y,,...,y, € M(a,x) such
that

Jo=Zve] <
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(since [M (o, x)H]=H). Set n=&—3""_, y:£;. We have

17l < ‘L 2O, () (@), n) dt| +

n

) L 1O (- (@), yi&)dt

+

i=1

For i=1,2,...,n, though, the ith term in the second expression equals
(D, y*y,©O&)) (because y; € M(a,y)) and hence vanishes by our choice of @,
while

L (- (PO)n)dt < L 1@ Nl (y*)nll de

+
s ol (L (x_(yy*m,n) dt)
< 1) IKy*, y*>li%s .

As 6 was arbitrary, we have f(x)=0 Vy € G and hence f=0 a.c. as required.

3. Invariant I" for integrable actions.

Theorem 3.3.2 of [4] states that if « is a continuous action of G on M, then
(o) is the kernel of the restriction of the dual action & to the center of
W*(M, G, ). This result, together with the results of the preceding section of
the present paper, can be used to give a proof of our next proposition. We
prefer, however, to give a self-contained proof whose main ideas are similar to
those of the proof of the theorem just cited.

3.1. THEOREM. If « is an integrable action of G on M, then I'(«) consists
precisely of those y € G such that

(i) L(M(a,1)=0;
(ii) M(a, x) < (center M,)'.

We will require the following lemma, which is a modification of 9.5 of

[13].

3.2. LEMMA. Let B be a continuous action of G on a commutative von Neumann
algebra A. If p is a projection in A such that B, (p) = p for some s, € G, then there
is a non-zero projection q<p and a neighborhood U of s, in G such that B (q)q
=0VseU.
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ProoF oF LEMMA. We may assume that V {f,(p) : t € G} =1; otherwise set
Po= V {B.(p) : t € G} and replace A by Ap,, B by B9, Appealing to 9.5 of [13]
(which is stated for the special case G=R, but whose proof, mutatis mutandis,
is valid for arbitrary locally compact abelian G), we find a non-zero projection
g, € A and a neighborhood U of s, such that f,(q,)q, =0Vt € U. By our initial

assumption on p, we must have B (q;)p+0 for some s, € G. Set g=f,,(q,)p.
Then for t € U, we have

B@a = B.(P)Bi+s,(a)p = B.(D)B,(B.(a1)as)p = O.

PrOOF OF 3.1. We first show that if y, € G is such that L(M («, x,)) +0, then
%o & I'(@). Let p be a non-zero projection such that pM (a, x,) =0, and let P be
the projection of L?(G,H) on the closed linear span in L*(G,H) of
{xOp¢ : x € X,, £ € H}. Because p+0 and X, is ultraweakly dense in M, we
have P+0, and also of course P<P,. For any y,,y, € X,, ¢,,&, € H,

(on()ﬁgél), y20p¢;) = (pExo(y;.VI)&la £) =0

so PW, P,=0. Hence P, cannot commute with W, , that is, &y, (P)#*P,.

By 3.2 (applied to the restriction of & to the center of W*(M, G, &)), there is a
non-zero projection E € center (W*(M, G,«)), ES P, and a neighborhood U of
Xo in G such that 4, (E)E=0Vye U. Since E(X,OH)#0, there is, by 24, a
non-zero projection e € center (M,) such that

E(yQf = yoet (yveX, E€H).

Take y € U. Then EW,E=0, so for any y,,y, € X, and ¢,,¢, € H, we have
0 = (EW,E(y;0&),y:,0¢))
= (Wx(yl(Deil),Yz(Deéz)

= JG m(ea,(y{n)eé,,éz)dt .

This shows that eE,(X¥X,)e=0 Vy e U. There is a continuous function
f e L'(G) such that f(xo) +0, supp () U, fe L'(G), and

f@ = Lf (x@Wdy (eG),

dy being Haar measure on G, appropriately normalized. Take y,,y, € X, and
let ¢ be a normal positive functional on M. One checks that the function
t — @(eax,(y¥y,)e) belongs to L'(G). Fubini’s theorem gives

Math. Scand. 40 - 16
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)

0 (e0,(f)(y$y1)e) . O o(ex,(y3y)e)dt

= |, J . Fx (e, (y3y,)e) dy dt

"

= Uf (0p(eE;(yy,)e)dy = 0,

since Ej(XfX,)=E,(XfX,)* But X}X, is ultraweakly dense in M, and 6,(f)
is ultraweakly continuous, so ef, (f)(M)e=0, that is, 0,«(f)=0. Since 1 (x,) +0,
we have x, ¢ sp («®) and hence y, ¢ I'(x). We have shown that y e I'(x)
implies L(M(«, ))=0.

We next show that if y e I'(a), then M(a, x)< (center M,). Let e be a
projection in center M,. We claim that L(eM (o, x)e)=M(1—e). (If p is the
projection in M such that L{eM (a, x)e)= Mp, then certainly p<1—e. We must
show that pe=0. Since the action a leaves eM (a, y)e globally invariant, we see
that p e M,. Let g=pe, so q is a projection in M, and gM («, x)q=0. If g=+0,
then we would have (gMgq)@=qM,q, so x € I'(«*), and

(@Mg)(«®@, ) = qM (2%, x)g = 0,
contradicting what was shown in the previous paragraph.) Likewise,
L((1—-e)M(a, x)(1 —e))=Me. Take x,y € M(«,x). Then
(ey* —y*e)(exe) = ey*exe—y*exe = 0,
since y*ex € M,. Also
(ey*—y*e)((1—e)x(1—e)) = ey*(1—e)x(l—e) = 0,

since y*(1—e)x € M,. This shows that ey*—y*ee M(1—e)N Me, so y*,
and hence y, commutes with e. We conclude that y e I'(x) implies
M (o, y) = (center M)

Now suppose that y € G satisfies L(M(a, x))=0 and M(a, x) S (center M,).
Let e be a non-zero projection in center M,. If fe L'(G) is such that
0,(f)(eMe)=0, then in particular

0 = 8,(N)(M(2)*e) = F(OM(o )% .

Since L(M (a, x)) =0, we must have f(x)=0. This shows that y € N {sp (x®) : e
a non-zero projection in center M,}. But by 2.2.2(b) of [2] (which is stated for
factors M, but whose proof is in fact valid for arbitrary M), this last set is I"(c).

3.3. CoRrOLLARY. Let o be an integrable action of G on M. Then I’ (a) = G if and
only if L(M(a,))=0V y € G and center M, S center M.
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ProoF. If L(M(a,x))=0 ¥y € G and center M, = center M, then I'(0)=G by
3.1 above.

Conversely, suppose that I'()=G. Then by 3.1 L(M(x,%))=0 Yy € G and
the elements of center M, commute with the subspace of M spanned by the
M(a, x)’s. The latter, however, is ultraweakly dense in M. (Suppose ¢ is a
normal positive linear functional on M annihilating all the M(a, x)’s. For
Y1,z € X,, define fe L'(G) by f(1)=(x,(y}y,)). We have

fo) = o(E,(v¥y)) =0 VyeG,

so, since f is continuous, @(X}X,)=0, forcing ¢=0.) This shows that
center M, S center M.

Our next result concerns the behavior of the invariant I' with respect to
tensor products of continuous actions of G on von Neumann algebras. Its
proof will require the following reduction to the integrable case.

3.4. LEMMA. Let a be a continuous action of G on M. Write M = M® B(L*(G))
and let d be the action a®A of G on M (where 1 is as in section 2 above). Then
I (@)=TI(x). Further, if M,NM < M,, then M0\ M < M;.

Proor. It follows without difficulty from the definition of I' that I'(a)
=TI"(a®1), where 1 is the trivial action of G on B(L?(G)). The actions a®1 and
a® A are equivalent (7) in the sense of 2.2.3 of [2] because {1®V, : t € G} (see
section 2) is a strongly continuous group of unitaries in 1\71@1 satisfying

@®A)(T) = 1®V)@®(T)1®V)* for te G, Te M.

It now follows from 2.2.4(c) of [2] (which is stated only for factors, but which
in fact is valid for arbitrary von Neumann algebras) that I'(a®1)=T(a®4).

Suppose now that M,NMgcM,, and take Te MzNM. If ¢ is an
ultraweakly continuous linear functional on B(L?(G)), there is a unique “slice
map” R,: M — M satisfying

R,x®a)=9¢(@x (x e M, ae B(L*(G).
It follows that

R,(T(x®1) = R,(T)x and R ((x®)T) = xR,(T) VxeM.

If xeM, then x®le M; and we have R,(T)x=xR,(T). Hence
R, (T)e M,NMcM, By theorem 1 of [14], this means that
Te M,®B(L*(G)). It is well-known that B(L*(G)),=B(L*(G)),, so by
considering slice maps from M,® B(L?(G)) to B(L*(G)), we see in like manner
that Te M,®B(L*(G)),c M;.
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3.5. THEOREM. Let « be a continuous action of G on M such that M,NMcM,.
Then I' (@) = T (a® p) for any continuous action B of G on a von Neumann algebra
N.

ProoF. Using 3.5 to replace (M,a) by (M, d) if necessary, we may assume
that o is integrable and that for each y € G, M(x, ) contains a unitary u,.
(Note that if U, € B(L*(G)) is defined by U&=y, then A,(U »=x@®U, for
x€G, teG)

Take y € I' (). We will show that if T e center (M®N),g 4, then T commutes
with each element of (M@ N)(ax®pf, x); we can then conclude from 3.1 above
that y € I'(@®p). Since M,®1< (M®N),g;, T must commute with M,®1.
Arguing with slice maps as in the proof of 3.4, we see that Te (M,NM)®N.
But M,N M < M, by assumption, so in fact T € (center M )® N. Since y € I'(«),
the unitary u, € M(x,x) commutes with center M, by 3.1, so T(u,®1)
=w,®T For arbitrary S e (MRN)(a®p, x), we have
ur®1)S € (M®N),g;, SO

TS = Tw,®)@DS = ,®)T[(u@1)S]
= (@[ (uF®S]T = ST,

which is what we wanted.

It should be noted that the inclusion I'(a) = I' (¢® f) fails in general without
some sort of additional requirement on a. For what is probably the simplest
possible example, let G=Z, x Z, and let M be the algebra of complex 2 x 2
matrices. Define an action « of G on M by

ab a —b
ol g) T \e 4
. ab\y d —c
©MNed)  \-b a
ab d c
*a\ed) " \ba
(These automorphisms are implemented by
1 0 01 and 01
0 -1/ \-10) 10)°
respectively.) One can check (using 3.1, for instance) that I'(@)= G but I'(«®0)
is trivial.

We remark that if M is properly infinite, then by 2.5.1 of [4], there is a
faithful normal semifinite weight ¢ on M whose associated modular action ¢®
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of R on M is integrable and satisfies the relative commutant hypothesis of 3.5
above. From this it follows that for factors M and N we have (as announced in
[3]) S(M)S(N)=S(M®N), where S(-) is Connes’s invariant [2].

4, Canonical implementation.

We recall here briefly certain aspects of the modular theory of faithful,
normal, semi-finite (f.n.s.f) weights on M. (For a summary discussion, see
section 2 of [11] or 1.1 of [2]; the standard complete reference is [12].) Let
@: M* — [0,00] be such a weight. Our notation for the various objects
associated with ¢ is as in [2], i.e.

N, = {xeM:p(kx*x)<oo},

Hilbert space H,, injection n,: %, — H,, representation n, of M on H,,
“sharp” operator S,, modular conjugation operator J,, modular operator 4,,
and modular action ¢*. Further, we let P, denote the closure in H, of the set
{n, ()T Mp(x) : x € NEAN}.

In [7], it is shown that P, is a cone and the following uniqueness result is
obtained: if Y is any other f.n.s.f. weight on M and o: n,(M) — =n,(M) is an
isomorphism, then there is a unique unitary V: H, — H,, such that

Vr,()V* = a(n,(x)) (x €M)

and VP,=P,. For an action « of G on M, we write U? (t € G) for the unique
unitary on H, such that UYP,=P, and

Utn,()(UD* = m,(0,(x)) (x €M),

and call {U? : t € G} the canonical unitary implementation of « on H,. We let
W*(M, Ug) denote the von Neumann algebra on H, generated by n,(M) and
the U?’s.

4.1. LemMa. For any two fnsf. weights ¢ and Y on M, the algebras
W*(M,Ug) and W*(M, U¥) are (spatially) isomorphic.

Proor. Let V: H, » H, be unitary such that VP,=P, and Vr,(x)V'*
=7, (x) (x € M). We have VU?V*P,=P, and
VUSV*m, (x)(VUPV*) = m(a,(x)) ,
80 by uniqueness VU¢V*=UY (t € G) and we see that V implements a spatial

isomorphism of W*(M, Ug) with W*(M, U}¥).

4.2, THEOREM. Let o be an integrable action of G on M, ¢ a fn.s.f. weight on
M. Then W*(M, Ug) is a homomorphic image of W*(M, G, ).
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Proor. By 4.1, it will suffice to prove the theorem for a particular,
advantageously chosen weight ¢. Accordingly, let M act on a Hilbert space H
with cyclic and separating vector &, € H. For he M, let

o(h) = f (o, o)

Because ¢(x*x)<oo VY x € X,, we see that ¢ is an a-invariant f.n.s.f. weight on
M. By a-invariance, there are unitaries W, (t € G) on H, such that W, (x)
=1,(a(x)). Clearly, W, implements o, and W,S,W}*=S5,, so W, commutes with
J, and we have

Wiy (M o) = TGN 1, (2 ()  (x € RENTR,) .

It follows that W,P,=P,, so W,=UY. For x € N, define % € L*(G, H) by X()
=0a_,(x)¢o. We have [|X|=]n,(x)|, so the map 7,(x) - X extends to an
isometry V of H, onto a subspace A » of L*(G, H). It is immediate that

AWE = (yx)" = V(n,()n,(x) ,
L% = (6,(x) = V(U?n,(x)

(yeM,xeN, teG),so ITI,,, is W*(M, G, a)-invariant and W*(M, G, a) |H«» is
isomorphic to W*(M, Ug).

We show next that 4.2 remains valid when the algebra W*(M,G,a) is
replaced by the algebra A(X,) of section 2. For this, we need to know that
1,(X,) is dense in H,, (a fact which does not follow merely from the ultraweak
density of X, in M).

4.3. LEMMA. In the situation of 4.2 and its proof, we have n,(X,)=H,,.

Proor. Let Q be the projection of H,, on n,(X,). Since X, is a left ideal of M,
1,(X,) is n,(M)-invariant, hence Q € n,(M). By Tomita’s theorem, there is a
projection g € M such that Q=J,n,(q)J,. For te G, we have o,(X,)=X,,
whence it follows that #,(X,) is an invariant subspace for U?, that is, Q
commutes with each U{. Since J, commutes with each Uy, we see that =,(q)
commutes with each U?, hence q € M,. By 5.6 of [11], the a-invariance of ¢
implies that ¢? commutes with a, (r € R, t € G). This shows that ¢?(X)=X,
(r € R). For y e R,, we have 4in,(y)=n,(6?(»)), so n,(X,) is an invariant
subspace for each Af;, so Q commutes with each 4%, so n,(q) commutes with
each 4%, hence with 4% For y e R, N 9%, we have

On,(0) = J 1o (@ SN, (v*) = J,m,(@)42n,(v*) = Sn,(qy*) = n,(vq) .
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This means that #,((X,N X¥)(1—g))=(0), that is, (X, N X *)(1 —g)=(0), which
forces g=1, proving the lemma.

4.4. THEOREM. Let o be an integrable action of G on M, ¢ a f-n.s.f. weight on
M. Then W*(M,U¢) is a homomorphic image of A(X,).

Proor. We use the notation of the proof of 4.2. Notice that for x € X, we
have Vn,(x)=x0O¢&,, so by 4.3, VH,= X,OH. Now just invoke 2.3.

We remark that 4.2. above can be improved considerably in the compact
case. Y. Haga [8] has shown that if « is a continuous action of a compact
abelian group G on M, with M acting in any fashion as a von Neumann
algebra of operators on H, then for any implementation {U, : t € G} of a by a
strong-operator continuous group of unitaries on H, the algebra W*(M, Ug) is
a homomorphic image of W*(M, G,a). One cannot improve on 4.4 in the
compact case in this manner, however; W*(M,U;) need not be a
homomorphic image of A(M) even when G is compact. For instance, let M be
the von Neumann algebra B(H)®I on H®H, {V, : t € G} a strong-operator
continuous representation of G by non-scalar unitaries on H, and « the trivial
action of G on M, which is implemented by the unitaries U,=I®YV,. One
checks that A(M)= B(H), whereas W*(M, U;) has non-trivial center, so the
latter is not a homomorphic image of the former.

It should also be pointed out that the conclusion of 4.2 fails in the non-
compact case without special assumptions on the action of M on H and/or the
implementation of . For example, let G be a non-compact, locally compact
abelian group, let H = L*(G) and M = B(H), acting on H in the usual (but non-
“standard”) way. As in section 2, let 4 be the action of G which comes from the
regular representation, implemented by the translation operators V, (t € G).
One shows without difficulty that W*(M, G,A)~ M®L®(G), but of course
W*(M, V)= M. Since G is non-discrete, W*(M, V;;) cannot be a homomorphic
image of W*(M,G, 4).
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